Abstract

Low coherent light interferometry requires broad bandwidth light sources to achieve high axial resolution. Here, Superluminescent Light Emitting Diodes (SLDs) utilizing Quantum Dot (QD) gain materials are promising devices as they unify large spectral bandwidths with sufficient power at desired emission wavelengths. However, frequently a dip occurs in the optical spectrum that translates into high side lobes in the coherence function thereby reducing axial resolution and image quality. We apply the experimental technique of frequency selective feedback to shape the optical spectrum of the QD-SLD, hence optimizing the coherence properties. For well-selected feedback parameters, a strong reduction of the parasitic side lobes by a factor of 3.5 was achieved accompanied by a power increase of 40% and an improvement of 10% in the coherence length. The experimental results are in excellent agreement with simulations that even indicate potential for further optimizations.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
    [CrossRef]
  2. D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, "Three-dimensional endomicroscopy using optical coherence tomography," Nat. Photonics 1, 709-716 (2007).
    [CrossRef]
  3. J. M. Schmitt, "Optical coherence tomography (OCT): A Review," IEEE J. Sel. Topics Quantum Electron. 4, 1205-1215 (1999).
    [CrossRef]
  4. E. Alarousu, L. Krehut, T. Prykäri, and R. Myllylä, "Study on the use of optical coherence tomography in measurements of paper properties," Meas. Sci. Technol. 161131-1137 (2005).
    [CrossRef]
  5. M. Grundmann, O. Stier, S. Bognar, and C. Ribbat, F. Heinrichsdorff, D. Bimberg, "Optical properties of self-organized quantum dots: Modeling and experiments," Phys. Stat. Sol.(A) 178, 255-262 (2000).
    [CrossRef]
  6. M. Jedrzejewska-Szczerska, "Shaping coherence function of sources used in low-coherent measurement techniques," Eur. Phys. J. Special Top. 144, 203−208 (2007).
    [CrossRef]
  7. M. Rossetti, L. Li, A. Markus, A. Fiore, L. Occhi, C. Vélez, S. Mikhrin, I. Krestnikov, and A. Kovsh, "Characterization and Modeling of Broad Spectrum InAs-GaAs Quantum-Dot Superluminescent Diodes Emitting at 1.2-1.3 µm," IEEE J. Quantum Electron. 43, 676-686 (2007).
    [CrossRef]
  8. S. K. Ray, K. M. Groom, M. D. Beattie, H. Y. Liu, M. Hopkinson, and R. A. Hogg, "Broad-Band Superluminescent Light-Emitting Diodes Incorporating Quantum Dots in Compositionally Modulated Quantum Wells," IEEE Photon. Technol. Lett. 18, 58-60 (2006).
    [CrossRef]
  9. Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, "1.3-µm Quantum-Dot Multisection Superluminescent Diodes With Extremely Broad Bandwidth," IEEE Photon. Technol. Lett. 19, 501-503 (2007).
    [CrossRef]
  10. P. D. L. Judson, K. M. Groom, D. T. D. Childs, M. Hopkinson, and R. A. Hogg, "Multi-section quantum dot superluminescent diodes for spectral shape engineering," IET Optoelectron. 3, 100-104 (2009).
    [CrossRef]
  11. M. Peil, I. Fischer, W. Elsäßer, S. Bakic, N. Damaschke, C. Tropea, S. Stry, and J. Sacher, "Rainbow refractometry with a tailored incoherent semiconductor laser source," Appl. Phys. Lett. 89, 091106 (2006).
    [CrossRef]
  12. Y. Zhang, M. Sato, and N. Tanno, "Resolution improvement in optical coherence tomography by optimal synthesis of light-emitting diodes," Opt. Lett. 26, 205-207 (2001).
    [CrossRef]
  13. A. C. Akcay, J. P. Rolland, and J. M. Eichenholz, "Spectral shaping to improve the point spread function in optical coherence tomography," Opt. Lett. 28, 1921-1923 (2003).
    [CrossRef] [PubMed]
  14. D. S. Mamedov, V. V. Prokhorov, and S. D. Yakubovich, "Broadband radiation sources based on quantum-well superluminescent diodes emitting at 1550nm," Quantum Electron. 33, 511-514 (2003).
    [CrossRef]
  15. P. Bardella, M. Rossetti, and I. Montrosset, "Modeling of Broadband Chirped Quantum-Dot Super-Luminescent Diodes," IEEE J. Sel. Topics Quantum Electron. 15, 785-791 (2009).
    [CrossRef]
  16. E. V. Andreeva, M. V. Shramenko, and S. D. Yakubovich, "Double-pass superluminescent diode with tapered active channel," Quantum Electron. 32, 112-114 (2002).
    [CrossRef]
  17. L. Mandel, "Fluctuations of Photon Beams: The Distribution of the Photo-Electrons," Proc. Phys. Soc. (London) 74, 233-243 (1959).
    [CrossRef]

