Abstract

The human eye has ethnic difference, the existing typical eye models are based on western eyes. A generic eye model based on Chinese population is presented for the first time. The statistical analyzed ocular parameters based on measured data are used for the initial generic eye model, and the wavefront aberration data obtained at two different pupil diameters are used for reproduction by optimizing the initial generic eye model. The differences and similarities between Chinese generic eye model and western eye models are given. The Chinese generic eye model provides a suitable model for the related further researches and applications on Chinese eye.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (United Kingdom at the University Press, Cambridge, 2003), pp.261–263.
  2. G. Smith, “Schematic eyes: history, description and applications,” Clin. Exp. Optom. 78, 176–189 (1995).
    [Crossref]
  3. P. G. Gobbi, F. Carones, and R. Brancato, “Optical eye model for photo-refractive surgery evaluation,” Proc. SPIE 3591, 10–21 (1999).
    [Crossref]
  4. E. O. Curatu, G. H. Pettit, and J. A. Campin, “Customized schematic eye model for refraction correction design based on ocular wavefront and corneal topography measurements,” Proc. SPIE 4611, 165–175 (2002).
    [Crossref]
  5. HQ Guo, ZQ Wang, Y Wang, QL Zhao, and Y Wang, “A new method to calculate corneal ablation depth based on optical individual eye model,” Optik 116, 433–437 (2005).
    [Crossref]
  6. S. Norrby, P. Piers, C. Campbell, and M. Mooren, “Model eyes for evaluation of intraocular lenses,” Appl. Opt. 46, 6595–6605 (2007).
    [Crossref] [PubMed]
  7. ISO 11979-2, Ophthalmic implants—Intraocular lenses—Part 2: optical properties and test methods (International Organization for Standardization, 1999).
  8. P. Rosales and S. Marcos, “Customized computer models of eyes with intraocular lenses,” Opt. Express 15, 2204–2218 (2007).
    [Crossref] [PubMed]
  9. W. Lotmar, “Theoritical eye model with aspherics,” J. Opt. Soc. Am. 61, 1522–1528 (1971).
    [Crossref]
  10. J. W. Blaker, “Toward and adaptive model of the human eye,” J. Opt. Soc. Am. 70, 220–224 (1980).
    [PubMed]
  11. A. C. Kooijman, “Light distribution on the retina of a wide-angle theoretical eye,” J. Opt. Soc. Am. A 73, 1544–1550 (1983).
    [Crossref]
  12. R. Navarro, J. Santamaria, and J. Bescos, “Accommodation-depend model of the human eye with aspherics,” J. Opt. Soc. Am. A 2, 1273–1281 (1985).
    [Crossref] [PubMed]
  13. H. Liou and N. Brennan, “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. A 14, 1684–1695 (1997).
    [Crossref]
  14. I. Escudero-Sanz and R. Navarro, “Off-axis aberrations of a wide-angle schematic eye model,” J. Opt. Soc. Am. A 16, 1881–1891 (1999).
    [Crossref]
  15. A. V. Goncharov and C. Dainty, “Wide-field schematic eye models with gradient-index lens,” J. Opt. Soc. Am. A 24, 2157–2174 (2007).
    [Crossref]
  16. QL Zhao, ZQ Wang, and CS Zhang, “The actions of aspheric surfaces and gradient-index on optical image of the eye,” Acta Photonica Sinica 31, 1409–1412 (2002) (in Chinese).
  17. YJ Liu, ZL Fang, and ZQ Wang. “A new model of human eye considering tear film and the optical characters,” Journal of Optoelectronics · Laser 16, 488–491 (2005) (in Chinese).
