Abstract

We propose a silicon-on-insulator (SOI) photonic crystal waveguide within a hexagonal lattice of elliptical air holes for slow light propagation with group velocity in the range 0.0028c to 0.044c and ultra-flattened group velocity dispersion (GVD). The proposed structure is also investigated for its application as an optical buffer with a large value of normalized delay bandwidth product (DBP), equal to 0.778. Furthermore it is shown that the proposed structure can also be used for time or wavelength-division demultiplexing to separate two telecom wavelengths, 1.31µm and 1.55µm, on a useful time-scale and with minimal distortion.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. F. Krauss, "Why do we need slow light?," Nat. Photon. 2, 448-450 (2008).
    [CrossRef]
  2. Richard M. De La Rue, "Slower for longer," Nat. Photon. 2(12), 715-716 (2008).
    [CrossRef]
  3. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005).
    [CrossRef] [PubMed]
  4. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All optical control of light on a silicon chip," Nature 481, 1081-1084 (2004).
    [CrossRef]
  5. R. S. Jacobsen, K. Andersen, P. I. Borel, J. F. Pedersen, O. Hansen, M. Kristensen, A. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, "Strained silicon as a new electro-optic material," Nature 441, 199-202 (2006).
    [CrossRef] [PubMed]
  6. M. Soljacic, S. G. Jhonson, S. Fan, M. I. Baneseu, E. Ippen, and J. D. Joannopolous, "Photonic crystal slow light enhancement of non linear phase sensitivity," J. Opt. Soc. Am. B 19, 2052-2059 (2002).
    [CrossRef]
  7. H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. Van Hulst, T. F. Krauss, and L. Kuipers, " Real space observation of ultra slow light in photonic crystal waveguides," Phys. Rev. Lett. 94, 073903 (2005).
    [CrossRef] [PubMed]
  8. T. Baba and D. Mori, "Slow light engineering in photonic crystals," J. Phys. D: Appl. Phys. 40, 2659-2665 (2007)
    [CrossRef]
  9. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, "Photonic crystal waveguides with semi-slow light and tailored dispersion properties," Opt. Express 14, 9444-9450 (2006).
    [CrossRef] [PubMed]
  10. R. S. Tucker, P. C. Ku, and C. J. Chang-Hasnain, "Slow light optical buffers: Capabilities and fundamental limitations," J. Lightwave Technol. 23, 4046-4066 (2005).
    [CrossRef]
  11. M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulous, "Slow light, band edge waveguides for tunable time delays," Opt. Express 13, 7145-7159 (2005).
    [CrossRef] [PubMed]
  12. T. Baba, D. Mori, K. Inoshita, and Y. Kuroki, "Light localization in line defect photonic waveguides," IEEE J. Quantum Electron. 10, 484-491 (2004).
    [CrossRef]
  13. T. F. Krauss, "Slow light in photonic crystal waveguides," J. Phys. D: Appl. Phys. 40,2666-2670 (2007).
    [CrossRef]
  14. D. Mori and T. Baba, "Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide," Opt. Express 13, 9398-9408 (2005).
    [CrossRef] [PubMed]
  15. D. Mori and T. Baba, "Dispersion controlled optical group delay device by chirped photonic crystal waveguides," Appl. Phys. Lett. 85, 1101-1103 (2004).
    [CrossRef]
  16. A. Shinya, M. Notomi, I. Yokohama, C. Takahashi, and J. Takahashi "Two-dimensional Si photonic crystals on oxide using SOI substrate," Opt. Quantum. Electron. 34113-121 (2002)
    [CrossRef]
  17. A. Di Falco, L. O’Faolain, and T. F. Krauss, "Dispersion control and slow light in slotted photonic crystal waveguides," Appl. Phys. Lett. 92, 083501 (2008).
    [CrossRef]
  18. F. Wang, J. Ma, and C. Jiang, "Dispersionless slow wave in Novel 2-D photonic crystal line defect waveguides," J. Lightwave Technol. 26, 1381-1386 (2008).
    [CrossRef]
  19. M. Plihal and A. A. Maradudin, "Photonic band structures of two dimensional systems- The Triangular lattice," Phy. Rev. B 44, 1865-8571 (1991).
    [CrossRef]
  20. A. Taflove "Advances in Computational Electrodynamics- The Finite Difference Time Domain Method," Artech House (1998).
  21. M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, "Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth," Opt. Express 15, 219 (2007).
    [CrossRef] [PubMed]
  22. J. Ma and C. Jiang, "Demonstration of ultra slow modes in asymmetric line defect photonic crystal waveguides," IEEE Phot. Technol. Lett. 20, 1237-1239 (2008).
    [CrossRef]
  23. G. P. Agarwal, Fiber Optic Communication systems, Hoboken, NJ: Wiley-Interscience (1997).
  24. S. Assefa and Y. A. Vlasov, "High order dispersion in photonic crystal waveguides," Opt. Express 15, 17562 (2007).
    [CrossRef] [PubMed]
  25. J. Ma and C. Jiang, "Flat band slow light in asymmetric line defect photonic crystal waveguide featuring low group velocity and dispersion," IEEE J. Quantum Electron. 44, 763-769 (2008).
    [CrossRef]