2009 (2)

P. D. L. Judson, K. M. Groom, D. T. D. Childs, M. Hopkinson, and R. A. Hogg, "Multi-section quantum dot superluminescent diodes for spectral shape engineering," IET Optoelectron. 3, 100-104 (2009).
[CrossRef]

P. Bardella, M. Rossetti, and I. Montrosset, "Modeling of Broadband Chirped Quantum-Dot Super-Luminescent Diodes," IEEE J. Sel. Topics Quantum Electron. 15, 785-791 (2009).
[CrossRef]

2007 (4)

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, "Three-dimensional endomicroscopy using optical coherence tomography," Nat. Photonics 1, 709-716 (2007).
[CrossRef]

M. Jedrzejewska-Szczerska, "Shaping coherence function of sources used in low-coherent measurement techniques," Eur. Phys. J. Special Top. 144, 203−208 (2007).
[CrossRef]

M. Rossetti, L. Li, A. Markus, A. Fiore, L. Occhi, C. Vélez, S. Mikhrin, I. Krestnikov, and A. Kovsh, "Characterization and Modeling of Broad Spectrum InAs-GaAs Quantum-Dot Superluminescent Diodes Emitting at 1.2-1.3 µm," IEEE J. Quantum Electron. 43, 676-686 (2007).
[CrossRef]

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, "1.3-µm Quantum-Dot Multisection Superluminescent Diodes With Extremely Broad Bandwidth," IEEE Photon. Technol. Lett. 19, 501-503 (2007).
[CrossRef]

2006 (2)

S. K. Ray, K. M. Groom, M. D. Beattie, H. Y. Liu, M. Hopkinson, and R. A. Hogg, "Broad-Band Superluminescent Light-Emitting Diodes Incorporating Quantum Dots in Compositionally Modulated Quantum Wells," IEEE Photon. Technol. Lett. 18, 58-60 (2006).
[CrossRef]

M. Peil, I. Fischer, W. Elsäßer, S. Bakic, N. Damaschke, C. Tropea, S. Stry, and J. Sacher, "Rainbow refractometry with a tailored incoherent semiconductor laser source," Appl. Phys. Lett. 89, 091106 (2006).
[CrossRef]

2005 (1)

E. Alarousu, L. Krehut, T. Prykäri, and R. Myllylä, "Study on the use of optical coherence tomography in measurements of paper properties," Meas. Sci. Technol. 161131-1137 (2005).
[CrossRef]

2003 (3)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

D. S. Mamedov, V. V. Prokhorov, and S. D. Yakubovich, "Broadband radiation sources based on quantum-well superluminescent diodes emitting at 1550nm," Quantum Electron. 33, 511-514 (2003).
[CrossRef]

A. C. Akcay, J. P. Rolland, and J. M. Eichenholz, "Spectral shaping to improve the point spread function in optical coherence tomography," Opt. Lett. 28, 1921-1923 (2003).
[CrossRef] [PubMed]

2002 (1)

E. V. Andreeva, M. V. Shramenko, and S. D. Yakubovich, "Double-pass superluminescent diode with tapered active channel," Quantum Electron. 32, 112-114 (2002).
[CrossRef]

2001 (1)

2000 (1)

M. Grundmann, O. Stier, S. Bognar, and C. Ribbat, F. Heinrichsdorff, D. Bimberg, "Optical properties of self-organized quantum dots: Modeling and experiments," Phys. Stat. Sol.(A) 178, 255-262 (2000).
[CrossRef]

1999 (1)

J. M. Schmitt, "Optical coherence tomography (OCT): A Review," IEEE J. Sel. Topics Quantum Electron. 4, 1205-1215 (1999).
[CrossRef]

1959 (1)

L. Mandel, "Fluctuations of Photon Beams: The Distribution of the Photo-Electrons," Proc. Phys. Soc. (London) 74, 233-243 (1959).
[CrossRef]

Adler, D. C.

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, "Three-dimensional endomicroscopy using optical coherence tomography," Nat. Photonics 1, 709-716 (2007).
[CrossRef]

Akcay, A. C.

Alarousu, E.

E. Alarousu, L. Krehut, T. Prykäri, and R. Myllylä, "Study on the use of optical coherence tomography in measurements of paper properties," Meas. Sci. Technol. 161131-1137 (2005).
[CrossRef]

Andreeva, E. V.

E. V. Andreeva, M. V. Shramenko, and S. D. Yakubovich, "Double-pass superluminescent diode with tapered active channel," Quantum Electron. 32, 112-114 (2002).
[CrossRef]

Bakic, S.

M. Peil, I. Fischer, W. Elsäßer, S. Bakic, N. Damaschke, C. Tropea, S. Stry, and J. Sacher, "Rainbow refractometry with a tailored incoherent semiconductor laser source," Appl. Phys. Lett. 89, 091106 (2006).
[CrossRef]

Bardella, P.

P. Bardella, M. Rossetti, and I. Montrosset, "Modeling of Broadband Chirped Quantum-Dot Super-Luminescent Diodes," IEEE J. Sel. Topics Quantum Electron. 15, 785-791 (2009).
[CrossRef]

Beattie, M. D.

S. K. Ray, K. M. Groom, M. D. Beattie, H. Y. Liu, M. Hopkinson, and R. A. Hogg, "Broad-Band Superluminescent Light-Emitting Diodes Incorporating Quantum Dots in Compositionally Modulated Quantum Wells," IEEE Photon. Technol. Lett. 18, 58-60 (2006).
[CrossRef]

Bimberg, D.

M. Grundmann, O. Stier, S. Bognar, and C. Ribbat, F. Heinrichsdorff, D. Bimberg, "Optical properties of self-organized quantum dots: Modeling and experiments," Phys. Stat. Sol.(A) 178, 255-262 (2000).
[CrossRef]

Bognar, S.

M. Grundmann, O. Stier, S. Bognar, and C. Ribbat, F. Heinrichsdorff, D. Bimberg, "Optical properties of self-organized quantum dots: Modeling and experiments," Phys. Stat. Sol.(A) 178, 255-262 (2000).
[CrossRef]

Chen, Y.

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, "Three-dimensional endomicroscopy using optical coherence tomography," Nat. Photonics 1, 709-716 (2007).
[CrossRef]

Childs, D. T. D.

P. D. L. Judson, K. M. Groom, D. T. D. Childs, M. Hopkinson, and R. A. Hogg, "Multi-section quantum dot superluminescent diodes for spectral shape engineering," IET Optoelectron. 3, 100-104 (2009).
[CrossRef]

Connolly, J.

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, "Three-dimensional endomicroscopy using optical coherence tomography," Nat. Photonics 1, 709-716 (2007).
[CrossRef]

Damaschke, N.

M. Peil, I. Fischer, W. Elsäßer, S. Bakic, N. Damaschke, C. Tropea, S. Stry, and J. Sacher, "Rainbow refractometry with a tailored incoherent semiconductor laser source," Appl. Phys. Lett. 89, 091106 (2006).
[CrossRef]

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Eichenholz, J. M.

Elsäßer, W.

M. Peil, I. Fischer, W. Elsäßer, S. Bakic, N. Damaschke, C. Tropea, S. Stry, and J. Sacher, "Rainbow refractometry with a tailored incoherent semiconductor laser source," Appl. Phys. Lett. 89, 091106 (2006).
[CrossRef]

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Fiore, A.

