Abstract

We demonstrate a magnetically tunable and two-dimensional (2D) left-handed material (LHM) consisting of an array of ferrite rods and metallic wires by experiments and simulations. It shows that the ferrite rod has a 2D isotropic negative permeability. By combining the ferrite rods with metallic wires, we observe experimentally a 2D LH passband that can be tuned dynamically, continuously and reversibly by an external magnetic field within in a wide frequency range with a response of 3.5 GHz/kOe. Retrieved effective parameters based on simulated scattering parameters show that operating frequency and value of negative refraction index can be conveniently tuned by changing the external magnetic field.

© 2009 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of permittivity and permeability,” Sov. Phys. Usp. 10, 509 (1968).
    [CrossRef]
  2. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
    [CrossRef]
  3. J. B. Pendry, A. J. Holden, D. J. Robins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
    [CrossRef]
  4. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2002).
    [CrossRef]
  5. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [CrossRef]
  6. P. Gay-Balmaz and O. J. F. Martin, “Efficient isotropic magnetic resonators,” Appl. Phys. Lett. 81(5), 939 (2002).
    [CrossRef]
  7. H. Chen and L. Bae-Ian Wu, “Ran, T. M. Grzegorczyk, and J. A. Kong, “Controllable left-handed metamaterial and its application to a steerable antenna,” Appl. Phys. Lett. 89, 053509 (2006).
    [CrossRef]
  8. K. Aydin and E. Ozbay, “Capacitor-loaded split ring resonators as tunable metamaterial components,” J. Appl. Phys. 101(2), 024911 (2007).
    [CrossRef]
  9. A. Degiron, J. J. Mock, and D. R. Smith, “Modulating and tuning the response of metamaterials at the unit cell level,” Opt. Express 15(3), 1115–1127 (2007).
    [CrossRef]
  10. Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
    [CrossRef]
  11. L. Kang, Q. Zhao, H. J. Zhao, and J. Zhou, “Magnetically tunable negative permeability metamaterial composed by split ring resonators and ferrite rods,” Opt. Express 16(12), 8825–8834 (2008).
    [CrossRef]
  12. L. Kang, Q. Zhao, H. J. Zhao, and J. Zhou, “Ferrite-based magnetically tunable left-handed metamaterial composed of SRRs and wires,” Opt. Express 16(22), 17269–17275 (2008).
    [CrossRef]
  13. G. Dewar, “Candidates for μ<0, ε<0 nanostructures,” Int. J. Mod. Phys. B 15(24 & 25), 3258 (2001).
    [CrossRef]
  14. A. Pimenov, A. Loidl, P. Przyslupski, and B. Dabrowski, “Negative refraction in ferromagnet-superconductor superlattices,” Phys. Rev. Lett. 95(24), 247009 (2005).
    [CrossRef]
  15. Y. He, P. He, S. D. Yoon, P. V. Parimi, F. J. Rachford, V. G. Harris, and C. Vittoria, “Tunable negative index metamaterial using yttrium iron garnet,” J. Magn. Magn. Mater. 313(1), 187–191 (2007).
    [CrossRef]
  16. H. J. Zhao, J. Zhou, Q. Zhao, B. Li, L. Kang, and Y. Bai, “Magnetotunable left-handed material consisting of yttrium iron garnet slab and metallic wires,” Appl. Phys. Lett. 91(13), 131107 (2007).
    [CrossRef]
  17. F. J. Rachford, D. N. Armstead, V. G. Harris, and C. Vittoria, “Simulations of ferrite-dielectric-wire composite negative index materials,” Phys. Rev. Lett. 99(5), 057202 (2007).
    [CrossRef]
  18. S. T. Chui and L. Hu, “Theoretical investigation on the possibility of preparing left-handed materials in metallic magnetic granular composites,” Phys. Rev. B 65(14), 144407 (2002).
    [CrossRef]
  19. B. Lax, and K. J. Button, Microwave ferrites and ferrimagnetics, (McGraw-Hill, New York, 1962).
  20. N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, E. Ozbay, and C. M. Soukoulis, “Left- and right-handed transmission peaks near the magnetic resonance frequency in composite metamaterials,” Phys. Rev. B 70(20), 201101 (2004).
    [CrossRef]
  21. K. Aydin, K. Guven, M. Kafesaki, L. Zhang, C. M. Soukoulis, and E. Ozbay, “Experimental observation of true left-handed transmission peaks in metamaterials,” Opt. Lett. 29(22), 2623–2625 (2004).
    [CrossRef]
  22. D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
    [CrossRef]

2008 (2)

2007 (6)