2008 (6)

T. F. Krauss, "Why do we need slow light?," Nat. Photon. 2, 448-450 (2008).
[CrossRef]

Richard M. De La Rue, "Slower for longer," Nat. Photon. 2(12), 715-716 (2008).
[CrossRef]

A. Di Falco, L. O’Faolain, and T. F. Krauss, "Dispersion control and slow light in slotted photonic crystal waveguides," Appl. Phys. Lett. 92, 083501 (2008).
[CrossRef]

J. Ma and C. Jiang, "Demonstration of ultra slow modes in asymmetric line defect photonic crystal waveguides," IEEE Phot. Technol. Lett. 20, 1237-1239 (2008).
[CrossRef]

J. Ma and C. Jiang, "Flat band slow light in asymmetric line defect photonic crystal waveguide featuring low group velocity and dispersion," IEEE J. Quantum Electron. 44, 763-769 (2008).
[CrossRef]

F. Wang, J. Ma, and C. Jiang, "Dispersionless slow wave in Novel 2-D photonic crystal line defect waveguides," J. Lightwave Technol. 26, 1381-1386 (2008).
[CrossRef]

2007 (4)

2006 (2)

R. S. Jacobsen, K. Andersen, P. I. Borel, J. F. Pedersen, O. Hansen, M. Kristensen, A. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, "Strained silicon as a new electro-optic material," Nature 441, 199-202 (2006).
[CrossRef] [PubMed]

L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, "Photonic crystal waveguides with semi-slow light and tailored dispersion properties," Opt. Express 14, 9444-9450 (2006).
[CrossRef] [PubMed]

2005 (5)

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. Van Hulst, T. F. Krauss, and L. Kuipers, " Real space observation of ultra slow light in photonic crystal waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005).
[CrossRef] [PubMed]

M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulous, "Slow light, band edge waveguides for tunable time delays," Opt. Express 13, 7145-7159 (2005).
[CrossRef] [PubMed]

D. Mori and T. Baba, "Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide," Opt. Express 13, 9398-9408 (2005).
[CrossRef] [PubMed]

R. S. Tucker, P. C. Ku, and C. J. Chang-Hasnain, "Slow light optical buffers: Capabilities and fundamental limitations," J. Lightwave Technol. 23, 4046-4066 (2005).
[CrossRef]

2004 (3)

T. Baba, D. Mori, K. Inoshita, and Y. Kuroki, "Light localization in line defect photonic waveguides," IEEE J. Quantum Electron. 10, 484-491 (2004).
[CrossRef]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All optical control of light on a silicon chip," Nature 481, 1081-1084 (2004).
[CrossRef]

D. Mori and T. Baba, "Dispersion controlled optical group delay device by chirped photonic crystal waveguides," Appl. Phys. Lett. 85, 1101-1103 (2004).
[CrossRef]

2002 (2)

A. Shinya, M. Notomi, I. Yokohama, C. Takahashi, and J. Takahashi "Two-dimensional Si photonic crystals on oxide using SOI substrate," Opt. Quantum. Electron. 34113-121 (2002)
[CrossRef]

M. Soljacic, S. G. Jhonson, S. Fan, M. I. Baneseu, E. Ippen, and J. D. Joannopolous, "Photonic crystal slow light enhancement of non linear phase sensitivity," J. Opt. Soc. Am. B 19, 2052-2059 (2002).
[CrossRef]

1991 (1)

M. Plihal and A. A. Maradudin, "Photonic band structures of two dimensional systems- The Triangular lattice," Phy. Rev. B 44, 1865-8571 (1991).
[CrossRef]

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All optical control of light on a silicon chip," Nature 481, 1081-1084 (2004).
[CrossRef]

Andersen, K.

R. S. Jacobsen, K. Andersen, P. I. Borel, J. F. Pedersen, O. Hansen, M. Kristensen, A. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, "Strained silicon as a new electro-optic material," Nature 441, 199-202 (2006).
[CrossRef] [PubMed]

Assefa, S.

Baba, T.

T. Baba and D. Mori, "Slow light engineering in photonic crystals," J. Phys. D: Appl. Phys. 40, 2659-2665 (2007)
[CrossRef]

D. Mori and T. Baba, "Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide," Opt. Express 13, 9398-9408 (2005).
[CrossRef] [PubMed]

D. Mori and T. Baba, "Dispersion controlled optical group delay device by chirped photonic crystal waveguides," Appl. Phys. Lett. 85, 1101-1103 (2004).
[CrossRef]

T. Baba, D. Mori, K. Inoshita, and Y. Kuroki, "Light localization in line defect photonic waveguides," IEEE J. Quantum Electron. 10, 484-491 (2004).
[CrossRef]

Baneseu, M. I.

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All optical control of light on a silicon chip," Nature 481, 1081-1084 (2004).
[CrossRef]

Bjarklev, A.

R. S. Jacobsen, K. Andersen, P. I. Borel, J. F. Pedersen, O. Hansen, M. Kristensen, A. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, "Strained silicon as a new electro-optic material," Nature 441, 199-202 (2006).
[CrossRef] [PubMed]

Bogaerts, W.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. Van Hulst, T. F. Krauss, and L. Kuipers, " Real space observation of ultra slow light in photonic crystal waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Borel, P. I.

R. S. Jacobsen, K. Andersen, P. I. Borel, J. F. Pedersen, O. Hansen, M. Kristensen, A. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, "Strained silicon as a new electro-optic material," Nature 441, 199-202 (2006).
[CrossRef] [PubMed]

L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, "Photonic crystal waveguides with semi-slow light and tailored dispersion properties," Opt. Express 14, 9444-9450 (2006).
[CrossRef] [PubMed]

Chang-Hasnain, C. J.

De La Rue, Richard M.

Richard M. De La Rue, "Slower for longer," Nat. Photon. 2(12), 715-716 (2008).
[CrossRef]

Di Falco, A.

A. Di Falco, L. O’Faolain, and T. F. Krauss, "Dispersion control and slow light in slotted photonic crystal waveguides," Appl. Phys. Lett. 92, 083501 (2008).
[CrossRef]

Engelen, R. J. P.

M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, "Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth," Opt. Express 15, 219 (2007).
[CrossRef] [PubMed]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. Van Hulst, T. F. Krauss, and L. Kuipers, " Real space observation of ultra slow light in photonic crystal waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Fage-Pedersen, J.

Fan, S.

Frandsen, L. H.

Gersen, H.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. Van Hulst, T. F. Krauss, and L. Kuipers, " Real space observation of ultra slow light in photonic crystal waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Hamann, H. F.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005).
[CrossRef] [PubMed]

Hansen, O.

R. S. Jacobsen, K. Andersen, P. I. Borel, J. F. Pedersen, O. Hansen, M. Kristensen, A. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, "Strained silicon as a new electro-optic material," Nature 441, 199-202 (2006).
[CrossRef] [PubMed]

Inoshita, K.

T. Baba, D. Mori, K. Inoshita, and Y. Kuroki, "Light localization in line defect photonic waveguides," IEEE J. Quantum Electron. 10, 484-491 (2004).
[CrossRef]

Ippen, E.

Jacobsen, R. S.

R. S. Jacobsen, K. Andersen, P. I. Borel, J. F. Pedersen, O. Hansen, M. Kristensen, A. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, "Strained silicon as a new electro-optic material," Nature 441, 199-202 (2006).
[CrossRef] [PubMed]

Jhonson, S. G.

Jiang, C.

F. Wang, J. Ma, and C. Jiang, "Dispersionless slow wave in Novel 2-D photonic crystal line defect waveguides," J. Lightwave Technol. 26, 1381-1386 (2008).
[CrossRef]

J. Ma and C. Jiang, "Flat band slow light in asymmetric line defect photonic crystal waveguide featuring low group velocity and dispersion," IEEE J. Quantum Electron. 44, 763-769 (2008).
[CrossRef]

J. Ma and C. Jiang, "Demonstration of ultra slow modes in asymmetric line defect photonic crystal waveguides," IEEE Phot. Technol. Lett. 20, 1237-1239 (2008).
[CrossRef]

Joannopolous, J. D.

Joannopoulous, J. D.

Johnson, S. G.

Karle, T. J.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. Van Hulst, T. F. Krauss, and L. Kuipers, " Real space observation of ultra slow light in photonic crystal waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Korterik, J. P.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. Van Hulst, T. F. Krauss, and L. Kuipers, " Real space observation of ultra slow light in photonic crystal waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Krauss, T. F.

T. F. Krauss, "Why do we need slow light?," Nat. Photon. 2, 448-450 (2008).
[CrossRef]

A. Di Falco, L. O’Faolain, and T. F. Krauss, "Dispersion control and slow light in slotted photonic crystal waveguides," Appl. Phys. Lett. 92, 083501 (2008).
[CrossRef]

M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, "Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth," Opt. Express 15, 219 (2007).
[CrossRef] [PubMed]

T. F. Krauss, "Slow light in photonic crystal waveguides," J. Phys. D: Appl. Phys. 40,2666-2670 (2007).
[CrossRef]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. Van Hulst, T. F. Krauss, and L. Kuipers, " Real space observation of ultra slow light in photonic crystal waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Kristensen, M.

R. S. Jacobsen, K. Andersen, P. I. Borel, J. F. Pedersen, O. Hansen, M. Kristensen, A. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, "Strained silicon as a new electro-optic material," Nature 441, 199-202 (2006).
[CrossRef] [PubMed]

Ku, P. C.

Kuipers, L.

M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, "Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth," Opt. Express 15, 219 (2007).
[CrossRef] [PubMed]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. Van Hulst, T. F. Krauss, and L. Kuipers, " Real space observation of ultra slow light in photonic crystal waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Kuroki, Y.

T. Baba, D. Mori, K. Inoshita, and Y. Kuroki, "Light localization in line defect photonic waveguides," IEEE J. Quantum Electron. 10, 484-491 (2004).
[CrossRef]

Lavrinenko, A.

R. S. Jacobsen, K. Andersen, P. I. Borel, J. F. Pedersen, O. Hansen, M. Kristensen, A. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, "Strained silicon as a new electro-optic material," Nature 441, 199-202 (2006).
[CrossRef] [PubMed]

Lavrinenko, A. V.

Lipson, M.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All optical control of light on a silicon chip," Nature 481, 1081-1084 (2004).
[CrossRef]

Ma, J.

F. Wang, J. Ma, and C. Jiang, "Dispersionless slow wave in Novel 2-D photonic crystal line defect waveguides," J. Lightwave Technol. 26, 1381-1386 (2008).
[CrossRef]

J. Ma and C. Jiang, "Flat band slow light in asymmetric line defect photonic crystal waveguide featuring low group velocity and dispersion," IEEE J. Quantum Electron. 44, 763-769 (2008).
[CrossRef]

J. Ma and C. Jiang, "Demonstration of ultra slow modes in asymmetric line defect photonic crystal waveguides," IEEE Phot. Technol. Lett. 20, 1237-1239 (2008).
[CrossRef]

Maradudin, A. A.

M. Plihal and A. A. Maradudin, "Photonic band structures of two dimensional systems- The Triangular lattice," Phy. Rev. B 44, 1865-8571 (1991).
[CrossRef]

McNab, S. J.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005).
[CrossRef] [PubMed]

Michaeli, A.

Mori, D.

T. Baba and D. Mori, "Slow light engineering in photonic crystals," J. Phys. D: Appl. Phys. 40, 2659-2665 (2007)
[CrossRef]

D. Mori and T. Baba, "Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide," Opt. Express 13, 9398-9408 (2005).
[CrossRef] [PubMed]

D. Mori and T. Baba, "Dispersion controlled optical group delay device by chirped photonic crystal waveguides," Appl. Phys. Lett. 85, 1101-1103 (2004).
[CrossRef]

T. Baba, D. Mori, K. Inoshita, and Y. Kuroki, "Light localization in line defect photonic waveguides," IEEE J. Quantum Electron. 10, 484-491 (2004).
[CrossRef]

Moulin, G.

R. S. Jacobsen, K. Andersen, P. I. Borel, J. F. Pedersen, O. Hansen, M. Kristensen, A. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, "Strained silicon as a new electro-optic material," Nature 441, 199-202 (2006).
[CrossRef] [PubMed]

Notomi, M.

A. Shinya, M. Notomi, I. Yokohama, C. Takahashi, and J. Takahashi "Two-dimensional Si photonic crystals on oxide using SOI substrate," Opt. Quantum. Electron. 34113-121 (2002)
[CrossRef]

O’Boyle, M.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005).
[CrossRef] [PubMed]

O’Faolain, L.