  18. YJ Liu, ZQ Wang, LP Song, and GG Mu, “An anatomically accurate eye model with a shell-structure lens,” Optik 116, 241–246 (2005).
    [Crossref]
  19. HF Zhu, ZL Fang, YJ Liu, and H Zhang, “Influence of different factors on diopter accommodation of accommodative intraocular lens,” J. Appl. Opt. 28, 109–114 (2007) (in Chinese).
  20. G. Smith, “The optical properties of the crystalline lens and their significance,” Clin. Exp. Optom. 86, 3–18 (2003).
    [Crossref] [PubMed]
  21. D. A. Atchison and G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A 22(1), 29–37 (2005).
    [Crossref]
  22. J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A 11(7), 1949–1957 (1994).
    [Crossref]
  23. R. Navarro, L. Gonzalez, and J. L. Hernandez-matamoros, “On the Prediction of Optical Aberrations by Personalized Eye Models,” Optom. Vis. Sci. 83(6), 371–381 (2006).
    [Crossref]
  24. A. V. Goncharov, M. Nowakowski, M. T. Sheehanb, and C. Dainty, “Reconstruction of the Optical System of the Human Eye with Reverse Ray-Tracing,” Opt. Express 16, 1692–1703 (2008).
    [Crossref] [PubMed]
  25. CH Yu, SPSS and Statistical Analysis, (Electronics Industry Press, Beijing, 2007), pp.110–113 (in Chinese).
  26. FM Li, Ophthalmologic encyclopedia, (People Sanitation Press, Beijing, 1996), pp.2523–2527 (in Chinese).
  27. M. Dubbelman, V.A.D.P. Sicam, and G.L. Van der Heijde, “The shape of the anterior and posterior surface of the aging human cornea,” Vision Res. 46, 993–1001 (2006).
    [PubMed]
  28. N. Brown, “The change in shape and internal form of the lens of the eye on accommodation,” Exp. Eye Res. 15, 441–459 (1973).
    [Crossref] [PubMed]
  29. J. F. Koretz, S. A. Strenk, and L. M. Strenk, “Reply to comment on ‘Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study’,” J. Opt. Soc. Am. A,  22, 1219–1220 (2005).
    [Crossref]
  30. J. F. Koretz, P. L. Kaufman, M. W. Neider, and P. A. Goeckner, “Accommodation and presbyopia in the human eye—aging of the anterior segment,” Vision Res. 29, 1685–1692(1989).
    [Crossref] [PubMed]
  31. M. Dubbelman, R. G. L. van der Heijde, and H. A. Weeber, “Comment on ‘Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment--a comparative study’,” J. Opt. Soc. Am. A,  22, 1216–1218 (2005).
    [Crossref]
  32. ZEMAX Development Corporation, ZEMAX® Optical Design Program User’s Guide, pp.230 (2005).
  33. MM Kong, ZS Gao, L Chen, XH Li, and XM Qu, “Corneal model based on human eye optical models,” Optics and Precision Engineering 17(4), 707–712 (2009) (in Chinese).
  34. A. P. Masajada, “Numerical study of the influence of the shell structure of the crystalline lens on the refractive properties of the human eye,” Ophthalmic. Physiol. Opt. 19, 41–48 (1999).
    [Crossref]
  35. W. J. Smith, Modern Optical Engineering, Third Edition (McGraw-Hill, 2000), pp.176–177.
  36. D. Malacara and Z. Malacara, Handbook of Optical Design, Second Edition (Marcel Dekker, Inc., 2004), pp.145.
  37. G. Smith, “The optical modelling of the human lens,” Ophthal. Physiol. Opt. 11, 359–369 (1991).
    [Crossref]
  38. M. Dubbelman and G.L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41, 1867–1877 (2001).
    [Crossref] [PubMed]
  39. P. Artal and R. Navarro, “Monochromatic modulation transfer function of the human eye for different pupil diameters: an analytical expression,” J. Opt. Soc. Am. A 11, 246–249 (1994).
    [Crossref]

2009 (1)

MM Kong, ZS Gao, L Chen, XH Li, and XM Qu, “Corneal model based on human eye optical models,” Optics and Precision Engineering 17(4), 707–712 (2009) (in Chinese).

2008 (1)

2007 (4)

2006 (1)

R. Navarro, L. Gonzalez, and J. L. Hernandez-matamoros, “On the Prediction of Optical Aberrations by Personalized Eye Models,” Optom. Vis. Sci. 83(6), 371–381 (2006).
[Crossref]

2005 (6)

M. Dubbelman, R. G. L. van der Heijde, and H. A. Weeber, “Comment on ‘Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment--a comparative study’,” J. Opt. Soc. Am. A,  22, 1216–1218 (2005).
[Crossref]

J. F. Koretz, S. A. Strenk, and L. M. Strenk, “Reply to comment on ‘Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study’,” J. Opt. Soc. Am. A,  22, 1219–1220 (2005).
[Crossref]

D. A. Atchison and G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A 22(1), 29–37 (2005).
[Crossref]

YJ Liu, ZL Fang, and ZQ Wang. “A new model of human eye considering tear film and the optical characters,” Journal of Optoelectronics · Laser 16, 488–491 (2005) (in Chinese).

YJ Liu, ZQ Wang, LP Song, and GG Mu, “An anatomically accurate eye model with a shell-structure lens,” Optik 116, 241–246 (2005).
[Crossref]

HQ Guo, ZQ Wang, Y Wang, QL Zhao, and Y Wang, “A new method to calculate corneal ablation depth based on optical individual eye model,” Optik 116, 433–437 (2005).
[Crossref]

2003 (1)

G. Smith, “The optical properties of the crystalline lens and their significance,” Clin. Exp. Optom. 86, 3–18 (2003).
[Crossref] [PubMed]

2002 (2)

QL Zhao, ZQ Wang, and CS Zhang, “The actions of aspheric surfaces and gradient-index on optical image of the eye,” Acta Photonica Sinica 31, 1409–1412 (2002) (in Chinese).

E. O. Curatu, G. H. Pettit, and J. A. Campin, “Customized schematic eye model for refraction correction design based on ocular wavefront and corneal topography measurements,” Proc. SPIE 4611, 165–175 (2002).
[Crossref]

2001 (1)

M. Dubbelman and G.L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41, 1867–1877 (2001).
[Crossref] [PubMed]

1999 (3)

A. P. Masajada, “Numerical study of the influence of the shell structure of the crystalline lens on the refractive properties of the human eye,” Ophthalmic. Physiol. Opt. 19, 41–48 (1999).
[Crossref]

P. G. Gobbi, F. Carones, and R. Brancato, “Optical eye model for photo-refractive surgery evaluation,” Proc. SPIE 3591, 10–21 (1999).
[Crossref]

I. Escudero-Sanz and R. Navarro, “Off-axis aberrations of a wide-angle schematic eye model,” J. Opt. Soc. Am. A 16, 1881–1891 (1999).
[Crossref]

1997 (1)

1995 (1)

G. Smith, “Schematic eyes: history, description and applications,” Clin. Exp. Optom. 78, 176–189 (1995).
[Crossref]

1994 (2)

P. Artal and R. Navarro, “Monochromatic modulation transfer function of the human eye for different pupil diameters: an analytical expression,” J. Opt. Soc. Am. A 11, 246–249 (1994).
[Crossref]

J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A 11(7), 1949–1957 (1994).
[Crossref]

1991 (1)

G. Smith, “The optical modelling of the human lens,” Ophthal. Physiol. Opt. 11, 359–369 (1991).
[Crossref]

1989 (1)

J. F. Koretz, P. L. Kaufman, M. W. Neider, and P. A. Goeckner, “Accommodation and presbyopia in the human eye—aging of the anterior segment,” Vision Res. 29, 1685–1692(1989).
[Crossref] [PubMed]

1985 (1)

1983 (1)

A. C. Kooijman, “Light distribution on the retina of a wide-angle theoretical eye,” J. Opt. Soc. Am. A 73, 1544–1550 (1983).
[Crossref]

1973 (1)

N. Brown, “The change in shape and internal form of the lens of the eye on accommodation,” Exp. Eye Res. 15, 441–459 (1973).
[Crossref] [PubMed]

1971 (1)

Artal, P.

Atchison, D. A.

D. A. Atchison and G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A 22(1), 29–37 (2005).
[Crossref]

Bescos, J.

Bille, J. F.

J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A 11(7), 1949–1957 (1994).
[Crossref]

Blaker, J. W.

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (United Kingdom at the University Press, Cambridge, 2003), pp.261–263.

Brancato, R.

P. G. Gobbi, F. Carones, and R. Brancato, “Optical eye model for photo-refractive surgery evaluation,” Proc. SPIE 3591, 10–21 (1999).
[Crossref]

Brennan, N.

Brown, N.

N. Brown, “The change in shape and internal form of the lens of the eye on accommodation,” Exp. Eye Res. 15, 441–459 (1973).
[Crossref] [PubMed]

Campbell, C.

Campin, J. A.

E. O. Curatu, G. H. Pettit, and J. A. Campin, “Customized schematic eye model for refraction correction design based on ocular wavefront and corneal topography measurements,” Proc. SPIE 4611, 165–175 (2002).
[Crossref]

Carones, F.

P. G. Gobbi, F. Carones, and R. Brancato, “Optical eye model for photo-refractive surgery evaluation,” Proc. SPIE 3591, 10–21 (1999).
[Crossref]

Chen, L

MM Kong, ZS Gao, L Chen, XH Li, and XM Qu, “Corneal model based on human eye optical models,” Optics and Precision Engineering 17(4), 707–712 (2009) (in Chinese).

Curatu, E. O.

E. O. Curatu, G. H. Pettit, and J. A. Campin, “Customized schematic eye model for refraction correction design based on ocular wavefront and corneal topography measurements,” Proc. SPIE 4611, 165–175 (2002).
[Crossref]

Dainty, C.

Dubbelman, M.

M. Dubbelman, R. G. L. van der Heijde, and H. A. Weeber, “Comment on ‘Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment--a comparative study’,” J. Opt. Soc. Am. A,  22, 1216–1218 (2005).
[Crossref]

M. Dubbelman and G.L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41, 1867–1877 (2001).
[Crossref] [PubMed]

M. Dubbelman, V.A.D.P. Sicam, and G.L. Van der Heijde, “The shape of the anterior and posterior surface of the aging human cornea,” Vision Res. 46, 993–1001 (2006).
[PubMed]

Escudero-Sanz, I.

Fang, ZL

HF Zhu, ZL Fang, YJ Liu, and H Zhang, “Influence of different factors on diopter accommodation of accommodative intraocular lens,” J. Appl. Opt. 28, 109–114 (2007) (in Chinese).

YJ Liu, ZL Fang, and ZQ Wang. “A new model of human eye considering tear film and the optical characters,” Journal of Optoelectronics · Laser 16, 488–491 (2005) (in Chinese).

Gao, ZS

MM Kong, ZS Gao, L Chen, XH Li, and XM Qu, “Corneal model based on human eye optical models,” Optics and Precision Engineering 17(4), 707–712 (2009) (in Chinese).

Gobbi, P. G.

P. G. Gobbi, F. Carones, and R. Brancato, “Optical eye model for photo-refractive surgery evaluation,” Proc. SPIE 3591, 10–21 (1999).
[Crossref]

Goeckner, P. A.

J. F. Koretz, P. L. Kaufman, M. W. Neider, and P. A. Goeckner, “Accommodation and presbyopia in the human eye—aging of the anterior segment,” Vision Res. 29, 1685–1692(1989).
[Crossref] [PubMed]

Goelz, S.

J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A 11(7), 1949–1957 (1994).
[Crossref]

Goncharov, A. V.

Gonzalez, L.

R. Navarro, L. Gonzalez, and J. L. Hernandez-matamoros, “On the Prediction of Optical Aberrations by Personalized Eye Models,” Optom. Vis. Sci. 83(6), 371–381 (2006).
[Crossref]

Grimm, B.

J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A 11(7), 1949–1957 (1994).
[Crossref]

Guo, HQ

HQ Guo, ZQ Wang, Y Wang, QL Zhao, and Y Wang, “A new method to calculate corneal ablation depth based on optical individual eye model,” Optik 116, 433–437 (2005).
[Crossref]

Hernandez-matamoros, J. L.

R. Navarro, L. Gonzalez, and J. L. Hernandez-matamoros, “On the Prediction of Optical Aberrations by Personalized Eye Models,” Optom. Vis. Sci. 83(6), 371–381 (2006).
[Crossref]

Kaufman, P. L.

J. F. Koretz, P. L. Kaufman, M. W. Neider, and P. A. Goeckner, “Accommodation and presbyopia in the human eye—aging of the anterior segment,” Vision Res. 29, 1685–1692(1989).
[Crossref] [PubMed]

Kong, MM

MM Kong, ZS Gao, L Chen, XH Li, and XM Qu, “Corneal model based on human eye optical models,” Optics and Precision Engineering 17(4), 707–712 (2009) (in Chinese).

Kooijman, A. C.

A. C. Kooijman, “Light distribution on the retina of a wide-angle theoretical eye,” J. Opt. Soc. Am. A 73, 1544–1550 (1983).
[Crossref]

Koretz, J. F.

J. F. Koretz, S. A. Strenk, and L. M. Strenk, “Reply to comment on ‘Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study’,” J. Opt. Soc. Am. A,  22, 1219–1220 (2005).
[Crossref]

J. F. Koretz, P. L. Kaufman, M. W. Neider, and P. A. Goeckner, “Accommodation and presbyopia in the human eye—aging of the anterior segment,” Vision Res. 29, 1685–1692(1989).
[Crossref] [PubMed]

Li, FM

FM Li, Ophthalmologic encyclopedia, (People Sanitation Press, Beijing, 1996), pp.2523–2527 (in Chinese).

Li, XH

MM Kong, ZS Gao, L Chen, XH Li, and XM Qu, “Corneal model based on human eye optical models,” Optics and Precision Engineering 17(4), 707–712 (2009) (in Chinese).

Liang, J.

J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A 11(7), 1949–1957 (1994).
[Crossref]

Liou, H.

Liu, YJ

HF Zhu, ZL Fang, YJ Liu, and H Zhang, “Influence of different factors on diopter accommodation of accommodative intraocular lens,” J. Appl. Opt. 28, 109–114 (2007) (in Chinese).

YJ Liu, ZQ Wang, LP Song, and GG Mu, “An anatomically accurate eye model with a shell-structure lens,” Optik 116, 241–246 (2005).
[Crossref]

YJ Liu, ZL Fang, and ZQ Wang. “A new model of human eye considering tear film and the optical characters,” Journal of Optoelectronics · Laser 16, 488–491 (2005) (in Chinese).

Lotmar, W.

Malacara, D.

D. Malacara and Z. Malacara, Handbook of Optical Design, Second Edition (Marcel Dekker, Inc., 2004), pp.145.

Malacara, Z.

D. Malacara and Z. Malacara, Handbook of Optical Design, Second Edition (Marcel Dekker, Inc., 2004), pp.145.

Marcos, S.

Masajada, A. P.

A. P. Masajada, “Numerical study of the influence of the shell structure of the crystalline lens on the refractive properties of the human eye,” Ophthalmic. Physiol. Opt. 19, 41–48 (1999).
[Crossref]

Mooren, M.

Mu, GG

YJ Liu, ZQ Wang, LP Song, and GG Mu, “An anatomically accurate eye model with a shell-structure lens,” Optik 116, 241–246 (2005).
[Crossref]

Navarro, R.

Neider, M. W.

J. F. Koretz, P. L. Kaufman, M. W. Neider, and P. A. Goeckner, “Accommodation and presbyopia in the human eye—aging of the anterior segment,” Vision Res. 29, 1685–1692(1989).
[Crossref] [PubMed]

Norrby, S.

Nowakowski, M.

Pettit, G. H.

E. O. Curatu, G. H. Pettit, and J. A. Campin, “Customized schematic eye model for refraction correction design based on ocular wavefront and corneal topography measurements,” Proc. SPIE 4611, 165–175 (2002).
[Crossref]

Piers, P.

Qu, XM

MM Kong, ZS Gao, L Chen, XH Li, and XM Qu, “Corneal model based on human eye optical models,” Optics and Precision Engineering 17(4), 707–712 (2009) (in Chinese).

Rosales, P.

Santamaria, J.

Sheehanb, M. T.

Sicam, V.A.D.P.

M. Dubbelman, V.A.D.P. Sicam, and G.L. Van der Heijde, “The shape of the anterior and posterior surface of the aging human cornea,” Vision Res. 46, 993–1001 (2006).
[PubMed]

Smith, G.

D. A. Atchison and G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A 22(1), 29–37 (2005).
[Crossref]

G. Smith, “The optical properties of the crystalline lens and their significance,” Clin. Exp. Optom. 86, 3–18 (2003).
[Crossref] [PubMed]

G. Smith, “Schematic eyes: history, description and applications,” Clin. Exp. Optom. 78, 176–189 (1995).
[Crossref]

G. Smith, “The optical modelling of the human lens,” Ophthal. Physiol. Opt. 11, 359–369 (1991).
[Crossref]

Smith, W. J.

W. J. Smith, Modern Optical Engineering, Third Edition (McGraw-Hill, 2000), pp.176–177.

Song, LP

YJ Liu, ZQ Wang, LP Song, and GG Mu, “An anatomically accurate eye model with a shell-structure lens,” Optik 116, 241–246 (2005).
[Crossref]

Strenk, L. M.

Strenk, S. A.

Van der Heijde, G.L.

M. Dubbelman and G.L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41, 1867–1877 (2001).
[Crossref] [PubMed]

M. Dubbelman, V.A.D.P. Sicam, and G.L. Van der Heijde, “The shape of the anterior and posterior surface of the aging human cornea,” Vision Res. 46, 993–1001 (2006).
[PubMed]

van der Heijde, R. G. L.

Wang, Y

HQ Guo, ZQ Wang, Y Wang, QL Zhao, and Y Wang, “A new method to calculate corneal ablation depth based on optical individual eye model,” Optik 116, 433–437 (2005).
[Crossref]

HQ Guo, ZQ Wang, Y Wang, QL Zhao, and Y Wang, “A new method to calculate corneal ablation depth based on optical individual eye model,” Optik 116, 433–437 (2005).
[Crossref]

Wang, ZQ

HQ Guo, ZQ Wang, Y Wang, QL Zhao, and Y Wang, “A new method to calculate corneal ablation depth based on optical individual eye model,” Optik 116, 433–437 (2005).
[Crossref]

YJ Liu, ZQ Wang, LP Song, and GG Mu, “An anatomically accurate eye model with a shell-structure lens,” Optik 116, 241–246 (2005).
[Crossref]

YJ Liu, ZL Fang, and ZQ Wang. “A new model of human eye considering tear film and the optical characters,” Journal of Optoelectronics · Laser 16, 488–491 (2005) (in Chinese).

QL Zhao, ZQ Wang, and CS Zhang, “The actions of aspheric surfaces and gradient-index on optical image of the eye,” Acta Photonica Sinica 31, 1409–1412 (2002) (in Chinese).

Weeber, H. A.

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (United Kingdom at the University Press, Cambridge, 2003), pp.261–263.

Yu, CH

CH Yu, SPSS and Statistical Analysis, (Electronics Industry Press, Beijing, 2007), pp.110–113 (in Chinese).

Zhang, CS

QL Zhao, ZQ Wang, and CS Zhang, “The actions of aspheric surfaces and gradient-index on optical image of the eye,” Acta Photonica Sinica 31, 1409–1412 (2002) (in Chinese).

Zhang, H

HF Zhu, ZL Fang, YJ Liu, and H Zhang, “Influence of different factors on diopter accommodation of accommodative intraocular lens,” J. Appl. Opt. 28, 109–114 (2007) (in Chinese).

Zhao, QL

HQ Guo, ZQ Wang, Y Wang, QL Zhao, and Y Wang, “A new method to calculate corneal ablation depth based on optical individual eye model,” Optik 116, 433–437 (2005).
[Crossref]

QL Zhao, ZQ Wang, and CS Zhang, “The actions of aspheric surfaces and gradient-index on optical image of the eye,” Acta Photonica Sinica 31, 1409–1412 (2002) (in Chinese).

Zhu, HF

HF Zhu, ZL Fang, YJ Liu, and H Zhang, “Influence of different factors on diopter accommodation of accommodative intraocular lens,” J. Appl. Opt. 28, 109–114 (2007) (in Chinese).

Acta Photonica Sinica (1)

QL Zhao, ZQ Wang, and CS Zhang, “The actions of aspheric surfaces and gradient-index on optical image of the eye,” Acta Photonica Sinica 31, 1409–1412 (2002) (in Chinese).

Appl. Opt. (1)

Clin. Exp. Optom. (2)

G. Smith, “The optical properties of the crystalline lens and their significance,” Clin. Exp. Optom. 86, 3–18 (2003).
[Crossref] [PubMed]

G. Smith, “Schematic eyes: history, description and applications,” Clin. Exp. Optom. 78, 176–189 (1995).
[Crossref]

Exp. Eye Res. (1)

N. Brown, “The change in shape and internal form of the lens of the eye on accommodation,” Exp. Eye Res. 15, 441–459 (1973).
[Crossref] [PubMed]

J. Appl. Opt. (1)

HF Zhu, ZL Fang, YJ Liu, and H Zhang, “Influence of different factors on diopter accommodation of accommodative intraocular lens,” J. Appl. Opt. 28, 109–114 (2007) (in Chinese).

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (10)

A. C. Kooijman, “Light distribution on the retina of a wide-angle theoretical eye,” J. Opt. Soc. Am. A 73, 1544–1550 (1983).
[Crossref]

R. Navarro, J. Santamaria, and J. Bescos, “Accommodation-depend model of the human eye with aspherics,” J. Opt. Soc. Am. A 2, 1273–1281 (1985).
[Crossref] [PubMed]

H. Liou and N. Brennan, “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. A 14, 1684–1695 (1997).
[Crossref]

I. Escudero-Sanz and R. Navarro, “Off-axis aberrations of a wide-angle schematic eye model,” J. Opt. Soc. Am. A 16, 1881–1891 (1999).
[Crossref]

A. V. Goncharov and C. Dainty, “Wide-field schematic eye models with gradient-index lens,” J. Opt. Soc. Am. A 24, 2157–2174 (2007).
[Crossref]

D. A. Atchison and G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A 22(1), 29–37 (2005).
[Crossref]

J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A 11(7), 1949–1957 (1994).
[Crossref]

J. F. Koretz, S. A. Strenk, and L. M. Strenk, “Reply to comment on ‘Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study’,” J. Opt. Soc. Am. A,  22, 1219–1220 (2005).
[Crossref]

M. Dubbelman, R. G. L. van der Heijde, and H. A. Weeber, “Comment on ‘Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment--a comparative study’,” J. Opt. Soc. Am. A,  22, 1216–1218 (2005).
[Crossref]

P. Artal and R. Navarro, “Monochromatic modulation transfer function of the human eye for different pupil diameters: an analytical expression,” J. Opt. Soc. Am. A 11, 246–249 (1994).
[Crossref]

Journal of Optoelectronics · Laser (1)

YJ Liu, ZL Fang, and ZQ Wang. “A new model of human eye considering tear film and the optical characters,” Journal of Optoelectronics · Laser 16, 488–491 (2005) (in Chinese).

Ophthal. Physiol. Opt. (1)

G. Smith, “The optical modelling of the human lens,” Ophthal. Physiol. Opt. 11, 359–369 (1991).
[Crossref]

Ophthalmic. Physiol. Opt. (1)

A. P. Masajada, “Numerical study of the influence of the shell structure of the crystalline lens on the refractive properties of the human eye,” Ophthalmic. Physiol. Opt. 19, 41–48 (1999).
[Crossref]

Opt. Express (2)

Optics and Precision Engineering (1)

MM Kong, ZS Gao, L Chen, XH Li, and XM Qu, “Corneal model based on human eye optical models,” Optics and Precision Engineering 17(4), 707–712 (2009) (in Chinese).

Optik (2)

YJ Liu, ZQ Wang, LP Song, and GG Mu, “An anatomically accurate eye model with a shell-structure lens,” Optik 116, 241–246 (2005).
[Crossref]

HQ Guo, ZQ Wang, Y Wang, QL Zhao, and Y Wang, “A new method to calculate corneal ablation depth based on optical individual eye model,” Optik 116, 433–437 (2005).
[Crossref]

Optom. Vis. Sci. (1)

R. Navarro, L. Gonzalez, and J. L. Hernandez-matamoros, “On the Prediction of Optical Aberrations by Personalized Eye Models,” Optom. Vis. Sci. 83(6), 371–381 (2006).
[Crossref]

Proc. SPIE (2)

P. G. Gobbi, F. Carones, and R. Brancato, “Optical eye model for photo-refractive surgery evaluation,” Proc. SPIE 3591, 10–21 (1999).
[Crossref]

E. O. Curatu, G. H. Pettit, and J. A. Campin, “Customized schematic eye model for refraction correction design based on ocular wavefront and corneal topography measurements,” Proc. SPIE 4611, 165–175 (2002).
[Crossref]

Vision Res. (3)

M. Dubbelman, V.A.D.P. Sicam, and G.L. Van der Heijde, “The shape of the anterior and posterior surface of the aging human cornea,” Vision Res. 46, 993–1001 (2006).
[PubMed]

M. Dubbelman and G.L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41, 1867–1877 (2001).
[Crossref] [PubMed]

J. F. Koretz, P. L. Kaufman, M. W. Neider, and P. A. Goeckner, “Accommodation and presbyopia in the human eye—aging of the anterior segment,” Vision Res. 29, 1685–1692(1989).
[Crossref] [PubMed]

Other (7)

ZEMAX Development Corporation, ZEMAX® Optical Design Program User’s Guide, pp.230 (2005).

CH Yu, SPSS and Statistical Analysis, (Electronics Industry Press, Beijing, 2007), pp.110–113 (in Chinese).

FM Li, Ophthalmologic encyclopedia, (People Sanitation Press, Beijing, 1996), pp.2523–2527 (in Chinese).

W. J. Smith, Modern Optical Engineering, Third Edition (McGraw-Hill, 2000), pp.176–177.

D. Malacara and Z. Malacara, Handbook of Optical Design, Second Edition (Marcel Dekker, Inc., 2004), pp.145.

M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (United Kingdom at the University Press, Cambridge, 2003), pp.261–263.

ISO 11979-2, Ophthalmic implants—Intraocular lenses—Part 2: optical properties and test methods (International Organization for Standardization, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

the flow diagram of reverse building Chinese generic eye model

Fig. 2.
Fig. 2.

the Q-Q plots of the anterior corneal surface steep curvature radius Rx with normality test

Fig. 3.
Fig. 3.

the Q-Q plots of the anterior corneal surface flat curvature radius Ry with normality test

Fig. 4.
Fig. 4.

the Normal distribution histogram of the anterior corneal surface steep curvature radius Rx

Fig. 5.
Fig. 5.

the Normal distribution histogram of the anterior corneal surface flat curvature radius Ry

Fig. 6.
Fig. 6.

the average values of Zernike polynomials coefficients at 3mm pupil diameter

Fig. 7.
Fig. 7.

the average values of Zernike polynomials coefficients at 6mm pupil diameter

Fig. 8.
Fig. 8.

the contrast curves of fitting new GRIN with others in axial direction

Fig. 9.
Fig. 9.

the contrast curves of fitting new GRIN with others in radial direction

Fig. 10.
Fig. 10.

the contrast curves of the fitting Conrady equations for ocular media with various sources of chromatic dispersion data in the visible spectrum

Fig. 11.
Fig. 11.

the measured wavefront aberrations with opposite signs (a) & (b) and predicted wavefront aberrations obtained by the generic eye model (c) & (d) at pupil diameter of 3mm (left) and 6mm (right)

Fig. 12.
Fig. 12.

the schematic plots of Chinese generic eye model at the pupil diameter of 3mm (a) and 6mm (b)

Fig. 13.
Fig. 13.

the MTF of Chinese generic eye model compared with experimental result and two western eye models

Tables (7)

Tables Icon

Table 1. the measurement apparatuses used

Tables Icon

Table 2. the mean values and 95% confidence intervals of measured parameters

Tables Icon

Table 3. Conrady equations fitted to various sources of chromatic dispersion data [21, 1214]

Tables Icon

Table 4. some averages of various sources [1214,21] in the visible spectrum

Tables Icon

Table 5. Conrady equations fitted to averages of various sources [1214,21] in the visible spectrum

Tables Icon

Table 6. the structural parameters of Chinese generic eye model

Tables Icon

Table 7. the surface performance comparison of main refractive elements in Chinese generic eye model with existing western eye models

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

x2+y2+(1+k)z22Rz=0
z=cxx2+cyy21+1(1+kx)cx2x2(1+ky)cy2y2
n(r,z)=n0(z)+n1(z)r2+n2(z)r4+n3(z)r6+
n(r,z)=1.4060.0062685(z1.7)2+0.0003834(z1.7)3
[0.00052375+0.00005735(z1.7)+0.00027875(z1.7)2]r20.000066716r4
n(r,z)=1.387+0.014z0.00384z20.0012r2
n(r,z)={1.368+0.049057z0.015427z20.001978r20<z1.591.407+0.0(z1.59)0.006605(z1.59)20.001978r21.59<z4.02
n(r,z)=1.3620.0021490r20.0000106r4
+0.049467z0.015958z2+0.0001715z3+0.000141 z4
n(r,z)=1.379+0.035118z0.012214z2+0.00076664z30.0018073r2
n(λ)=A+Bλ2+Cλ4+Dλ6+
n(λ)=n0+Aλ+Bλ3.5
n(λ)cornea=1.3625+6.6460×103λ+3.5752×104λ3.5
n(λ)aqueous=1.3229+6.7866×103λ+3.5976×104λ3.5
n(λ)lens=1.4050+6.3200×103λ+6.4981×104λ3.5
n(λ)vitreous=1.3222+6.6518×103λ+3.4545×104λ3.5

Metrics