A. Degiron, J. J. Mock, and D. R. Smith, “Modulating and tuning the response of metamaterials at the unit cell level,” Opt. Express 15(3), 1115–1127 (2007).
[CrossRef]

K. Aydin and E. Ozbay, “Capacitor-loaded split ring resonators as tunable metamaterial components,” J. Appl. Phys. 101(2), 024911 (2007).
[CrossRef]

Y. He, P. He, S. D. Yoon, P. V. Parimi, F. J. Rachford, V. G. Harris, and C. Vittoria, “Tunable negative index metamaterial using yttrium iron garnet,” J. Magn. Magn. Mater. 313(1), 187–191 (2007).
[CrossRef]

H. J. Zhao, J. Zhou, Q. Zhao, B. Li, L. Kang, and Y. Bai, “Magnetotunable left-handed material consisting of yttrium iron garnet slab and metallic wires,” Appl. Phys. Lett. 91(13), 131107 (2007).
[CrossRef]

F. J. Rachford, D. N. Armstead, V. G. Harris, and C. Vittoria, “Simulations of ferrite-dielectric-wire composite negative index materials,” Phys. Rev. Lett. 99(5), 057202 (2007).
[CrossRef]

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[CrossRef]

2006 (1)

H. Chen and L. Bae-Ian Wu, “Ran, T. M. Grzegorczyk, and J. A. Kong, “Controllable left-handed metamaterial and its application to a steerable antenna,” Appl. Phys. Lett. 89, 053509 (2006).
[CrossRef]

2005 (2)

A. Pimenov, A. Loidl, P. Przyslupski, and B. Dabrowski, “Negative refraction in ferromagnet-superconductor superlattices,” Phys. Rev. Lett. 95(24), 247009 (2005).
[CrossRef]

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[CrossRef]

2004 (2)

K. Aydin, K. Guven, M. Kafesaki, L. Zhang, C. M. Soukoulis, and E. Ozbay, “Experimental observation of true left-handed transmission peaks in metamaterials,” Opt. Lett. 29(22), 2623–2625 (2004).
[CrossRef]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, E. Ozbay, and C. M. Soukoulis, “Left- and right-handed transmission peaks near the magnetic resonance frequency in composite metamaterials,” Phys. Rev. B 70(20), 201101 (2004).
[CrossRef]

2002 (3)

S. T. Chui and L. Hu, “Theoretical investigation on the possibility of preparing left-handed materials in metallic magnetic granular composites,” Phys. Rev. B 65(14), 144407 (2002).
[CrossRef]

P. Gay-Balmaz and O. J. F. Martin, “Efficient isotropic magnetic resonators,” Appl. Phys. Lett. 81(5), 939 (2002).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2002).
[CrossRef]

2001 (1)

G. Dewar, “Candidates for μ<0, ε<0 nanostructures,” Int. J. Mod. Phys. B 15(24 & 25), 3258 (2001).
[CrossRef]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

1996 (1)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef]

1968 (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of permittivity and permeability,” Sov. Phys. Usp. 10, 509 (1968).
[CrossRef]

Armstead, D. N.

F. J. Rachford, D. N. Armstead, V. G. Harris, and C. Vittoria, “Simulations of ferrite-dielectric-wire composite negative index materials,” Phys. Rev. Lett. 99(5), 057202 (2007).
[CrossRef]

Aydin, K.

Bae-Ian Wu, L.

H. Chen and L. Bae-Ian Wu, “Ran, T. M. Grzegorczyk, and J. A. Kong, “Controllable left-handed metamaterial and its application to a steerable antenna,” Appl. Phys. Lett. 89, 053509 (2006).
[CrossRef]

Bai, Y.

H. J. Zhao, J. Zhou, Q. Zhao, B. Li, L. Kang, and Y. Bai, “Magnetotunable left-handed material consisting of yttrium iron garnet slab and metallic wires,” Appl. Phys. Lett. 91(13), 131107 (2007).
[CrossRef]

Chen, H.

H. Chen and L. Bae-Ian Wu, “Ran, T. M. Grzegorczyk, and J. A. Kong, “Controllable left-handed metamaterial and its application to a steerable antenna,” Appl. Phys. Lett. 89, 053509 (2006).
[CrossRef]

Chui, S. T.

S. T. Chui and L. Hu, “Theoretical investigation on the possibility of preparing left-handed materials in metallic magnetic granular composites,” Phys. Rev. B 65(14), 144407 (2002).
[CrossRef]

Dabrowski, B.