A. Di Falco, L. O’Faolain, and T. F. Krauss, "Dispersion control and slow light in slotted photonic crystal waveguides," Appl. Phys. Lett. 92, 083501 (2008).
[CrossRef]

Ou, H.

R. S. Jacobsen, K. Andersen, P. I. Borel, J. F. Pedersen, O. Hansen, M. Kristensen, A. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, "Strained silicon as a new electro-optic material," Nature 441, 199-202 (2006).
[CrossRef] [PubMed]

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All optical control of light on a silicon chip," Nature 481, 1081-1084 (2004).
[CrossRef]

Pedersen, J. F.

R. S. Jacobsen, K. Andersen, P. I. Borel, J. F. Pedersen, O. Hansen, M. Kristensen, A. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, "Strained silicon as a new electro-optic material," Nature 441, 199-202 (2006).
[CrossRef] [PubMed]

Peucheret, C.

R. S. Jacobsen, K. Andersen, P. I. Borel, J. F. Pedersen, O. Hansen, M. Kristensen, A. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, "Strained silicon as a new electro-optic material," Nature 441, 199-202 (2006).
[CrossRef] [PubMed]

Plihal, M.

M. Plihal and A. A. Maradudin, "Photonic band structures of two dimensional systems- The Triangular lattice," Phy. Rev. B 44, 1865-8571 (1991).
[CrossRef]

Povinelli, M. L.

Salib, M.

Settle, M. D.

Shinya, A.

A. Shinya, M. Notomi, I. Yokohama, C. Takahashi, and J. Takahashi "Two-dimensional Si photonic crystals on oxide using SOI substrate," Opt. Quantum. Electron. 34113-121 (2002)
[CrossRef]

Soljacic, M.

Takahashi, C.

A. Shinya, M. Notomi, I. Yokohama, C. Takahashi, and J. Takahashi "Two-dimensional Si photonic crystals on oxide using SOI substrate," Opt. Quantum. Electron. 34113-121 (2002)
[CrossRef]

Takahashi, J.

A. Shinya, M. Notomi, I. Yokohama, C. Takahashi, and J. Takahashi "Two-dimensional Si photonic crystals on oxide using SOI substrate," Opt. Quantum. Electron. 34113-121 (2002)
[CrossRef]

Tucker, R. S.

Van Hulst, N. F.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. Van Hulst, T. F. Krauss, and L. Kuipers, " Real space observation of ultra slow light in photonic crystal waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Vlasov, Y. A.

S. Assefa and Y. A. Vlasov, "High order dispersion in photonic crystal waveguides," Opt. Express 15, 17562 (2007).
[CrossRef] [PubMed]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005).
[CrossRef] [PubMed]

Wang, F.

Yokohama, I.

A. Shinya, M. Notomi, I. Yokohama, C. Takahashi, and J. Takahashi "Two-dimensional Si photonic crystals on oxide using SOI substrate," Opt. Quantum. Electron. 34113-121 (2002)
[CrossRef]

Zsigri, B.

R. S. Jacobsen, K. Andersen, P. I. Borel, J. F. Pedersen, O. Hansen, M. Kristensen, A. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, "Strained silicon as a new electro-optic material," Nature 441, 199-202 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

A. Di Falco, L. O’Faolain, and T. F. Krauss, "Dispersion control and slow light in slotted photonic crystal waveguides," Appl. Phys. Lett. 92, 083501 (2008).
[CrossRef]

D. Mori and T. Baba, "Dispersion controlled optical group delay device by chirped photonic crystal waveguides," Appl. Phys. Lett. 85, 1101-1103 (2004).
[CrossRef]

IEEE J. Quantum Electron. (2)

J. Ma and C. Jiang, "Flat band slow light in asymmetric line defect photonic crystal waveguide featuring low group velocity and dispersion," IEEE J. Quantum Electron. 44, 763-769 (2008).
[CrossRef]

T. Baba, D. Mori, K. Inoshita, and Y. Kuroki, "Light localization in line defect photonic waveguides," IEEE J. Quantum Electron. 10, 484-491 (2004).
[CrossRef]

IEEE Phot. Technol. Lett. (1)

J. Ma and C. Jiang, "Demonstration of ultra slow modes in asymmetric line defect photonic crystal waveguides," IEEE Phot. Technol. Lett. 20, 1237-1239 (2008).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

J. Phys. D: Appl. Phys. (2)

T. F. Krauss, "Slow light in photonic crystal waveguides," J. Phys. D: Appl. Phys. 40,2666-2670 (2007).
[CrossRef]

T. Baba and D. Mori, "Slow light engineering in photonic crystals," J. Phys. D: Appl. Phys. 40, 2659-2665 (2007)
[CrossRef]

Nat. Photon. (2)

T. F. Krauss, "Why do we need slow light?," Nat. Photon. 2, 448-450 (2008).
[CrossRef]

Richard M. De La Rue, "Slower for longer," Nat. Photon. 2(12), 715-716 (2008).
[CrossRef]

Nature (3)

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005).
[CrossRef] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All optical control of light on a silicon chip," Nature 481, 1081-1084 (2004).
[CrossRef]

R. S. Jacobsen, K. Andersen, P. I. Borel, J. F. Pedersen, O. Hansen, M. Kristensen, A. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, "Strained silicon as a new electro-optic material," Nature 441, 199-202 (2006).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Quantum. Electron. (1)

A. Shinya, M. Notomi, I. Yokohama, C. Takahashi, and J. Takahashi "Two-dimensional Si photonic crystals on oxide using SOI substrate," Opt. Quantum. Electron. 34113-121 (2002)
[CrossRef]

Phy. Rev. B (1)

M. Plihal and A. A. Maradudin, "Photonic band structures of two dimensional systems- The Triangular lattice," Phy. Rev. B 44, 1865-8571 (1991).
[CrossRef]

Phys. Rev. Lett. (1)

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. Van Hulst, T. F. Krauss, and L. Kuipers, " Real space observation of ultra slow light in photonic crystal waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Other (2)

A. Taflove "Advances in Computational Electrodynamics- The Finite Difference Time Domain Method," Artech House (1998).

G. P. Agarwal, Fiber Optic Communication systems, Hoboken, NJ: Wiley-Interscience (1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

(a) Schematic of the proposed design for the W1 line defect channel waveguide configuration with super-cell dimensions – and with length equal to 15a. (b) Diagram defining the coordinate system.

Fig. 2.
Fig. 2.

(a) TE Bandgap map and (b) dispersion diagram having flat section of guided modes in the hexagonal lattice with lattice constant a=0.35 µm and basic air hole radius r=0.33a. The inset in the figure shows the super-cell used in the 3D PWE method. The black solid line is the silica lightline, while the red line is the dispersion curve.

Fig. 3.
Fig. 3.

Movement of the dispersion curves when (a) the semi-minor axis A and (b) the semi-major axis B changes gradually.

Fig. 4.
Fig. 4.

(a) TE band diagram of finally designed structure. (b) Dispersion diagram for the proposed SOI based single line defect photonic crystal having elliptical air holes with semi-minor axis A=0.286a and semi-major axis B=0.457a. Flat section of dispersion curve corresponds to slow light region.

Fig. 5.
Fig. 5.

Variation of group velocity and Group Velocity Dispersion (GVD) parameter for flat section of dispersion curve plotted in Fig. 4.

Fig. 6.
Fig. 6.

Variation of higher order dispersion parameters (a) TOD and (b) FOD with frequency.

Fig. 7.
Fig. 7.

Variation of group velocity and group index with frequency in the slow light region below the silica light-line.

Fig. 8.
Fig. 8.

(a) Field amplitude of the Gaussian pulse recorded at the input end and output end of the waveguide as a function of time for λ0=1.55µm. Modal field distribution in the PhC waveguide for (b) 1.550 µm and (c) 1.555 µm.

Fig. 9.
Fig. 9.

(a)Variation of group velocity and Group Velocity Dispersion (GVD) parameter for region having central wavelength near 1.31µm (b) Modal field distribution in PhC channel waveguide for a wavelength of 1.31µm.

Fig. 10.
Fig. 10.

Schematic for separation of pulses of light at telecom wavelength 1.31 µm, 1.5500 µm, 1.5534 µm and 1.5550 µm for time and wavelength division de-multiplexing.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

vg=dωdk
β=d2kdω2
=ddω(1dωdk)
=1(dωdk)3d2ωdk2
β =1vg3d2ωdk2
TOD=1vg(GVD)k
FOD=1vg(TOD)k
DBP=Td.B
DBP=Td.BLv˜g(14πLβ)12
D B P (L4π)121v˜gβ12
n˜g=ω0Δω2ω0+Δω2ng(ω)dωΔω

Metrics