Abstract

Three dimensional finite-difference time-domain (FDTD) simulations are employed to show that light scattering techniques may be used to infer the mitochondrial distributions that exist within single biological cells. Two-parameter light scattering plots of the FDTD light scattering spectra show that the small angle forward scatter can be used to differentiate the case of a random distribution of mitochondria within a cell model from that in which the mitochondria are aggregated to the nuclear periphery. Fourier transforms of the wide angle side scatter spectra show a consistent highest dominant frequency, which may be used for size differentiation of biological cells with distributed mitochondria.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Dunn and R. Richards-Kortum, “Three-dimensional computation of light scattering from cells,” IEEE J. Sel. Top. Quantum Electron. 2(4), 898–905 (1996).
  2. C. G. Liu, C. Capjack, and W. Rozmus, “3-D simulation of light scattering from biological cells and cell differentiation,” J. Biomed. Opt. 10(1), 014007 (2005).
    [CrossRef]
  3. J. Q. Lu, P. Yang, and X. H. Hu, “Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method,” J. Biomed. Opt. 10(2), 024022 (2005).
    [CrossRef]
  4. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37(16), 3586–3593 (1998).
    [CrossRef]
  5. X. Li, A. Taflove, and V. Backman, “Recent progress in exact and reduced-order modeling of light-scattering properties of complex structures,” IEEE J. Sel. Top. Quantum Electron. 11(4), 759–765 (2005).
  6. K. S. Yee, “Numerical Solution of Initial Boundary Value Problems Involving Maxwells Equations in Isotropic Media,” IEEE Trans. Antenn. Propag. AP14, 302–307 (1966).
    [CrossRef]
  7. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, (Artech House, Norwood, MA, 2005).
  8. X. T. Su, C. Capjack, W. Rozmus, and C. Backhouse, “2D light scattering patterns of mitochondria in single cells,” Opt. Express 15(17), 10562–10575 (2007).
    [CrossRef]
  9. P. L. Gourley, J. K. Hendricks, A. E. McDonald, R. G. Copeland, K. E. Barrett, C. R. Gourley, and R. K. Naviaux, “Ultrafast nanolaser flow device for detecting cancer in single cells,” Biomed. Microdevices 7(4), 331–339 (2005).
    [CrossRef]
  10. W. D. Thomas, X. D. Zhang, A. V. Franco, T. Nguyen, and P. Hersey, “TNF-related apoptosis-inducing ligand-induced apoptosis of melanoma is associated with changes in mitochondrial membrane potential and perinuclear clustering of mitochondria,” J. Immunol. 165(10), 5612–5620 (2000).
  11. L. Y. Liu, A. Vo, G. Q. Liu, and W. L. McKeehan, “Distinct structural domains within C19ORF5 support association with stabilized microtubules and mitochondrial aggregation and genome destruction,” Cancer Res. 65(10), 4191–4201 (2005).
    [CrossRef]
  12. E. Alirol and J. C. Martinou, “Mitochondria and cancer: is there a morphological connection?” Oncogene 25(34), 4706–4716 (2006).
    [CrossRef]
  13. R. H. Carlson, C. V. Gabel, S. S. Chan, R. H. Austin, J. P. Brody, and J. W. Winkelman, “Self-sorting of white blood cells in a lattice,” Phys. Rev. Lett. 79(11), 2149–2152 (1997).
    [CrossRef]
  14. Z. P. Liao, H. L. Wong, B. Yang, and Y. Yuan, “A Transmitting Boundary for Transient Wave Analyses,” Scientia Sinica Series 27, 1063–1076 (1984).
  15. G. Mur, “Absorbing Boundary-Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations,” IEEE Trans. Electromagn. Compat. 23(4), 377–382 (1981).
    [CrossRef]
  16. J. P. Berenger, “A Perfectly Matched Layer for the Absorption of Electromagnetic-Waves,” J. Comput. Phys. 114(2), 185–200 (1994).
    [CrossRef]
  17. H. M. Shapiro, Practical Flow Cytometry, (John Wiley & Sons, Inc., Hoboken, NJ, 2003).
    [CrossRef]
  18. M. Kerker, H. Chew, P. J. McNulty, J. P. Kratohvil, D. D. Cooke, M. Sculley, and M. P. Lee, “Light scattering and fluorescence by small particles having internal structure,” J. Histochem. Cytochem. 27(1), 250–263 (1979).
    [CrossRef]
  19. X. T. Su, K. Singh, C. Capjack, J. Petrácek, C. Backhouse, and W. Rozmus, “Measurements of light scattering in an integrated microfluidic waveguide cytometer,” J. Biomed. Opt. 13(2), 024024 (2008).
    [CrossRef]
  20. Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
    [CrossRef]

2008 (1)

X. T. Su, K. Singh, C. Capjack, J. Petrácek, C. Backhouse, and W. Rozmus, “Measurements of light scattering in an integrated microfluidic waveguide cytometer,” J. Biomed. Opt. 13(2), 024024 (2008).
[CrossRef]

2007 (1)

2006 (1)

E. Alirol and J. C. Martinou, “Mitochondria and cancer: is there a morphological connection?” Oncogene 25(34), 4706–4716 (2006).
[CrossRef]

2005 (5)

P. L. Gourley, J. K. Hendricks, A. E. McDonald, R. G. Copeland, K. E. Barrett, C. R. Gourley, and R. K. Naviaux, “Ultrafast nanolaser flow device for detecting cancer in single cells,” Biomed. Microdevices 7(4), 331–339 (2005).
[CrossRef]

L. Y. Liu, A. Vo, G. Q. Liu, and W. L. McKeehan, “Distinct structural domains within C19ORF5 support association with stabilized microtubules and mitochondrial aggregation and genome destruction,” Cancer Res. 65(10), 4191–4201 (2005).
[CrossRef]

C. G. Liu, C. Capjack, and W. Rozmus, “3-D simulation of light scattering from biological cells and cell differentiation,” J. Biomed. Opt. 10(1), 014007 (2005).
[CrossRef]

J. Q. Lu, P. Yang, and X. H. Hu, “Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method,” J. Biomed. Opt. 10(2), 024022 (2005).
[CrossRef]

X. Li, A. Taflove, and V. Backman, “Recent progress in exact and reduced-order modeling of light-scattering properties of complex structures,” IEEE J. Sel. Top. Quantum Electron. 11(4), 759–765 (2005).

2004 (1)

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[CrossRef]

2000 (1)

W. D. Thomas, X. D. Zhang, A. V. Franco, T. Nguyen, and P. Hersey, “TNF-related apoptosis-inducing ligand-induced apoptosis of melanoma is associated with changes in mitochondrial membrane potential and perinuclear clustering of mitochondria,” J. Immunol. 165(10), 5612–5620 (2000).

1998 (1)

1997 (1)

R. H. Carlson, C. V. Gabel, S. S. Chan, R. H. Austin, J. P. Brody, and J. W. Winkelman, “Self-sorting of white blood cells in a lattice,” Phys. Rev. Lett. 79(11), 2149–2152 (1997).
[CrossRef]

1996 (1)

A. Dunn and R. Richards-Kortum, “Three-dimensional computation of light scattering from cells,” IEEE J. Sel. Top. Quantum Electron. 2(4), 898–905 (1996).

1994 (1)

J. P. Berenger, “A Perfectly Matched Layer for the Absorption of Electromagnetic-Waves,” J. Comput. Phys. 114(2), 185–200 (1994).
[CrossRef]

1984 (1)

Z. P. Liao, H. L. Wong, B. Yang, and Y. Yuan, “A Transmitting Boundary for Transient Wave Analyses,” Scientia Sinica Series 27, 1063–1076 (1984).

1981 (1)

G. Mur, “Absorbing Boundary-Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations,” IEEE Trans. Electromagn. Compat. 23(4), 377–382 (1981).
[CrossRef]

1979 (1)

M. Kerker, H. Chew, P. J. McNulty, J. P. Kratohvil, D. D. Cooke, M. Sculley, and M. P. Lee, “Light scattering and fluorescence by small particles having internal structure,” J. Histochem. Cytochem. 27(1), 250–263 (1979).
[CrossRef]

1966 (1)

K. S. Yee, “Numerical Solution of Initial Boundary Value Problems Involving Maxwells Equations in Isotropic Media,” IEEE Trans. Antenn. Propag. AP14, 302–307 (1966).
[CrossRef]

Alirol, E.

E. Alirol and J. C. Martinou, “Mitochondria and cancer: is there a morphological connection?” Oncogene 25(34), 4706–4716 (2006).
[CrossRef]

Austin, R. H.

R. H. Carlson, C. V. Gabel, S. S. Chan, R. H. Austin, J. P. Brody, and J. W. Winkelman, “Self-sorting of white blood cells in a lattice,” Phys. Rev. Lett. 79(11), 2149–2152 (1997).
[CrossRef]

Backhouse, C.

X. T. Su, K. Singh, C. Capjack, J. Petrácek, C. Backhouse, and W. Rozmus, “Measurements of light scattering in an integrated microfluidic waveguide cytometer,” J. Biomed. Opt. 13(2), 024024 (2008).
[CrossRef]

X. T. Su, C. Capjack, W. Rozmus, and C. Backhouse, “2D light scattering patterns of mitochondria in single cells,” Opt. Express 15(17), 10562–10575 (2007).
[CrossRef]

Backman, V.

X. Li, A. Taflove, and V. Backman, “Recent progress in exact and reduced-order modeling of light-scattering properties of complex structures,” IEEE J. Sel. Top. Quantum Electron. 11(4), 759–765 (2005).

Barrett, K. E.

P. L. Gourley, J. K. Hendricks, A. E. McDonald, R. G. Copeland, K. E. Barrett, C. R. Gourley, and R. K. Naviaux, “Ultrafast nanolaser flow device for detecting cancer in single cells,” Biomed. Microdevices 7(4), 331–339 (2005).
[CrossRef]

Berenger, J. P.

J. P. Berenger, “A Perfectly Matched Layer for the Absorption of Electromagnetic-Waves,” J. Comput. Phys. 114(2), 185–200 (1994).
[CrossRef]

Brody, J. P.

R. H. Carlson, C. V. Gabel, S. S. Chan, R. H. Austin, J. P. Brody, and J. W. Winkelman, “Self-sorting of white blood cells in a lattice,” Phys. Rev. Lett. 79(11), 2149–2152 (1997).
[CrossRef]

Capjack, C.

X. T. Su, K. Singh, C. Capjack, J. Petrácek, C. Backhouse, and W. Rozmus, “Measurements of light scattering in an integrated microfluidic waveguide cytometer,” J. Biomed. Opt. 13(2), 024024 (2008).
[CrossRef]

X. T. Su, C. Capjack, W. Rozmus, and C. Backhouse, “2D light scattering patterns of mitochondria in single cells,” Opt. Express 15(17), 10562–10575 (2007).
[CrossRef]

C. G. Liu, C. Capjack, and W. Rozmus, “3-D simulation of light scattering from biological cells and cell differentiation,” J. Biomed. Opt. 10(1), 014007 (2005).
[CrossRef]

Carlson, R. H.

R. H. Carlson, C. V. Gabel, S. S. Chan, R. H. Austin, J. P. Brody, and J. W. Winkelman, “Self-sorting of white blood cells in a lattice,” Phys. Rev. Lett. 79(11), 2149–2152 (1997).
[CrossRef]

Chan, S. S.

R. H. Carlson, C. V. Gabel, S. S. Chan, R. H. Austin, J. P. Brody, and J. W. Winkelman, “Self-sorting of white blood cells in a lattice,” Phys. Rev. Lett. 79(11), 2149–2152 (1997).
[CrossRef]

Chew, H.

M. Kerker, H. Chew, P. J. McNulty, J. P. Kratohvil, D. D. Cooke, M. Sculley, and M. P. Lee, “Light scattering and fluorescence by small particles having internal structure,” J. Histochem. Cytochem. 27(1), 250–263 (1979).
[CrossRef]

Cooke, D. D.

M. Kerker, H. Chew, P. J. McNulty, J. P. Kratohvil, D. D. Cooke, M. Sculley, and M. P. Lee, “Light scattering and fluorescence by small particles having internal structure,” J. Histochem. Cytochem. 27(1), 250–263 (1979).
[CrossRef]

Copeland, R. G.

P. L. Gourley, J. K. Hendricks, A. E. McDonald, R. G. Copeland, K. E. Barrett, C. R. Gourley, and R. K. Naviaux, “Ultrafast nanolaser flow device for detecting cancer in single cells,” Biomed. Microdevices 7(4), 331–339 (2005).
[CrossRef]

Dunn, A.

A. Dunn and R. Richards-Kortum, “Three-dimensional computation of light scattering from cells,” IEEE J. Sel. Top. Quantum Electron. 2(4), 898–905 (1996).

Eick, A. A.

El-Ali, J.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[CrossRef]

Engelund, M.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[CrossRef]

Franco, A. V.

W. D. Thomas, X. D. Zhang, A. V. Franco, T. Nguyen, and P. Hersey, “TNF-related apoptosis-inducing ligand-induced apoptosis of melanoma is associated with changes in mitochondrial membrane potential and perinuclear clustering of mitochondria,” J. Immunol. 165(10), 5612–5620 (2000).

Freyer, J. P.

Gabel, C. V.

R. H. Carlson, C. V. Gabel, S. S. Chan, R. H. Austin, J. P. Brody, and J. W. Winkelman, “Self-sorting of white blood cells in a lattice,” Phys. Rev. Lett. 79(11), 2149–2152 (1997).
[CrossRef]

Gotsaed, T.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[CrossRef]

Gourley, C. R.

P. L. Gourley, J. K. Hendricks, A. E. McDonald, R. G. Copeland, K. E. Barrett, C. R. Gourley, and R. K. Naviaux, “Ultrafast nanolaser flow device for detecting cancer in single cells,” Biomed. Microdevices 7(4), 331–339 (2005).
[CrossRef]

Gourley, P. L.

P. L. Gourley, J. K. Hendricks, A. E. McDonald, R. G. Copeland, K. E. Barrett, C. R. Gourley, and R. K. Naviaux, “Ultrafast nanolaser flow device for detecting cancer in single cells,” Biomed. Microdevices 7(4), 331–339 (2005).
[CrossRef]

Hendricks, J. K.

P. L. Gourley, J. K. Hendricks, A. E. McDonald, R. G. Copeland, K. E. Barrett, C. R. Gourley, and R. K. Naviaux, “Ultrafast nanolaser flow device for detecting cancer in single cells,” Biomed. Microdevices 7(4), 331–339 (2005).
[CrossRef]

Hersey, P.

W. D. Thomas, X. D. Zhang, A. V. Franco, T. Nguyen, and P. Hersey, “TNF-related apoptosis-inducing ligand-induced apoptosis of melanoma is associated with changes in mitochondrial membrane potential and perinuclear clustering of mitochondria,” J. Immunol. 165(10), 5612–5620 (2000).

Hielscher, A. H.

Hu, X. H.

J. Q. Lu, P. Yang, and X. H. Hu, “Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method,” J. Biomed. Opt. 10(2), 024022 (2005).
[CrossRef]

Johnson, T. M.

Kerker, M.

M. Kerker, H. Chew, P. J. McNulty, J. P. Kratohvil, D. D. Cooke, M. Sculley, and M. P. Lee, “Light scattering and fluorescence by small particles having internal structure,” J. Histochem. Cytochem. 27(1), 250–263 (1979).
[CrossRef]

Kratohvil, J. P.

M. Kerker, H. Chew, P. J. McNulty, J. P. Kratohvil, D. D. Cooke, M. Sculley, and M. P. Lee, “Light scattering and fluorescence by small particles having internal structure,” J. Histochem. Cytochem. 27(1), 250–263 (1979).
[CrossRef]

Kutter, J. P.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[CrossRef]

Lee, M. P.

M. Kerker, H. Chew, P. J. McNulty, J. P. Kratohvil, D. D. Cooke, M. Sculley, and M. P. Lee, “Light scattering and fluorescence by small particles having internal structure,” J. Histochem. Cytochem. 27(1), 250–263 (1979).
[CrossRef]

Li, X.

X. Li, A. Taflove, and V. Backman, “Recent progress in exact and reduced-order modeling of light-scattering properties of complex structures,” IEEE J. Sel. Top. Quantum Electron. 11(4), 759–765 (2005).

Liao, Z. P.

Z. P. Liao, H. L. Wong, B. Yang, and Y. Yuan, “A Transmitting Boundary for Transient Wave Analyses,” Scientia Sinica Series 27, 1063–1076 (1984).

Liu, C. G.

C. G. Liu, C. Capjack, and W. Rozmus, “3-D simulation of light scattering from biological cells and cell differentiation,” J. Biomed. Opt. 10(1), 014007 (2005).
[CrossRef]

Liu, G. Q.

L. Y. Liu, A. Vo, G. Q. Liu, and W. L. McKeehan, “Distinct structural domains within C19ORF5 support association with stabilized microtubules and mitochondrial aggregation and genome destruction,” Cancer Res. 65(10), 4191–4201 (2005).
[CrossRef]

Liu, L. Y.

L. Y. Liu, A. Vo, G. Q. Liu, and W. L. McKeehan, “Distinct structural domains within C19ORF5 support association with stabilized microtubules and mitochondrial aggregation and genome destruction,” Cancer Res. 65(10), 4191–4201 (2005).
[CrossRef]

Lu, J. Q.

J. Q. Lu, P. Yang, and X. H. Hu, “Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method,” J. Biomed. Opt. 10(2), 024022 (2005).
[CrossRef]

Martinou, J. C.

E. Alirol and J. C. Martinou, “Mitochondria and cancer: is there a morphological connection?” Oncogene 25(34), 4706–4716 (2006).
[CrossRef]

McDonald, A. E.

P. L. Gourley, J. K. Hendricks, A. E. McDonald, R. G. Copeland, K. E. Barrett, C. R. Gourley, and R. K. Naviaux, “Ultrafast nanolaser flow device for detecting cancer in single cells,” Biomed. Microdevices 7(4), 331–339 (2005).
[CrossRef]

McKeehan, W. L.

L. Y. Liu, A. Vo, G. Q. Liu, and W. L. McKeehan, “Distinct structural domains within C19ORF5 support association with stabilized microtubules and mitochondrial aggregation and genome destruction,” Cancer Res. 65(10), 4191–4201 (2005).
[CrossRef]

McNulty, P. J.

M. Kerker, H. Chew, P. J. McNulty, J. P. Kratohvil, D. D. Cooke, M. Sculley, and M. P. Lee, “Light scattering and fluorescence by small particles having internal structure,” J. Histochem. Cytochem. 27(1), 250–263 (1979).
[CrossRef]

Mogensen, K. B.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[CrossRef]

Mourant, J. R.

Mur, G.

G. Mur, “Absorbing Boundary-Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations,” IEEE Trans. Electromagn. Compat. 23(4), 377–382 (1981).
[CrossRef]

Naviaux, R. K.

P. L. Gourley, J. K. Hendricks, A. E. McDonald, R. G. Copeland, K. E. Barrett, C. R. Gourley, and R. K. Naviaux, “Ultrafast nanolaser flow device for detecting cancer in single cells,” Biomed. Microdevices 7(4), 331–339 (2005).
[CrossRef]

Nguyen, T.

W. D. Thomas, X. D. Zhang, A. V. Franco, T. Nguyen, and P. Hersey, “TNF-related apoptosis-inducing ligand-induced apoptosis of melanoma is associated with changes in mitochondrial membrane potential and perinuclear clustering of mitochondria,” J. Immunol. 165(10), 5612–5620 (2000).

Perch-Nielsen, I. R.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[CrossRef]

Petrácek, J.

X. T. Su, K. Singh, C. Capjack, J. Petrácek, C. Backhouse, and W. Rozmus, “Measurements of light scattering in an integrated microfluidic waveguide cytometer,” J. Biomed. Opt. 13(2), 024024 (2008).
[CrossRef]

Richards-Kortum, R.

A. Dunn and R. Richards-Kortum, “Three-dimensional computation of light scattering from cells,” IEEE J. Sel. Top. Quantum Electron. 2(4), 898–905 (1996).

Rozmus, W.

X. T. Su, K. Singh, C. Capjack, J. Petrácek, C. Backhouse, and W. Rozmus, “Measurements of light scattering in an integrated microfluidic waveguide cytometer,” J. Biomed. Opt. 13(2), 024024 (2008).
[CrossRef]

X. T. Su, C. Capjack, W. Rozmus, and C. Backhouse, “2D light scattering patterns of mitochondria in single cells,” Opt. Express 15(17), 10562–10575 (2007).
[CrossRef]

C. G. Liu, C. Capjack, and W. Rozmus, “3-D simulation of light scattering from biological cells and cell differentiation,” J. Biomed. Opt. 10(1), 014007 (2005).
[CrossRef]

Sculley, M.

M. Kerker, H. Chew, P. J. McNulty, J. P. Kratohvil, D. D. Cooke, M. Sculley, and M. P. Lee, “Light scattering and fluorescence by small particles having internal structure,” J. Histochem. Cytochem. 27(1), 250–263 (1979).
[CrossRef]

Shen, D.

Singh, K.

X. T. Su, K. Singh, C. Capjack, J. Petrácek, C. Backhouse, and W. Rozmus, “Measurements of light scattering in an integrated microfluidic waveguide cytometer,” J. Biomed. Opt. 13(2), 024024 (2008).
[CrossRef]

Snakenborg, D.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[CrossRef]

Su, X. T.

X. T. Su, K. Singh, C. Capjack, J. Petrácek, C. Backhouse, and W. Rozmus, “Measurements of light scattering in an integrated microfluidic waveguide cytometer,” J. Biomed. Opt. 13(2), 024024 (2008).
[CrossRef]

X. T. Su, C. Capjack, W. Rozmus, and C. Backhouse, “2D light scattering patterns of mitochondria in single cells,” Opt. Express 15(17), 10562–10575 (2007).
[CrossRef]

Taflove, A.

X. Li, A. Taflove, and V. Backman, “Recent progress in exact and reduced-order modeling of light-scattering properties of complex structures,” IEEE J. Sel. Top. Quantum Electron. 11(4), 759–765 (2005).

Thomas, W. D.

W. D. Thomas, X. D. Zhang, A. V. Franco, T. Nguyen, and P. Hersey, “TNF-related apoptosis-inducing ligand-induced apoptosis of melanoma is associated with changes in mitochondrial membrane potential and perinuclear clustering of mitochondria,” J. Immunol. 165(10), 5612–5620 (2000).

Vo, A.

L. Y. Liu, A. Vo, G. Q. Liu, and W. L. McKeehan, “Distinct structural domains within C19ORF5 support association with stabilized microtubules and mitochondrial aggregation and genome destruction,” Cancer Res. 65(10), 4191–4201 (2005).
[CrossRef]

Wang, Z.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[CrossRef]

Winkelman, J. W.

R. H. Carlson, C. V. Gabel, S. S. Chan, R. H. Austin, J. P. Brody, and J. W. Winkelman, “Self-sorting of white blood cells in a lattice,” Phys. Rev. Lett. 79(11), 2149–2152 (1997).
[CrossRef]

Wolff, A.

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[CrossRef]

Wong, H. L.

Z. P. Liao, H. L. Wong, B. Yang, and Y. Yuan, “A Transmitting Boundary for Transient Wave Analyses,” Scientia Sinica Series 27, 1063–1076 (1984).

Yang, B.

Z. P. Liao, H. L. Wong, B. Yang, and Y. Yuan, “A Transmitting Boundary for Transient Wave Analyses,” Scientia Sinica Series 27, 1063–1076 (1984).

Yang, P.

J. Q. Lu, P. Yang, and X. H. Hu, “Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method,” J. Biomed. Opt. 10(2), 024022 (2005).
[CrossRef]

Yee, K. S.

K. S. Yee, “Numerical Solution of Initial Boundary Value Problems Involving Maxwells Equations in Isotropic Media,” IEEE Trans. Antenn. Propag. AP14, 302–307 (1966).
[CrossRef]

Yuan, Y.

Z. P. Liao, H. L. Wong, B. Yang, and Y. Yuan, “A Transmitting Boundary for Transient Wave Analyses,” Scientia Sinica Series 27, 1063–1076 (1984).

Zhang, X. D.

W. D. Thomas, X. D. Zhang, A. V. Franco, T. Nguyen, and P. Hersey, “TNF-related apoptosis-inducing ligand-induced apoptosis of melanoma is associated with changes in mitochondrial membrane potential and perinuclear clustering of mitochondria,” J. Immunol. 165(10), 5612–5620 (2000).

Appl. Opt. (1)

Biomed. Microdevices (1)

P. L. Gourley, J. K. Hendricks, A. E. McDonald, R. G. Copeland, K. E. Barrett, C. R. Gourley, and R. K. Naviaux, “Ultrafast nanolaser flow device for detecting cancer in single cells,” Biomed. Microdevices 7(4), 331–339 (2005).
[CrossRef]

Cancer Res. (1)

L. Y. Liu, A. Vo, G. Q. Liu, and W. L. McKeehan, “Distinct structural domains within C19ORF5 support association with stabilized microtubules and mitochondrial aggregation and genome destruction,” Cancer Res. 65(10), 4191–4201 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

A. Dunn and R. Richards-Kortum, “Three-dimensional computation of light scattering from cells,” IEEE J. Sel. Top. Quantum Electron. 2(4), 898–905 (1996).

X. Li, A. Taflove, and V. Backman, “Recent progress in exact and reduced-order modeling of light-scattering properties of complex structures,” IEEE J. Sel. Top. Quantum Electron. 11(4), 759–765 (2005).

IEEE Trans. Antenn. Propag. (1)

K. S. Yee, “Numerical Solution of Initial Boundary Value Problems Involving Maxwells Equations in Isotropic Media,” IEEE Trans. Antenn. Propag. AP14, 302–307 (1966).
[CrossRef]

IEEE Trans. Electromagn. Compat. (1)

G. Mur, “Absorbing Boundary-Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations,” IEEE Trans. Electromagn. Compat. 23(4), 377–382 (1981).
[CrossRef]

J. Biomed. Opt. (3)

C. G. Liu, C. Capjack, and W. Rozmus, “3-D simulation of light scattering from biological cells and cell differentiation,” J. Biomed. Opt. 10(1), 014007 (2005).
[CrossRef]

J. Q. Lu, P. Yang, and X. H. Hu, “Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method,” J. Biomed. Opt. 10(2), 024022 (2005).
[CrossRef]

X. T. Su, K. Singh, C. Capjack, J. Petrácek, C. Backhouse, and W. Rozmus, “Measurements of light scattering in an integrated microfluidic waveguide cytometer,” J. Biomed. Opt. 13(2), 024024 (2008).
[CrossRef]

J. Comput. Phys. (1)

J. P. Berenger, “A Perfectly Matched Layer for the Absorption of Electromagnetic-Waves,” J. Comput. Phys. 114(2), 185–200 (1994).
[CrossRef]

J. Histochem. Cytochem. (1)

M. Kerker, H. Chew, P. J. McNulty, J. P. Kratohvil, D. D. Cooke, M. Sculley, and M. P. Lee, “Light scattering and fluorescence by small particles having internal structure,” J. Histochem. Cytochem. 27(1), 250–263 (1979).
[CrossRef]

J. Immunol. (1)

W. D. Thomas, X. D. Zhang, A. V. Franco, T. Nguyen, and P. Hersey, “TNF-related apoptosis-inducing ligand-induced apoptosis of melanoma is associated with changes in mitochondrial membrane potential and perinuclear clustering of mitochondria,” J. Immunol. 165(10), 5612–5620 (2000).

Lab Chip (1)

Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch-Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A. Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements,” Lab Chip 4(4), 372–377 (2004).
[CrossRef]

Oncogene (1)

E. Alirol and J. C. Martinou, “Mitochondria and cancer: is there a morphological connection?” Oncogene 25(34), 4706–4716 (2006).
[CrossRef]

Opt. Express (1)

Phys. Rev. Lett. (1)

R. H. Carlson, C. V. Gabel, S. S. Chan, R. H. Austin, J. P. Brody, and J. W. Winkelman, “Self-sorting of white blood cells in a lattice,” Phys. Rev. Lett. 79(11), 2149–2152 (1997).
[CrossRef]

Scientia Sinica Series (1)

Z. P. Liao, H. L. Wong, B. Yang, and Y. Yuan, “A Transmitting Boundary for Transient Wave Analyses,” Scientia Sinica Series 27, 1063–1076 (1984).

Other (2)

H. M. Shapiro, Practical Flow Cytometry, (John Wiley & Sons, Inc., Hoboken, NJ, 2003).
[CrossRef]

A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, (Artech House, Norwood, MA, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

3D biological cell models and FDTD scatter spectra. (a), Geometry for the study of mitochondrial distributions in single cells. (b), randomly distributed mitochondria in a single cell. (c), mitochondrial aggregation to the nuclear periphery in a single cell. Blue spheres denote the mitochondria centered in zone I, green in zone II, and red in zone III. The cell has a nucleus (cyan color) centered at the origin. The cell cytoplasm is shown in magenta. (d) and (e) are FDTD 3D light scattering pattern and 2D light scattering pattern for cell model (b), respectively. (f) is an FDTD 2D light scattering pattern for a cell model without mitochondria.

Fig. 2.
Fig. 2.

A method for differentiating mitochondrial distributions in single biological cell models. (a), light scattering spectra from different cell models in the scatter angular range 0~10 degrees. (b), “zoomed in” results for the case of a random distribution of mitochondria as shown in (a). (c), eight realizations of random distribution of mitochondria in the scatter angular range 85~95 degrees. (d), two-parameter light scattering plots for differentiating different mitochondrial distributions.

Fig. 3.
Fig. 3.

A Fourier transform method for better determination of biological cell sizes. (a), light scattering spectra from different cell models in the angular range 57.5~122.5 degrees. (b), Fourier transforms of the light scattering spectra as shown in (a).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ρ=ρ0exp((Rdrnrmδm)α)
ρ=0.5
ρ=ρ0exp((rcRdrmδm)α)

Metrics