A. Pimenov, A. Loidl, P. Przyslupski, and B. Dabrowski, “Negative refraction in ferromagnet-superconductor superlattices,” Phys. Rev. Lett. 95(24), 247009 (2005).
[CrossRef]

Degiron, A.

Dewar, G.

G. Dewar, “Candidates for μ<0, ε<0 nanostructures,” Int. J. Mod. Phys. B 15(24 & 25), 3258 (2001).
[CrossRef]

Du, B.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[CrossRef]

Economou, E. N.

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, E. Ozbay, and C. M. Soukoulis, “Left- and right-handed transmission peaks near the magnetic resonance frequency in composite metamaterials,” Phys. Rev. B 70(20), 201101 (2004).
[CrossRef]

Gay-Balmaz, P.

P. Gay-Balmaz and O. J. F. Martin, “Efficient isotropic magnetic resonators,” Appl. Phys. Lett. 81(5), 939 (2002).
[CrossRef]

Guven, K.

Harris, V. G.

F. J. Rachford, D. N. Armstead, V. G. Harris, and C. Vittoria, “Simulations of ferrite-dielectric-wire composite negative index materials,” Phys. Rev. Lett. 99(5), 057202 (2007).
[CrossRef]

Y. He, P. He, S. D. Yoon, P. V. Parimi, F. J. Rachford, V. G. Harris, and C. Vittoria, “Tunable negative index metamaterial using yttrium iron garnet,” J. Magn. Magn. Mater. 313(1), 187–191 (2007).
[CrossRef]

He, P.

Y. He, P. He, S. D. Yoon, P. V. Parimi, F. J. Rachford, V. G. Harris, and C. Vittoria, “Tunable negative index metamaterial using yttrium iron garnet,” J. Magn. Magn. Mater. 313(1), 187–191 (2007).
[CrossRef]

He, Y.

Y. He, P. He, S. D. Yoon, P. V. Parimi, F. J. Rachford, V. G. Harris, and C. Vittoria, “Tunable negative index metamaterial using yttrium iron garnet,” J. Magn. Magn. Mater. 313(1), 187–191 (2007).
[CrossRef]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef]

Hu, L.

S. T. Chui and L. Hu, “Theoretical investigation on the possibility of preparing left-handed materials in metallic magnetic granular composites,” Phys. Rev. B 65(14), 144407 (2002).
[CrossRef]

Kafesaki, M.

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, E. Ozbay, and C. M. Soukoulis, “Left- and right-handed transmission peaks near the magnetic resonance frequency in composite metamaterials,” Phys. Rev. B 70(20), 201101 (2004).
[CrossRef]

K. Aydin, K. Guven, M. Kafesaki, L. Zhang, C. M. Soukoulis, and E. Ozbay, “Experimental observation of true left-handed transmission peaks in metamaterials,” Opt. Lett. 29(22), 2623–2625 (2004).
[CrossRef]

Kang, L.

L. Kang, Q. Zhao, H. J. Zhao, and J. Zhou, “Magnetically tunable negative permeability metamaterial composed by split ring resonators and ferrite rods,” Opt. Express 16(12), 8825–8834 (2008).
[CrossRef]

L. Kang, Q. Zhao, H. J. Zhao, and J. Zhou, “Ferrite-based magnetically tunable left-handed metamaterial composed of SRRs and wires,” Opt. Express 16(22), 17269–17275 (2008).
[CrossRef]

H. J. Zhao, J. Zhou, Q. Zhao, B. Li, L. Kang, and Y. Bai, “Magnetotunable left-handed material consisting of yttrium iron garnet slab and metallic wires,” Appl. Phys. Lett. 91(13), 131107 (2007).
[CrossRef]

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[CrossRef]

Katsarakis, N.

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, E. Ozbay, and C. M. Soukoulis, “Left- and right-handed transmission peaks near the magnetic resonance frequency in composite metamaterials,” Phys. Rev. B 70(20), 201101 (2004).
[CrossRef]

Koschny, T.

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, E. Ozbay, and C. M. Soukoulis, “Left- and right-handed transmission peaks near the magnetic resonance frequency in composite metamaterials,” Phys. Rev. B 70(20), 201101 (2004).
[CrossRef]

Koschny, Th.

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[CrossRef]

Li, B.

H. J. Zhao, J. Zhou, Q. Zhao, B. Li, L. Kang, and Y. Bai, “Magnetotunable left-handed material consisting of yttrium iron garnet slab and metallic wires,” Appl. Phys. Lett. 91(13), 131107 (2007).
[CrossRef]

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[CrossRef]

Liang, X.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[CrossRef]

Loidl, A.