M. Rossetti, L. Li, A. Markus, A. Fiore, L. Occhi, C. Vélez, S. Mikhrin, I. Krestnikov, and A. Kovsh, "Characterization and Modeling of Broad Spectrum InAs-GaAs Quantum-Dot Superluminescent Diodes Emitting at 1.2-1.3 µm," IEEE J. Quantum Electron. 43, 676-686 (2007).
[CrossRef]

Fischer, I.

M. Peil, I. Fischer, W. Elsäßer, S. Bakic, N. Damaschke, C. Tropea, S. Stry, and J. Sacher, "Rainbow refractometry with a tailored incoherent semiconductor laser source," Appl. Phys. Lett. 89, 091106 (2006).
[CrossRef]

Fujimoto, J. G.

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, "Three-dimensional endomicroscopy using optical coherence tomography," Nat. Photonics 1, 709-716 (2007).
[CrossRef]

Gray, A. L.

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, "1.3-µm Quantum-Dot Multisection Superluminescent Diodes With Extremely Broad Bandwidth," IEEE Photon. Technol. Lett. 19, 501-503 (2007).
[CrossRef]

Groom, K. M.

P. D. L. Judson, K. M. Groom, D. T. D. Childs, M. Hopkinson, and R. A. Hogg, "Multi-section quantum dot superluminescent diodes for spectral shape engineering," IET Optoelectron. 3, 100-104 (2009).
[CrossRef]

S. K. Ray, K. M. Groom, M. D. Beattie, H. Y. Liu, M. Hopkinson, and R. A. Hogg, "Broad-Band Superluminescent Light-Emitting Diodes Incorporating Quantum Dots in Compositionally Modulated Quantum Wells," IEEE Photon. Technol. Lett. 18, 58-60 (2006).
[CrossRef]

Grundmann, M.

M. Grundmann, O. Stier, S. Bognar, and C. Ribbat, F. Heinrichsdorff, D. Bimberg, "Optical properties of self-organized quantum dots: Modeling and experiments," Phys. Stat. Sol.(A) 178, 255-262 (2000).
[CrossRef]

Heinrichsdorff, F.

M. Grundmann, O. Stier, S. Bognar, and C. Ribbat, F. Heinrichsdorff, D. Bimberg, "Optical properties of self-organized quantum dots: Modeling and experiments," Phys. Stat. Sol.(A) 178, 255-262 (2000).
[CrossRef]

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Hogg, R. A.

P. D. L. Judson, K. M. Groom, D. T. D. Childs, M. Hopkinson, and R. A. Hogg, "Multi-section quantum dot superluminescent diodes for spectral shape engineering," IET Optoelectron. 3, 100-104 (2009).
[CrossRef]

S. K. Ray, K. M. Groom, M. D. Beattie, H. Y. Liu, M. Hopkinson, and R. A. Hogg, "Broad-Band Superluminescent Light-Emitting Diodes Incorporating Quantum Dots in Compositionally Modulated Quantum Wells," IEEE Photon. Technol. Lett. 18, 58-60 (2006).
[CrossRef]

Hopkinson, M.

P. D. L. Judson, K. M. Groom, D. T. D. Childs, M. Hopkinson, and R. A. Hogg, "Multi-section quantum dot superluminescent diodes for spectral shape engineering," IET Optoelectron. 3, 100-104 (2009).
[CrossRef]

S. K. Ray, K. M. Groom, M. D. Beattie, H. Y. Liu, M. Hopkinson, and R. A. Hogg, "Broad-Band Superluminescent Light-Emitting Diodes Incorporating Quantum Dots in Compositionally Modulated Quantum Wells," IEEE Photon. Technol. Lett. 18, 58-60 (2006).
[CrossRef]

Huber, R.

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, "Three-dimensional endomicroscopy using optical coherence tomography," Nat. Photonics 1, 709-716 (2007).
[CrossRef]

Jedrzejewska-Szczerska, M.

M. Jedrzejewska-Szczerska, "Shaping coherence function of sources used in low-coherent measurement techniques," Eur. Phys. J. Special Top. 144, 203−208 (2007).
[CrossRef]

Judson, P. D. L.

P. D. L. Judson, K. M. Groom, D. T. D. Childs, M. Hopkinson, and R. A. Hogg, "Multi-section quantum dot superluminescent diodes for spectral shape engineering," IET Optoelectron. 3, 100-104 (2009).
[CrossRef]

Kovsh, A.

M. Rossetti, L. Li, A. Markus, A. Fiore, L. Occhi, C. Vélez, S. Mikhrin, I. Krestnikov, and A. Kovsh, "Characterization and Modeling of Broad Spectrum InAs-GaAs Quantum-Dot Superluminescent Diodes Emitting at 1.2-1.3 µm," IEEE J. Quantum Electron. 43, 676-686 (2007).
[CrossRef]

Krehut, L.

E. Alarousu, L. Krehut, T. Prykäri, and R. Myllylä, "Study on the use of optical coherence tomography in measurements of paper properties," Meas. Sci. Technol. 161131-1137 (2005).
[CrossRef]

Krestnikov, I.

M. Rossetti, L. Li, A. Markus, A. Fiore, L. Occhi, C. Vélez, S. Mikhrin, I. Krestnikov, and A. Kovsh, "Characterization and Modeling of Broad Spectrum InAs-GaAs Quantum-Dot Superluminescent Diodes Emitting at 1.2-1.3 µm," IEEE J. Quantum Electron. 43, 676-686 (2007).
[CrossRef]

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Lester, L. F.

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, "1.3-µm Quantum-Dot Multisection Superluminescent Diodes With Extremely Broad Bandwidth," IEEE Photon. Technol. Lett. 19, 501-503 (2007).
[CrossRef]

Li, L.

M. Rossetti, L. Li, A. Markus, A. Fiore, L. Occhi, C. Vélez, S. Mikhrin, I. Krestnikov, and A. Kovsh, "Characterization and Modeling of Broad Spectrum InAs-GaAs Quantum-Dot Superluminescent Diodes Emitting at 1.2-1.3 µm," IEEE J. Quantum Electron. 43, 676-686 (2007).
[CrossRef]

Li, Y.

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, "1.3-µm Quantum-Dot Multisection Superluminescent Diodes With Extremely Broad Bandwidth," IEEE Photon. Technol. Lett. 19, 501-503 (2007).
[CrossRef]

Liu, H. Y.

S. K. Ray, K. M. Groom, M. D. Beattie, H. Y. Liu, M. Hopkinson, and R. A. Hogg, "Broad-Band Superluminescent Light-Emitting Diodes Incorporating Quantum Dots in Compositionally Modulated Quantum Wells," IEEE Photon. Technol. Lett. 18, 58-60 (2006).
[CrossRef]

Mamedov, D. S.

D. S. Mamedov, V. V. Prokhorov, and S. D. Yakubovich, "Broadband radiation sources based on quantum-well superluminescent diodes emitting at 1550nm," Quantum Electron. 33, 511-514 (2003).
[CrossRef]

Mandel, L.

L. Mandel, "Fluctuations of Photon Beams: The Distribution of the Photo-Electrons," Proc. Phys. Soc. (London) 74, 233-243 (1959).
[CrossRef]

Markus, A.

M. Rossetti, L. Li, A. Markus, A. Fiore, L. Occhi, C. Vélez, S. Mikhrin, I. Krestnikov, and A. Kovsh, "Characterization and Modeling of Broad Spectrum InAs-GaAs Quantum-Dot Superluminescent Diodes Emitting at 1.2-1.3 µm," IEEE J. Quantum Electron. 43, 676-686 (2007).
[CrossRef]

Martinez, A.

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, "1.3-µm Quantum-Dot Multisection Superluminescent Diodes With Extremely Broad Bandwidth," IEEE Photon. Technol. Lett. 19, 501-503 (2007).
[CrossRef]

Mikhrin, S.

M. Rossetti, L. Li, A. Markus, A. Fiore, L. Occhi, C. Vélez, S. Mikhrin, I. Krestnikov, and A. Kovsh, "Characterization and Modeling of Broad Spectrum InAs-GaAs Quantum-Dot Superluminescent Diodes Emitting at 1.2-1.3 µm," IEEE J. Quantum Electron. 43, 676-686 (2007).
[CrossRef]

Montrosset, I.

P. Bardella, M. Rossetti, and I. Montrosset, "Modeling of Broadband Chirped Quantum-Dot Super-Luminescent Diodes," IEEE J. Sel. Topics Quantum Electron. 15, 785-791 (2009).
[CrossRef]

Moscho, A. J.

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, "1.3-µm Quantum-Dot Multisection Superluminescent Diodes With Extremely Broad Bandwidth," IEEE Photon. Technol. Lett. 19, 501-503 (2007).
[CrossRef]

Myllylä, R.

E. Alarousu, L. Krehut, T. Prykäri, and R. Myllylä, "Study on the use of optical coherence tomography in measurements of paper properties," Meas. Sci. Technol. 161131-1137 (2005).
[CrossRef]

Nilsen, T. A.

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, "1.3-µm Quantum-Dot Multisection Superluminescent Diodes With Extremely Broad Bandwidth," IEEE Photon. Technol. Lett. 19, 501-503 (2007).
[CrossRef]

Occhi, L.

M. Rossetti, L. Li, A. Markus, A. Fiore, L. Occhi, C. Vélez, S. Mikhrin, I. Krestnikov, and A. Kovsh, "Characterization and Modeling of Broad Spectrum InAs-GaAs Quantum-Dot Superluminescent Diodes Emitting at 1.2-1.3 µm," IEEE J. Quantum Electron. 43, 676-686 (2007).
[CrossRef]

Peil, M.

M. Peil, I. Fischer, W. Elsäßer, S. Bakic, N. Damaschke, C. Tropea, S. Stry, and J. Sacher, "Rainbow refractometry with a tailored incoherent semiconductor laser source," Appl. Phys. Lett. 89, 091106 (2006).
[CrossRef]

Prokhorov, V. V.

D. S. Mamedov, V. V. Prokhorov, and S. D. Yakubovich, "Broadband radiation sources based on quantum-well superluminescent diodes emitting at 1550nm," Quantum Electron. 33, 511-514 (2003).
[CrossRef]

Prykäri, T.

E. Alarousu, L. Krehut, T. Prykäri, and R. Myllylä, "Study on the use of optical coherence tomography in measurements of paper properties," Meas. Sci. Technol. 161131-1137 (2005).
[CrossRef]

Ray, S. K.

S. K. Ray, K. M. Groom, M. D. Beattie, H. Y. Liu, M. Hopkinson, and R. A. Hogg, "Broad-Band Superluminescent Light-Emitting Diodes Incorporating Quantum Dots in Compositionally Modulated Quantum Wells," IEEE Photon. Technol. Lett. 18, 58-60 (2006).
[CrossRef]

Ribbat, C.

M. Grundmann, O. Stier, S. Bognar, and C. Ribbat, F. Heinrichsdorff, D. Bimberg, "Optical properties of self-organized quantum dots: Modeling and experiments," Phys. Stat. Sol.(A) 178, 255-262 (2000).
[CrossRef]

Rolland, J. P.

Rossetti, M.

P. Bardella, M. Rossetti, and I. Montrosset, "Modeling of Broadband Chirped Quantum-Dot Super-Luminescent Diodes," IEEE J. Sel. Topics Quantum Electron. 15, 785-791 (2009).
[CrossRef]

M. Rossetti, L. Li, A. Markus, A. Fiore, L. Occhi, C. Vélez, S. Mikhrin, I. Krestnikov, and A. Kovsh, "Characterization and Modeling of Broad Spectrum InAs-GaAs Quantum-Dot Superluminescent Diodes Emitting at 1.2-1.3 µm," IEEE J. Quantum Electron. 43, 676-686 (2007).
[CrossRef]

Sacher, J.

M. Peil, I. Fischer, W. Elsäßer, S. Bakic, N. Damaschke, C. Tropea, S. Stry, and J. Sacher, "Rainbow refractometry with a tailored incoherent semiconductor laser source," Appl. Phys. Lett. 89, 091106 (2006).
[CrossRef]

Saiz, T.

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, "1.3-µm Quantum-Dot Multisection Superluminescent Diodes With Extremely Broad Bandwidth," IEEE Photon. Technol. Lett. 19, 501-503 (2007).
[CrossRef]

Sato, M.

Schmitt, J.

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, "Three-dimensional endomicroscopy using optical coherence tomography," Nat. Photonics 1, 709-716 (2007).
[CrossRef]

Schmitt, J. M.

J. M. Schmitt, "Optical coherence tomography (OCT): A Review," IEEE J. Sel. Topics Quantum Electron. 4, 1205-1215 (1999).
[CrossRef]

Shramenko, M. V.

E. V. Andreeva, M. V. Shramenko, and S. D. Yakubovich, "Double-pass superluminescent diode with tapered active channel," Quantum Electron. 32, 112-114 (2002).
[CrossRef]

Stier, O.

M. Grundmann, O. Stier, S. Bognar, and C. Ribbat, F. Heinrichsdorff, D. Bimberg, "Optical properties of self-organized quantum dots: Modeling and experiments," Phys. Stat. Sol.(A) 178, 255-262 (2000).
[CrossRef]

Stry, S.

M. Peil, I. Fischer, W. Elsäßer, S. Bakic, N. Damaschke, C. Tropea, S. Stry, and J. Sacher, "Rainbow refractometry with a tailored incoherent semiconductor laser source," Appl. Phys. Lett. 89, 091106 (2006).
[CrossRef]

Tanno, N.

Tropea, C.

M. Peil, I. Fischer, W. Elsäßer, S. Bakic, N. Damaschke, C. Tropea, S. Stry, and J. Sacher, "Rainbow refractometry with a tailored incoherent semiconductor laser source," Appl. Phys. Lett. 89, 091106 (2006).
[CrossRef]

Vélez, C.

M. Rossetti, L. Li, A. Markus, A. Fiore, L. Occhi, C. Vélez, S. Mikhrin, I. Krestnikov, and A. Kovsh, "Characterization and Modeling of Broad Spectrum InAs-GaAs Quantum-Dot Superluminescent Diodes Emitting at 1.2-1.3 µm," IEEE J. Quantum Electron. 43, 676-686 (2007).
[CrossRef]

Xin, Y. C.

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, "1.3-µm Quantum-Dot Multisection Superluminescent Diodes With Extremely Broad Bandwidth," IEEE Photon. Technol. Lett. 19, 501-503 (2007).
[CrossRef]

Yakubovich, S. D.

D. S. Mamedov, V. V. Prokhorov, and S. D. Yakubovich, "Broadband radiation sources based on quantum-well superluminescent diodes emitting at 1550nm," Quantum Electron. 33, 511-514 (2003).
[CrossRef]

E. V. Andreeva, M. V. Shramenko, and S. D. Yakubovich, "Double-pass superluminescent diode with tapered active channel," Quantum Electron. 32, 112-114 (2002).
[CrossRef]

Zhang, Y.

Appl. Phys. Lett. (1)

M. Peil, I. Fischer, W. Elsäßer, S. Bakic, N. Damaschke, C. Tropea, S. Stry, and J. Sacher, "Rainbow refractometry with a tailored incoherent semiconductor laser source," Appl. Phys. Lett. 89, 091106 (2006).
[CrossRef]

Eur. Phys. J. Special Top. (1)

M. Jedrzejewska-Szczerska, "Shaping coherence function of sources used in low-coherent measurement techniques," Eur. Phys. J. Special Top. 144, 203−208 (2007).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Rossetti, L. Li, A. Markus, A. Fiore, L. Occhi, C. Vélez, S. Mikhrin, I. Krestnikov, and A. Kovsh, "Characterization and Modeling of Broad Spectrum InAs-GaAs Quantum-Dot Superluminescent Diodes Emitting at 1.2-1.3 µm," IEEE J. Quantum Electron. 43, 676-686 (2007).
[CrossRef]

IEEE J. Sel. Topics Quantum Electron. (2)

J. M. Schmitt, "Optical coherence tomography (OCT): A Review," IEEE J. Sel. Topics Quantum Electron. 4, 1205-1215 (1999).
[CrossRef]

P. Bardella, M. Rossetti, and I. Montrosset, "Modeling of Broadband Chirped Quantum-Dot Super-Luminescent Diodes," IEEE J. Sel. Topics Quantum Electron. 15, 785-791 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

S. K. Ray, K. M. Groom, M. D. Beattie, H. Y. Liu, M. Hopkinson, and R. A. Hogg, "Broad-Band Superluminescent Light-Emitting Diodes Incorporating Quantum Dots in Compositionally Modulated Quantum Wells," IEEE Photon. Technol. Lett. 18, 58-60 (2006).
[CrossRef]

Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, "1.3-µm Quantum-Dot Multisection Superluminescent Diodes With Extremely Broad Bandwidth," IEEE Photon. Technol. Lett. 19, 501-503 (2007).
[CrossRef]

IET Optoelectron. (1)

P. D. L. Judson, K. M. Groom, D. T. D. Childs, M. Hopkinson, and R. A. Hogg, "Multi-section quantum dot superluminescent diodes for spectral shape engineering," IET Optoelectron. 3, 100-104 (2009).
[CrossRef]

Meas. Sci. Technol. (1)

E. Alarousu, L. Krehut, T. Prykäri, and R. Myllylä, "Study on the use of optical coherence tomography in measurements of paper properties," Meas. Sci. Technol. 161131-1137 (2005).
[CrossRef]

Nat. Photonics (1)

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, "Three-dimensional endomicroscopy using optical coherence tomography," Nat. Photonics 1, 709-716 (2007).
[CrossRef]

Opt. Lett. (2)

Phys. Stat. Sol.(A) (1)

M. Grundmann, O. Stier, S. Bognar, and C. Ribbat, F. Heinrichsdorff, D. Bimberg, "Optical properties of self-organized quantum dots: Modeling and experiments," Phys. Stat. Sol.(A) 178, 255-262 (2000).
[CrossRef]

Proc. Phys. Soc. (London) (1)

L. Mandel, "Fluctuations of Photon Beams: The Distribution of the Photo-Electrons," Proc. Phys. Soc. (London) 74, 233-243 (1959).
[CrossRef]

Quantum Electron. (2)

E. V. Andreeva, M. V. Shramenko, and S. D. Yakubovich, "Double-pass superluminescent diode with tapered active channel," Quantum Electron. 32, 112-114 (2002).
[CrossRef]

D. S. Mamedov, V. V. Prokhorov, and S. D. Yakubovich, "Broadband radiation sources based on quantum-well superluminescent diodes emitting at 1550nm," Quantum Electron. 33, 511-514 (2003).
[CrossRef]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Measured optical spectra of the investigated QD-SLD for various pump currents: (a) 225mA, (b) 362mA and (c) 425mA. The vertical arrows indicate the dip size. (d) Measured dip of QD-SLD.

Fig. 2.
Fig. 2.

Experimental realization of frequency selective feedback. In the centre the angle-tilted QD-SLD with bond wires is depicted.

Fig. 3.
Fig. 3.

Equivalent simulated modal reflectivity induced by the frequency selective optical feedback at the SLD back facet.

Fig. 4.
Fig. 4.

QD-SLD characterization experiment and simulation (a) P-I-characteristic, inset: Optical spectra of investigated SLD at EPC, (b) Interferogram and visibility.

Fig. 5.
Fig. 5.

Experimentally measured properties of QD-SLD for various feedback settings (a) relative power increase, (b) absolute coherence length with reference value (colour online).

Fig. 6.
Fig. 6.

Experimentally measured contrast ratio C of investigated QD-SLD for various FB settings (colour online).

Fig. 7.
Fig. 7.

Measured and simulated QD-SLD properties with optimal and without feedback: (a) Visibility, (b) Optical spectra.

Tables (1)

Tables Icon

Table 1. Main parameters used in the simulations.

Metrics