Abstract

We design and theoretically analyze a heterojunction bipolar transistor (HBT) electro-optic (EO) modulator with a composition graded SiGe base. The waveguide has a large cross-section of 1µm for ease of fiber alignment. At a base-emitter bias of VBE=2.5V, a π-phase shift requires 74.5µm interaction length for TM polarization at λ=1.55µm. The total optical attenuation is 3.9dB to achieve a π-phase shift in this condition. This device is expected to operate at a switching speed of 2.4GHz.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437(7063), 1334–1336 (2005).
    [CrossRef] [PubMed]
  2. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
    [CrossRef] [PubMed]
  3. C. Cocorullo, M. Iodice, I. Rendina, and P. M. Sarro, “Silicon thermo-optical micro-modulator with 700 kHz – 3 dB bandwidth,” IEEE Photon. Technol. Lett. 7(4), 363–365 (1995).
    [CrossRef]
  4. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
    [CrossRef] [PubMed]
  5. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15, 660–668 (2007).
    [CrossRef] [PubMed]
  6. F. Y. Gardes, G. T. Reed, A. P. Knights, and G. Mashanovich, “Evolution of optical modulation using majority carrier plasma dispersion effect in SOI”, Proc. of SPIE 6898, 68980C–68980C–10 (2008).
    [CrossRef]
  7. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
    [CrossRef] [PubMed]
  8. A. Liu, “Announcing the world's first 40G silicon laser modulator”, http://blogs.intel.com/research/2007/07/40g_modulator.php
  9. Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett. 87(22), 221105 (2005).
    [CrossRef]
  10. A. Cutolo, M. Iodice, A. Irace, P. Spirito, and L. Zeni, “An electrically controlled Bragg reflector integrated in a rib silicon on insulator waveguide,” Appl. Phys. Lett. 71(2), 199 (1997).
    [CrossRef]
  11. G. Coppola, A. Irace, M. Iodice, and A. Cutolo, “Simulation and analysis of a high-efficiency silicon optoelectronic modulator based on a Bragg mirror,” Opt. Eng. 40(6), 1076–1081 (2001).
    [CrossRef]
  12. C. A. Barrios, V. Rosa de Almeida, and M. Lipson, “Low-power-consumption short-length and high-modulation-depth silicon electrooptic modulator,” J. Lightwave Technol. 21(4), 1089–1098 (2003).
    [CrossRef]
  13. X. Xiao, J. C. Sturm, K. K. Goel, and P. V. Schwartz, “Fabry-Perot optical intensity modulator at 1.3μm in silicon,” IEEE Photon. Technol. Lett. 3(3), 230–231 (1991).
    [CrossRef]
  14. M. Y. Liu and S. Chou, “High-modulation-depth and short-cavity-length silicon Fabry-Perot modulator with two grating Bragg reflectors,” Appl. Phys. Lett. 68(2), 170 (1996).
    [CrossRef]
  15. C. A. Barrios, V. R. Almeida, R. Panepucci, and M. Lipson, “Electrooptic Modulation of Silicon-on-Insulator Submicrometer-Size Waveguide Devices,” J. Lightwave Technol. 21(10), 2332–2339 (2003).
    [CrossRef]
  16. S. Manipatruni, Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “High Speed Carrier Injection 18Gb/s Silicon Micro-ring Electro-optic Modulator,” in Proceedings of Lasers and Electro-Optics Society (IEEE, 2007), pp.537–538.
  17. R. D. Lareau, L. Friedman, and R. A. Soref, “Waveguided electro-optical intensity modulation in a Si/GexSi1-x/Si heterojunction bipolar transistor,” Electron. Lett. 26(20), 1653–1655 (1990).
    [CrossRef]
  18. A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, “Silicon Electro-Optic Modulator Based on a Three Terminal Device Integrated in a Low-Loss Single-Mode SOI Waveguide,” J. Lightwave Technol. 15(3), 505–518 (1997).
    [CrossRef]
  19. S. J. McNab, N. Moll, and Y. A. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11, 2927–2939 (2003).
    [CrossRef] [PubMed]
  20. R. A. Soref and B. R. Bennett, “Kramers-Kronig analysis of electro-optical switching in silicon,” SPIE Integr. Opt. Circuit Eng. 704, 32–37 (1986).
  21. S. M. Sze, and K. K. Ng, Physics of Semiconductor Devices (John Wiley & Sons, Inc, 2007), Chap. 5.
  22. R. A. Soref, J. Schmidtchen, and K. Petermann, “Large Single-Mode Rib Waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27(8), 1971–1974 (1991).
    [CrossRef]
  23. A. Sciuto, S. Libertino, A. Alessandria, S. Coffa, and G. Coppola, “Design, Fabrication, and Testing of an Interated Si-Based Light Modulator,” J. Lightwave Technol. 21(1), 228–235 (2003).
    [CrossRef]
  24. C. E. Png, G. T. Reed, R. M. H. Atta, G. Ensell, and A. G. R. Evans, “Development of Small Silicon Modulators in SOI,” Proc. SPIE 4997, 190–197 (2003).
    [CrossRef]
  25. L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High Speed Silicon Mach-Zehnder Modulator,” Opt. Express 13(8), 3129–3135 (2005).
    [CrossRef] [PubMed]
  26. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s Carrier-injection-based silicon microring silicon modulators,” Opt. Express 15, 430–436 (2007).
    [CrossRef] [PubMed]
  27. S. Manipatruni, Q. Xu, and M. Lipson, “PINIP based high-speed high-extinction ratio micron-size silicon electro-optic modulator,” Opt. Express 15(20), 13035–13042 (2007).
    [CrossRef] [PubMed]
  28. F. Y. Gardes, K. L. Tsakmakidis, D. Thomson, G. T. Reed, G. Z. Mashanovich, O. Hess, and D. Avitabile, “Micrometer size polarisation independent depletion-type photonic modulator in Silicon On Insulator,” Opt. Express 15(9), 5879–5884 (2007).
    [CrossRef] [PubMed]
  29. S. Deng, Z. R. Huang, J.-R. Guo, J. F. McDonald, and R. P. Kraft, “Numerical Investigation of a SiGe HBT Electro-optic Modulator,” in proceedings of IEEE/LEOS Winter Topicals Meeting Series, 14–15, (2009)
    [CrossRef]
  30. W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007).
    [CrossRef] [PubMed]
  31. Y. Taur, and T. H. Ning, Fundamentals of Moerdern VLSI Devices (Cambridge University Press, 1998), Chap. 6.

2007 (5)

2006 (1)

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

2005 (4)

Y. H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437(7063), 1334–1336 (2005).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett. 87(22), 221105 (2005).
[CrossRef]

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High Speed Silicon Mach-Zehnder Modulator,” Opt. Express 13(8), 3129–3135 (2005).
[CrossRef] [PubMed]

2004 (1)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

2003 (5)

2001 (1)

G. Coppola, A. Irace, M. Iodice, and A. Cutolo, “Simulation and analysis of a high-efficiency silicon optoelectronic modulator based on a Bragg mirror,” Opt. Eng. 40(6), 1076–1081 (2001).
[CrossRef]

1997 (2)

A. Cutolo, M. Iodice, A. Irace, P. Spirito, and L. Zeni, “An electrically controlled Bragg reflector integrated in a rib silicon on insulator waveguide,” Appl. Phys. Lett. 71(2), 199 (1997).
[CrossRef]

A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, “Silicon Electro-Optic Modulator Based on a Three Terminal Device Integrated in a Low-Loss Single-Mode SOI Waveguide,” J. Lightwave Technol. 15(3), 505–518 (1997).
[CrossRef]

1996 (1)

M. Y. Liu and S. Chou, “High-modulation-depth and short-cavity-length silicon Fabry-Perot modulator with two grating Bragg reflectors,” Appl. Phys. Lett. 68(2), 170 (1996).
[CrossRef]

1995 (1)

C. Cocorullo, M. Iodice, I. Rendina, and P. M. Sarro, “Silicon thermo-optical micro-modulator with 700 kHz – 3 dB bandwidth,” IEEE Photon. Technol. Lett. 7(4), 363–365 (1995).
[CrossRef]

1991 (2)

X. Xiao, J. C. Sturm, K. K. Goel, and P. V. Schwartz, “Fabry-Perot optical intensity modulator at 1.3μm in silicon,” IEEE Photon. Technol. Lett. 3(3), 230–231 (1991).
[CrossRef]

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large Single-Mode Rib Waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27(8), 1971–1974 (1991).
[CrossRef]

1990 (1)

R. D. Lareau, L. Friedman, and R. A. Soref, “Waveguided electro-optical intensity modulation in a Si/GexSi1-x/Si heterojunction bipolar transistor,” Electron. Lett. 26(20), 1653–1655 (1990).
[CrossRef]

1986 (1)

R. A. Soref and B. R. Bennett, “Kramers-Kronig analysis of electro-optical switching in silicon,” SPIE Integr. Opt. Circuit Eng. 704, 32–37 (1986).

Alessandria, A.

Almeida, V. R.

Andersen, K. N.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Atta, R. M. H.

C. E. Png, G. T. Reed, R. M. H. Atta, G. Ensell, and A. G. R. Evans, “Development of Small Silicon Modulators in SOI,” Proc. SPIE 4997, 190–197 (2003).
[CrossRef]

Avitabile, D.

Barrios, C. A.

Bennett, B. R.

R. A. Soref and B. R. Bennett, “Kramers-Kronig analysis of electro-optical switching in silicon,” SPIE Integr. Opt. Circuit Eng. 704, 32–37 (1986).

Bjarklev, A.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Borel, P. I.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Chen, R. T.

Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett. 87(22), 221105 (2005).
[CrossRef]

Chen, X.

Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett. 87(22), 221105 (2005).
[CrossRef]

Chetrit, Y.

Chou, S.

M. Y. Liu and S. Chou, “High-modulation-depth and short-cavity-length silicon Fabry-Perot modulator with two grating Bragg reflectors,” Appl. Phys. Lett. 68(2), 170 (1996).
[CrossRef]

Ciftcioglu, B.

Cocorullo, C.

C. Cocorullo, M. Iodice, I. Rendina, and P. M. Sarro, “Silicon thermo-optical micro-modulator with 700 kHz – 3 dB bandwidth,” IEEE Photon. Technol. Lett. 7(4), 363–365 (1995).
[CrossRef]

Coffa, S.

Cohen, O.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Coppola, G.

A. Sciuto, S. Libertino, A. Alessandria, S. Coffa, and G. Coppola, “Design, Fabrication, and Testing of an Interated Si-Based Light Modulator,” J. Lightwave Technol. 21(1), 228–235 (2003).
[CrossRef]

G. Coppola, A. Irace, M. Iodice, and A. Cutolo, “Simulation and analysis of a high-efficiency silicon optoelectronic modulator based on a Bragg mirror,” Opt. Eng. 40(6), 1076–1081 (2001).
[CrossRef]

Cutolo, A.

G. Coppola, A. Irace, M. Iodice, and A. Cutolo, “Simulation and analysis of a high-efficiency silicon optoelectronic modulator based on a Bragg mirror,” Opt. Eng. 40(6), 1076–1081 (2001).
[CrossRef]

A. Cutolo, M. Iodice, A. Irace, P. Spirito, and L. Zeni, “An electrically controlled Bragg reflector integrated in a rib silicon on insulator waveguide,” Appl. Phys. Lett. 71(2), 199 (1997).
[CrossRef]

A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, “Silicon Electro-Optic Modulator Based on a Three Terminal Device Integrated in a Low-Loss Single-Mode SOI Waveguide,” J. Lightwave Technol. 15(3), 505–518 (1997).
[CrossRef]

Ensell, G.

C. E. Png, G. T. Reed, R. M. H. Atta, G. Ensell, and A. G. R. Evans, “Development of Small Silicon Modulators in SOI,” Proc. SPIE 4997, 190–197 (2003).
[CrossRef]

Evans, A. G. R.

C. E. Png, G. T. Reed, R. M. H. Atta, G. Ensell, and A. G. R. Evans, “Development of Small Silicon Modulators in SOI,” Proc. SPIE 4997, 190–197 (2003).
[CrossRef]

Fage-Pedersen, J.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Franck, T.

Frandsen, L. H.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Friedman, L.

R. D. Lareau, L. Friedman, and R. A. Soref, “Waveguided electro-optical intensity modulation in a Si/GexSi1-x/Si heterojunction bipolar transistor,” Electron. Lett. 26(20), 1653–1655 (1990).
[CrossRef]

Gardes, F. Y.

Ge, Y.

Y. H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437(7063), 1334–1336 (2005).
[CrossRef] [PubMed]

Goel, K. K.

X. Xiao, J. C. Sturm, K. K. Goel, and P. V. Schwartz, “Fabry-Perot optical intensity modulator at 1.3μm in silicon,” IEEE Photon. Technol. Lett. 3(3), 230–231 (1991).
[CrossRef]

Green, W. M. J.

Gu, L.

Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett. 87(22), 221105 (2005).
[CrossRef]

Hansen, O.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Harris, J. S.

Y. H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437(7063), 1334–1336 (2005).
[CrossRef] [PubMed]

Hess, O.

Hodge, D.

Iodice, M.

G. Coppola, A. Irace, M. Iodice, and A. Cutolo, “Simulation and analysis of a high-efficiency silicon optoelectronic modulator based on a Bragg mirror,” Opt. Eng. 40(6), 1076–1081 (2001).
[CrossRef]

A. Cutolo, M. Iodice, A. Irace, P. Spirito, and L. Zeni, “An electrically controlled Bragg reflector integrated in a rib silicon on insulator waveguide,” Appl. Phys. Lett. 71(2), 199 (1997).
[CrossRef]

A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, “Silicon Electro-Optic Modulator Based on a Three Terminal Device Integrated in a Low-Loss Single-Mode SOI Waveguide,” J. Lightwave Technol. 15(3), 505–518 (1997).
[CrossRef]

C. Cocorullo, M. Iodice, I. Rendina, and P. M. Sarro, “Silicon thermo-optical micro-modulator with 700 kHz – 3 dB bandwidth,” IEEE Photon. Technol. Lett. 7(4), 363–365 (1995).
[CrossRef]

Irace, A.

G. Coppola, A. Irace, M. Iodice, and A. Cutolo, “Simulation and analysis of a high-efficiency silicon optoelectronic modulator based on a Bragg mirror,” Opt. Eng. 40(6), 1076–1081 (2001).
[CrossRef]

A. Cutolo, M. Iodice, A. Irace, P. Spirito, and L. Zeni, “An electrically controlled Bragg reflector integrated in a rib silicon on insulator waveguide,” Appl. Phys. Lett. 71(2), 199 (1997).
[CrossRef]

Izhaky, N.

Jacobsen, R. S.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Jiang, W.

Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett. 87(22), 221105 (2005).
[CrossRef]

Jiang, Y.

Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett. 87(22), 221105 (2005).
[CrossRef]

Jones, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Kamins, T. I.

Y. H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437(7063), 1334–1336 (2005).
[CrossRef] [PubMed]

Keil, U. D.

Kristensen, M.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Kuo, Y. H.

Y. H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437(7063), 1334–1336 (2005).
[CrossRef] [PubMed]

Lareau, R. D.

R. D. Lareau, L. Friedman, and R. A. Soref, “Waveguided electro-optical intensity modulation in a Si/GexSi1-x/Si heterojunction bipolar transistor,” Electron. Lett. 26(20), 1653–1655 (1990).
[CrossRef]

Lavrinenko, A. V.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Lee, Y. K.

Y. H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437(7063), 1334–1336 (2005).
[CrossRef] [PubMed]

Liao, L.

Libertino, S.

Lipson, M.

Liu, A.

Liu, M. Y.

M. Y. Liu and S. Chou, “High-modulation-depth and short-cavity-length silicon Fabry-Perot modulator with two grating Bragg reflectors,” Appl. Phys. Lett. 68(2), 170 (1996).
[CrossRef]

Manipatruni, S.

Mashanovich, G. Z.

McNab, S. J.

Miller, D. A. B.

Y. H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437(7063), 1334–1336 (2005).
[CrossRef] [PubMed]

Moll, N.

Morse, M.

Moulin, G.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Nguyen, H.

Nicolaescu, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Ou, H.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Panepucci, R.

Paniccia, M.

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15, 660–668 (2007).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Petermann, K.

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large Single-Mode Rib Waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27(8), 1971–1974 (1991).
[CrossRef]

Peucheret, C.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Png, C. E.

C. E. Png, G. T. Reed, R. M. H. Atta, G. Ensell, and A. G. R. Evans, “Development of Small Silicon Modulators in SOI,” Proc. SPIE 4997, 190–197 (2003).
[CrossRef]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Reed, G. T.

Ren, S.

Y. H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437(7063), 1334–1336 (2005).
[CrossRef] [PubMed]

Rendina, I.

C. Cocorullo, M. Iodice, I. Rendina, and P. M. Sarro, “Silicon thermo-optical micro-modulator with 700 kHz – 3 dB bandwidth,” IEEE Photon. Technol. Lett. 7(4), 363–365 (1995).
[CrossRef]

Rooks, M. J.

Rosa de Almeida, V.

Roth, J. E.

Y. H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437(7063), 1334–1336 (2005).
[CrossRef] [PubMed]

Rubin, D.

Samara-Rubio, D.

L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High Speed Silicon Mach-Zehnder Modulator,” Opt. Express 13(8), 3129–3135 (2005).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Sarro, P. M.

C. Cocorullo, M. Iodice, I. Rendina, and P. M. Sarro, “Silicon thermo-optical micro-modulator with 700 kHz – 3 dB bandwidth,” IEEE Photon. Technol. Lett. 7(4), 363–365 (1995).
[CrossRef]

Schmidt, B.

Schmidtchen, J.

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large Single-Mode Rib Waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27(8), 1971–1974 (1991).
[CrossRef]

Schwartz, P. V.

X. Xiao, J. C. Sturm, K. K. Goel, and P. V. Schwartz, “Fabry-Perot optical intensity modulator at 1.3μm in silicon,” IEEE Photon. Technol. Lett. 3(3), 230–231 (1991).
[CrossRef]

Sciuto, A.

Sekaric, L.

Shakya, J.

Soref, R. A.

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large Single-Mode Rib Waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27(8), 1971–1974 (1991).
[CrossRef]

R. D. Lareau, L. Friedman, and R. A. Soref, “Waveguided electro-optical intensity modulation in a Si/GexSi1-x/Si heterojunction bipolar transistor,” Electron. Lett. 26(20), 1653–1655 (1990).
[CrossRef]

R. A. Soref and B. R. Bennett, “Kramers-Kronig analysis of electro-optical switching in silicon,” SPIE Integr. Opt. Circuit Eng. 704, 32–37 (1986).

Spirito, P.

A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, “Silicon Electro-Optic Modulator Based on a Three Terminal Device Integrated in a Low-Loss Single-Mode SOI Waveguide,” J. Lightwave Technol. 15(3), 505–518 (1997).
[CrossRef]

A. Cutolo, M. Iodice, A. Irace, P. Spirito, and L. Zeni, “An electrically controlled Bragg reflector integrated in a rib silicon on insulator waveguide,” Appl. Phys. Lett. 71(2), 199 (1997).
[CrossRef]

Sturm, J. C.

X. Xiao, J. C. Sturm, K. K. Goel, and P. V. Schwartz, “Fabry-Perot optical intensity modulator at 1.3μm in silicon,” IEEE Photon. Technol. Lett. 3(3), 230–231 (1991).
[CrossRef]

Thomson, D.

Tsakmakidis, K. L.

Vlasov, Y. A.

Xiao, X.

X. Xiao, J. C. Sturm, K. K. Goel, and P. V. Schwartz, “Fabry-Perot optical intensity modulator at 1.3μm in silicon,” IEEE Photon. Technol. Lett. 3(3), 230–231 (1991).
[CrossRef]

Xu, Q.

Zeni, L.

A. Cutolo, M. Iodice, A. Irace, P. Spirito, and L. Zeni, “An electrically controlled Bragg reflector integrated in a rib silicon on insulator waveguide,” Appl. Phys. Lett. 71(2), 199 (1997).
[CrossRef]

A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, “Silicon Electro-Optic Modulator Based on a Three Terminal Device Integrated in a Low-Loss Single-Mode SOI Waveguide,” J. Lightwave Technol. 15(3), 505–518 (1997).
[CrossRef]

Zsigri, B.

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett. 87(22), 221105 (2005).
[CrossRef]

A. Cutolo, M. Iodice, A. Irace, P. Spirito, and L. Zeni, “An electrically controlled Bragg reflector integrated in a rib silicon on insulator waveguide,” Appl. Phys. Lett. 71(2), 199 (1997).
[CrossRef]

M. Y. Liu and S. Chou, “High-modulation-depth and short-cavity-length silicon Fabry-Perot modulator with two grating Bragg reflectors,” Appl. Phys. Lett. 68(2), 170 (1996).
[CrossRef]

Electron. Lett. (1)

R. D. Lareau, L. Friedman, and R. A. Soref, “Waveguided electro-optical intensity modulation in a Si/GexSi1-x/Si heterojunction bipolar transistor,” Electron. Lett. 26(20), 1653–1655 (1990).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large Single-Mode Rib Waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27(8), 1971–1974 (1991).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

X. Xiao, J. C. Sturm, K. K. Goel, and P. V. Schwartz, “Fabry-Perot optical intensity modulator at 1.3μm in silicon,” IEEE Photon. Technol. Lett. 3(3), 230–231 (1991).
[CrossRef]

C. Cocorullo, M. Iodice, I. Rendina, and P. M. Sarro, “Silicon thermo-optical micro-modulator with 700 kHz – 3 dB bandwidth,” IEEE Photon. Technol. Lett. 7(4), 363–365 (1995).
[CrossRef]

J. Lightwave Technol. (4)

Nature (4)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Y. H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437(7063), 1334–1336 (2005).
[CrossRef] [PubMed]

R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Opt. Eng. (1)

G. Coppola, A. Irace, M. Iodice, and A. Cutolo, “Simulation and analysis of a high-efficiency silicon optoelectronic modulator based on a Bragg mirror,” Opt. Eng. 40(6), 1076–1081 (2001).
[CrossRef]

Opt. Express (7)

Proc. SPIE (1)

C. E. Png, G. T. Reed, R. M. H. Atta, G. Ensell, and A. G. R. Evans, “Development of Small Silicon Modulators in SOI,” Proc. SPIE 4997, 190–197 (2003).
[CrossRef]

SPIE Integr. Opt. Circuit Eng. (1)

R. A. Soref and B. R. Bennett, “Kramers-Kronig analysis of electro-optical switching in silicon,” SPIE Integr. Opt. Circuit Eng. 704, 32–37 (1986).

Other (6)

S. M. Sze, and K. K. Ng, Physics of Semiconductor Devices (John Wiley & Sons, Inc, 2007), Chap. 5.

F. Y. Gardes, G. T. Reed, A. P. Knights, and G. Mashanovich, “Evolution of optical modulation using majority carrier plasma dispersion effect in SOI”, Proc. of SPIE 6898, 68980C–68980C–10 (2008).
[CrossRef]

A. Liu, “Announcing the world's first 40G silicon laser modulator”, http://blogs.intel.com/research/2007/07/40g_modulator.php

S. Manipatruni, Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “High Speed Carrier Injection 18Gb/s Silicon Micro-ring Electro-optic Modulator,” in Proceedings of Lasers and Electro-Optics Society (IEEE, 2007), pp.537–538.

S. Deng, Z. R. Huang, J.-R. Guo, J. F. McDonald, and R. P. Kraft, “Numerical Investigation of a SiGe HBT Electro-optic Modulator,” in proceedings of IEEE/LEOS Winter Topicals Meeting Series, 14–15, (2009)
[CrossRef]

Y. Taur, and T. H. Ning, Fundamentals of Moerdern VLSI Devices (Cambridge University Press, 1998), Chap. 6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

3D Schematic of the HBT EO modulator (not drawn to scale)

Fig. 2.
Fig. 2.

Doping profile through the device center

Fig. 3.
Fig. 3.

Energy band diagram along y-axis at the device center under (a) Equilibrium condition, (b) No injection (VBE =0V, VCE =1.5V) from emitter to base, (c) Low injection (VBE =1.0V, VCE =1.5V), and (d) high injection (VBE =2.5V, VCE =1.5V) condition.

Fig. 4.
Fig. 4.

One-dimensional carrier density plot along y-axis at device center for (a) electrons, and (b) holes (insets for locations between 0.5µm to 0.7µm at VBE =1.5V to 3.0V)

Fig. 5.
Fig. 5.

Refractive index profile for λ=1.55µm with VBE =(a) 0V (b) 1.5V (c) 2.5V

Fig. 6.
Fig. 6.

(a) Cross-section of a standard rib waveguide, (b) Cross-section of a HBT waveguide structure, and (c) Single mode region for SiO2/Si/SiO2 with r=0.667 and 0.533.

Fig. 7.
Fig. 7.

Mode profiles at λ=1.55µm, TE mode (a) VBE =0V (b) VBE =1.5V (c) VBE =2.5V; TM mode (d) VBE =0V (e) VBE =1.5V (f) VBE =2.5V

Fig. 8.
Fig. 8.

Δneff as a function of VBE

Fig. 9.
Fig. 9.

Transient analysis: (a) input pulse VBE , and (b) IC response.

Tables (1)

Tables Icon

Table 1. Comparison of Reported Silicon EO Modulator in Recent Years (ts is the total switching time, length refers to the active component length, and FCAM is the acronym for free carrier absorption modulator)

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

{Δn=Δne+Δnh=[8.8×1022ΔNe+8.5×1018(ΔNh)0.8]Δα=Δαe+Δαh=8.5×1018ΔNe+6.0×1018ΔNh
{Δn=Δne+Δnh=[6.2×1022ΔNe+6.0×1018(ΔNh)0.8]Δα=Δαe+Δαh=6.0×1018ΔNe+4.0×1018ΔNh
n (0)=np0 exp [q(VBEΔVBE)(nkT)]
Lπ =λ02Δneff
tF=tE+tB+tBE+tBCtE+tB+tBC =wB2ηDn+wEwBθDn+wdBC2vs
η 2 [1+(εbiε0)32]

Metrics