A. Pimenov, A. Loidl, P. Przyslupski, and B. Dabrowski, “Negative refraction in ferromagnet-superconductor superlattices,” Phys. Rev. Lett. 95(24), 247009 (2005).
[CrossRef]

Martin, O. J. F.

P. Gay-Balmaz and O. J. F. Martin, “Efficient isotropic magnetic resonators,” Appl. Phys. Lett. 81(5), 939 (2002).
[CrossRef]

Mock, J. J.

Ozbay, E.

K. Aydin and E. Ozbay, “Capacitor-loaded split ring resonators as tunable metamaterial components,” J. Appl. Phys. 101(2), 024911 (2007).
[CrossRef]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, E. Ozbay, and C. M. Soukoulis, “Left- and right-handed transmission peaks near the magnetic resonance frequency in composite metamaterials,” Phys. Rev. B 70(20), 201101 (2004).
[CrossRef]

K. Aydin, K. Guven, M. Kafesaki, L. Zhang, C. M. Soukoulis, and E. Ozbay, “Experimental observation of true left-handed transmission peaks in metamaterials,” Opt. Lett. 29(22), 2623–2625 (2004).
[CrossRef]

Parimi, P. V.

Y. He, P. He, S. D. Yoon, P. V. Parimi, F. J. Rachford, V. G. Harris, and C. Vittoria, “Tunable negative index metamaterial using yttrium iron garnet,” J. Magn. Magn. Mater. 313(1), 187–191 (2007).
[CrossRef]

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef]

J. B. Pendry, A. J. Holden, D. J. Robins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef]

Pimenov, A.

A. Pimenov, A. Loidl, P. Przyslupski, and B. Dabrowski, “Negative refraction in ferromagnet-superconductor superlattices,” Phys. Rev. Lett. 95(24), 247009 (2005).
[CrossRef]

Przyslupski, P.

A. Pimenov, A. Loidl, P. Przyslupski, and B. Dabrowski, “Negative refraction in ferromagnet-superconductor superlattices,” Phys. Rev. Lett. 95(24), 247009 (2005).
[CrossRef]

Rachford, F. J.

F. J. Rachford, D. N. Armstead, V. G. Harris, and C. Vittoria, “Simulations of ferrite-dielectric-wire composite negative index materials,” Phys. Rev. Lett. 99(5), 057202 (2007).
[CrossRef]

Y. He, P. He, S. D. Yoon, P. V. Parimi, F. J. Rachford, V. G. Harris, and C. Vittoria, “Tunable negative index metamaterial using yttrium iron garnet,” J. Magn. Magn. Mater. 313(1), 187–191 (2007).
[CrossRef]

Robins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2002).
[CrossRef]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2002).
[CrossRef]

Smith, D. R.

A. Degiron, J. J. Mock, and D. R. Smith, “Modulating and tuning the response of metamaterials at the unit cell level,” Opt. Express 15(3), 1115–1127 (2007).
[CrossRef]

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2002).
[CrossRef]

Soukoulis, C. M.

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[CrossRef]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, E. Ozbay, and C. M. Soukoulis, “Left- and right-handed transmission peaks near the magnetic resonance frequency in composite metamaterials,” Phys. Rev. B 70(20), 201101 (2004).
[CrossRef]

K. Aydin, K. Guven, M. Kafesaki, L. Zhang, C. M. Soukoulis, and E. Ozbay, “Experimental observation of true left-handed transmission peaks in metamaterials,” Opt. Lett. 29(22), 2623–2625 (2004).
[CrossRef]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef]

Tang, H.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[CrossRef]

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of permittivity and permeability,” Sov. Phys. Usp. 10, 509 (1968).
[CrossRef]

Vier, D. C.

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[CrossRef]

Vittoria, C.

Y. He, P. He, S. D. Yoon, P. V. Parimi, F. J. Rachford, V. G. Harris, and C. Vittoria, “Tunable negative index metamaterial using yttrium iron garnet,” J. Magn. Magn. Mater. 313(1), 187–191 (2007).
[CrossRef]

F. J. Rachford, D. N. Armstead, V. G. Harris, and C. Vittoria, “Simulations of ferrite-dielectric-wire composite negative index materials,” Phys. Rev. Lett. 99(5), 057202 (2007).
[CrossRef]

Yoon, S. D.

Y. He, P. He, S. D. Yoon, P. V. Parimi, F. J. Rachford, V. G. Harris, and C. Vittoria, “Tunable negative index metamaterial using yttrium iron garnet,” J. Magn. Magn. Mater. 313(1), 187–191 (2007).
[CrossRef]

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef]

Zhang, B.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[CrossRef]

Zhang, L.

Zhao, H. J.

Zhao, Q.

L. Kang, Q. Zhao, H. J. Zhao, and J. Zhou, “Magnetically tunable negative permeability metamaterial composed by split ring resonators and ferrite rods,” Opt. Express 16(12), 8825–8834 (2008).
[CrossRef]

L. Kang, Q. Zhao, H. J. Zhao, and J. Zhou, “Ferrite-based magnetically tunable left-handed metamaterial composed of SRRs and wires,” Opt. Express 16(22), 17269–17275 (2008).
[CrossRef]

H. J. Zhao, J. Zhou, Q. Zhao, B. Li, L. Kang, and Y. Bai, “Magnetotunable left-handed material consisting of yttrium iron garnet slab and metallic wires,” Appl. Phys. Lett. 91(13), 131107 (2007).
[CrossRef]

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[CrossRef]

Zhou, J.

L. Kang, Q. Zhao, H. J. Zhao, and J. Zhou, “Ferrite-based magnetically tunable left-handed metamaterial composed of SRRs and wires,” Opt. Express 16(22), 17269–17275 (2008).
[CrossRef]

L. Kang, Q. Zhao, H. J. Zhao, and J. Zhou, “Magnetically tunable negative permeability metamaterial composed by split ring resonators and ferrite rods,” Opt. Express 16(12), 8825–8834 (2008).
[CrossRef]

H. J. Zhao, J. Zhou, Q. Zhao, B. Li, L. Kang, and Y. Bai, “Magnetotunable left-handed material consisting of yttrium iron garnet slab and metallic wires,” Appl. Phys. Lett. 91(13), 131107 (2007).
[CrossRef]

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[CrossRef]

Appl. Phys. Lett. (4)

P. Gay-Balmaz and O. J. F. Martin, “Efficient isotropic magnetic resonators,” Appl. Phys. Lett. 81(5), 939 (2002).
[CrossRef]

H. Chen and L. Bae-Ian Wu, “Ran, T. M. Grzegorczyk, and J. A. Kong, “Controllable left-handed metamaterial and its application to a steerable antenna,” Appl. Phys. Lett. 89, 053509 (2006).
[CrossRef]

H. J. Zhao, J. Zhou, Q. Zhao, B. Li, L. Kang, and Y. Bai, “Magnetotunable left-handed material consisting of yttrium iron garnet slab and metallic wires,” Appl. Phys. Lett. 91(13), 131107 (2007).
[CrossRef]

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

J. B. Pendry, A. J. Holden, D. J. Robins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999).
[CrossRef]

Int. J. Mod. Phys. B (1)

G. Dewar, “Candidates for μ<0, ε<0 nanostructures,” Int. J. Mod. Phys. B 15(24 & 25), 3258 (2001).
[CrossRef]

J. Appl. Phys. (1)

K. Aydin and E. Ozbay, “Capacitor-loaded split ring resonators as tunable metamaterial components,” J. Appl. Phys. 101(2), 024911 (2007).
[CrossRef]

J. Magn. Magn. Mater. (1)

Y. He, P. He, S. D. Yoon, P. V. Parimi, F. J. Rachford, V. G. Harris, and C. Vittoria, “Tunable negative index metamaterial using yttrium iron garnet,” J. Magn. Magn. Mater. 313(1), 187–191 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (2)

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, E. Ozbay, and C. M. Soukoulis, “Left- and right-handed transmission peaks near the magnetic resonance frequency in composite metamaterials,” Phys. Rev. B 70(20), 201101 (2004).
[CrossRef]

S. T. Chui and L. Hu, “Theoretical investigation on the possibility of preparing left-handed materials in metallic magnetic granular composites,” Phys. Rev. B 65(14), 144407 (2002).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005).
[CrossRef]

Phys. Rev. Lett. (4)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef]

F. J. Rachford, D. N. Armstead, V. G. Harris, and C. Vittoria, “Simulations of ferrite-dielectric-wire composite negative index materials,” Phys. Rev. Lett. 99(5), 057202 (2007).
[CrossRef]

A. Pimenov, A. Loidl, P. Przyslupski, and B. Dabrowski, “Negative refraction in ferromagnet-superconductor superlattices,” Phys. Rev. Lett. 95(24), 247009 (2005).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[CrossRef]

Science (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2002).
[CrossRef]

Sov. Phys. Usp. (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of permittivity and permeability,” Sov. Phys. Usp. 10, 509 (1968).
[CrossRef]

Other (1)

B. Lax, and K. J. Button, Microwave ferrites and ferrimagnetics, (McGraw-Hill, New York, 1962).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics