Abstract

A novel photonic microwave notch filter with capability of frequency tuning is proposed and experimentally demonstrated. The scheme is based on a fiber Bragg grating (FBG)-based, single longitudinal mode, wavelength-spacing tunable dual-wavelength fiber laser and a dispersive fiber delay line. By using a symmetrical S-bending technique along the FBGs, the wavelength spacing of the laser can be tuned, which enables the microwave notch frequency tuning. Experimental results show that the notch rejection of more than 30 dB and the flexible tunability of notch frequency can be readily achieved in the range of 1.2 ~6.7 GHz.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany, B. Ortega, and D. Pastor, “A Tutorial on Microwave Photonic Filters,” J. Lightwave Technol. 24(1), 201–229 (2006), http://www.opticsinfobase.org/JLT/abstract.cfm?URI=JLT-24-1-201 .
    [CrossRef]
  2. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [CrossRef]
  3. J. Capmany, D. Pastor, and B. Ortega, “New and flexible fiber-optic delay line filters using chirped Bragg gratings and laser arrays,” IEEE Trans. Microw. Theory Tech. 47(7), 1321–1326 (1999).
    [CrossRef]
  4. D. Pastor, J. Capmany, and B. Ortega, “Broadband tunable microwave transversal notch filter based on tunable uniform fiber Bragg gratings as slicing filters,” IEEE Photon. Technol. Lett. 13(7), 726–728 (2001).
    [CrossRef]
  5. D. Liu, N. Q. Ngo, G. Ning, P. Shum, and S. C. Tjin, “Tunable microwave photonic notch filter using a dual-wavelength fiber laser with phase modulation,” Opt. Commun. 266(1), 240–248 (2006).
    [CrossRef]
  6. H. Fu, H. Ou, K. Zhu, and S. He, “Tunable all-optical microwave notch filter with a negative tap based on a semiconductor optical amplifier and a dispersive medium,” Opt. Laser Technol. 41(3), 213–216 (2009).
    [CrossRef]
  7. J. Wang and J. Yao, “A tunable photonic microwave notch filter based on all optical mixing,” IEEE Photon. Technol. Lett. 18(2), 382–384 (2006).
    [CrossRef]
  8. J. Wang, F. Zeng, and J. P. Yao, “All optical microwave bandpass filters implemented in a radio-over-fiber-link,” IEEE Photon. Technol. Lett. 17(8), 1737–1739 (2005).
    [CrossRef]
  9. E. H. W. Chan and R. A. Minasian, “Sagnac-loop based equivalent negative tap photonic notch filter,” IEEE Photon. Technol. Lett. 17(8), 1740–1742 (2005).
    [CrossRef]
  10. H. Ou, H. Fu, D. Chen, and S. He, “A tunable and reconfigurable microwave photonic filter based on a Raman fiber laser,” Opt. Commun. 278(1), 48–51 (2007).
    [CrossRef]
  11. J. H. Lee and Y. M. Chang, “Detailed theoretical and experimental study on single passband, photonic microwave FIR filter using digital micromirror device and continuous-wave supercontinuum,” J. Lightwave Technol. 26(15), 2619–2628 (2008), http://www.opticsinfobase.org/JLT/abstract.cfm?URI=JLT-26-15-2619 .
    [CrossRef]
  12. W. J. Jeong, J. K. Bae, K. Lee, S. B. Lee, and J. H. Lee, “Tunable photonic microwave notch filter incorporating an S-bending based, linearly tunable, chirped fiber Bragg grating,” in Proc. Opto-Electronics and Communication Conference (Australian Optical Society, 2008), paper ThD-5.
  13. A. P. Foord, P. A. Davies, and P. A. Greenhalgh, “Synthesis of microwave and millimetre-wave filters using optical spectrum slicing,” Electron. Lett. 32(4), 390–391 (1996).
    [CrossRef]
  14. B. Vidal, M. A. Piqueras, and J. Marti, “Photonic microwave filter based on spectrum slicing with reconfiguration capability,” Electron. Lett. 41(23), 1286–1287 (2005).
    [CrossRef]
  15. S. Kim, J. Bae, K. Lee, S. H. Kim, J.-M. Jeong, and S. B. Lee, “Tunable dispersion slope compensator using two uniform fiber Bragg gratings mounted on S-shape plate,” Opt. Express 17(6), 4336–4341 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-6-4336 .
    [CrossRef] [PubMed]
  16. K. Lee, S. B. Lee, J. H. Lee, C. H. Kim, and Y.-G. Han, “Side-mode suppressed multiwavelength fiber laser and broadcast transmission,” in Proc. Optical Fiber Communication Conference (Optical Society of America, 2008), paper OThF1. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2008-OThF1 .
  17. T. J. Morgan, J. P. R. Lacey, and R. S. Tucker, “Widely tunable four-wave mixing in semiconductor optical amplifiers with constant conversion efficiency,” IEEE Photon. Technol. Lett. 10(10), 1401–1403 (1998).
    [CrossRef]
  18. J. Poëtte, S. Blin, G. Brochu, L. Bramerie, R. Slavik, J.-C. Simon, S. LaRochelle, and P. Besnard, “Relative intensity noise of multiwavelength fiber laser,” Electron. Lett. 40(12), 724–726 (2004).
    [CrossRef]

2009 (2)

H. Fu, H. Ou, K. Zhu, and S. He, “Tunable all-optical microwave notch filter with a negative tap based on a semiconductor optical amplifier and a dispersive medium,” Opt. Laser Technol. 41(3), 213–216 (2009).
[CrossRef]

S. Kim, J. Bae, K. Lee, S. H. Kim, J.-M. Jeong, and S. B. Lee, “Tunable dispersion slope compensator using two uniform fiber Bragg gratings mounted on S-shape plate,” Opt. Express 17(6), 4336–4341 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-6-4336 .
[CrossRef] [PubMed]

2008 (1)

2007 (2)

H. Ou, H. Fu, D. Chen, and S. He, “A tunable and reconfigurable microwave photonic filter based on a Raman fiber laser,” Opt. Commun. 278(1), 48–51 (2007).
[CrossRef]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

2006 (3)

D. Liu, N. Q. Ngo, G. Ning, P. Shum, and S. C. Tjin, “Tunable microwave photonic notch filter using a dual-wavelength fiber laser with phase modulation,” Opt. Commun. 266(1), 240–248 (2006).
[CrossRef]

J. Wang and J. Yao, “A tunable photonic microwave notch filter based on all optical mixing,” IEEE Photon. Technol. Lett. 18(2), 382–384 (2006).
[CrossRef]

J. Capmany, B. Ortega, and D. Pastor, “A Tutorial on Microwave Photonic Filters,” J. Lightwave Technol. 24(1), 201–229 (2006), http://www.opticsinfobase.org/JLT/abstract.cfm?URI=JLT-24-1-201 .
[CrossRef]

2005 (3)

B. Vidal, M. A. Piqueras, and J. Marti, “Photonic microwave filter based on spectrum slicing with reconfiguration capability,” Electron. Lett. 41(23), 1286–1287 (2005).
[CrossRef]

J. Wang, F. Zeng, and J. P. Yao, “All optical microwave bandpass filters implemented in a radio-over-fiber-link,” IEEE Photon. Technol. Lett. 17(8), 1737–1739 (2005).
[CrossRef]

E. H. W. Chan and R. A. Minasian, “Sagnac-loop based equivalent negative tap photonic notch filter,” IEEE Photon. Technol. Lett. 17(8), 1740–1742 (2005).
[CrossRef]

2004 (1)

J. Poëtte, S. Blin, G. Brochu, L. Bramerie, R. Slavik, J.-C. Simon, S. LaRochelle, and P. Besnard, “Relative intensity noise of multiwavelength fiber laser,” Electron. Lett. 40(12), 724–726 (2004).
[CrossRef]

2001 (1)

D. Pastor, J. Capmany, and B. Ortega, “Broadband tunable microwave transversal notch filter based on tunable uniform fiber Bragg gratings as slicing filters,” IEEE Photon. Technol. Lett. 13(7), 726–728 (2001).
[CrossRef]

1999 (1)

J. Capmany, D. Pastor, and B. Ortega, “New and flexible fiber-optic delay line filters using chirped Bragg gratings and laser arrays,” IEEE Trans. Microw. Theory Tech. 47(7), 1321–1326 (1999).
[CrossRef]

1998 (1)

T. J. Morgan, J. P. R. Lacey, and R. S. Tucker, “Widely tunable four-wave mixing in semiconductor optical amplifiers with constant conversion efficiency,” IEEE Photon. Technol. Lett. 10(10), 1401–1403 (1998).
[CrossRef]

1996 (1)

A. P. Foord, P. A. Davies, and P. A. Greenhalgh, “Synthesis of microwave and millimetre-wave filters using optical spectrum slicing,” Electron. Lett. 32(4), 390–391 (1996).
[CrossRef]

Bae, J.

Besnard, P.

J. Poëtte, S. Blin, G. Brochu, L. Bramerie, R. Slavik, J.-C. Simon, S. LaRochelle, and P. Besnard, “Relative intensity noise of multiwavelength fiber laser,” Electron. Lett. 40(12), 724–726 (2004).
[CrossRef]

Blin, S.

J. Poëtte, S. Blin, G. Brochu, L. Bramerie, R. Slavik, J.-C. Simon, S. LaRochelle, and P. Besnard, “Relative intensity noise of multiwavelength fiber laser,” Electron. Lett. 40(12), 724–726 (2004).
[CrossRef]

Bramerie, L.

J. Poëtte, S. Blin, G. Brochu, L. Bramerie, R. Slavik, J.-C. Simon, S. LaRochelle, and P. Besnard, “Relative intensity noise of multiwavelength fiber laser,” Electron. Lett. 40(12), 724–726 (2004).
[CrossRef]

Brochu, G.

J. Poëtte, S. Blin, G. Brochu, L. Bramerie, R. Slavik, J.-C. Simon, S. LaRochelle, and P. Besnard, “Relative intensity noise of multiwavelength fiber laser,” Electron. Lett. 40(12), 724–726 (2004).
[CrossRef]

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

J. Capmany, B. Ortega, and D. Pastor, “A Tutorial on Microwave Photonic Filters,” J. Lightwave Technol. 24(1), 201–229 (2006), http://www.opticsinfobase.org/JLT/abstract.cfm?URI=JLT-24-1-201 .
[CrossRef]

D. Pastor, J. Capmany, and B. Ortega, “Broadband tunable microwave transversal notch filter based on tunable uniform fiber Bragg gratings as slicing filters,” IEEE Photon. Technol. Lett. 13(7), 726–728 (2001).
[CrossRef]

J. Capmany, D. Pastor, and B. Ortega, “New and flexible fiber-optic delay line filters using chirped Bragg gratings and laser arrays,” IEEE Trans. Microw. Theory Tech. 47(7), 1321–1326 (1999).
[CrossRef]

Chan, E. H. W.

E. H. W. Chan and R. A. Minasian, “Sagnac-loop based equivalent negative tap photonic notch filter,” IEEE Photon. Technol. Lett. 17(8), 1740–1742 (2005).
[CrossRef]

Chang, Y. M.

Chen, D.

H. Ou, H. Fu, D. Chen, and S. He, “A tunable and reconfigurable microwave photonic filter based on a Raman fiber laser,” Opt. Commun. 278(1), 48–51 (2007).
[CrossRef]

Davies, P. A.

A. P. Foord, P. A. Davies, and P. A. Greenhalgh, “Synthesis of microwave and millimetre-wave filters using optical spectrum slicing,” Electron. Lett. 32(4), 390–391 (1996).
[CrossRef]

Foord, A. P.

A. P. Foord, P. A. Davies, and P. A. Greenhalgh, “Synthesis of microwave and millimetre-wave filters using optical spectrum slicing,” Electron. Lett. 32(4), 390–391 (1996).
[CrossRef]

Fu, H.

H. Fu, H. Ou, K. Zhu, and S. He, “Tunable all-optical microwave notch filter with a negative tap based on a semiconductor optical amplifier and a dispersive medium,” Opt. Laser Technol. 41(3), 213–216 (2009).
[CrossRef]

H. Ou, H. Fu, D. Chen, and S. He, “A tunable and reconfigurable microwave photonic filter based on a Raman fiber laser,” Opt. Commun. 278(1), 48–51 (2007).
[CrossRef]

Greenhalgh, P. A.

A. P. Foord, P. A. Davies, and P. A. Greenhalgh, “Synthesis of microwave and millimetre-wave filters using optical spectrum slicing,” Electron. Lett. 32(4), 390–391 (1996).
[CrossRef]

He, S.

H. Fu, H. Ou, K. Zhu, and S. He, “Tunable all-optical microwave notch filter with a negative tap based on a semiconductor optical amplifier and a dispersive medium,” Opt. Laser Technol. 41(3), 213–216 (2009).
[CrossRef]

H. Ou, H. Fu, D. Chen, and S. He, “A tunable and reconfigurable microwave photonic filter based on a Raman fiber laser,” Opt. Commun. 278(1), 48–51 (2007).
[CrossRef]

Jeong, J.-M.

Kim, S.

Kim, S. H.

Lacey, J. P. R.

T. J. Morgan, J. P. R. Lacey, and R. S. Tucker, “Widely tunable four-wave mixing in semiconductor optical amplifiers with constant conversion efficiency,” IEEE Photon. Technol. Lett. 10(10), 1401–1403 (1998).
[CrossRef]

LaRochelle, S.

J. Poëtte, S. Blin, G. Brochu, L. Bramerie, R. Slavik, J.-C. Simon, S. LaRochelle, and P. Besnard, “Relative intensity noise of multiwavelength fiber laser,” Electron. Lett. 40(12), 724–726 (2004).
[CrossRef]

Lee, J. H.

Lee, K.

Lee, S. B.

Liu, D.

D. Liu, N. Q. Ngo, G. Ning, P. Shum, and S. C. Tjin, “Tunable microwave photonic notch filter using a dual-wavelength fiber laser with phase modulation,” Opt. Commun. 266(1), 240–248 (2006).
[CrossRef]

Marti, J.

B. Vidal, M. A. Piqueras, and J. Marti, “Photonic microwave filter based on spectrum slicing with reconfiguration capability,” Electron. Lett. 41(23), 1286–1287 (2005).
[CrossRef]

Minasian, R. A.

E. H. W. Chan and R. A. Minasian, “Sagnac-loop based equivalent negative tap photonic notch filter,” IEEE Photon. Technol. Lett. 17(8), 1740–1742 (2005).
[CrossRef]

Morgan, T. J.

T. J. Morgan, J. P. R. Lacey, and R. S. Tucker, “Widely tunable four-wave mixing in semiconductor optical amplifiers with constant conversion efficiency,” IEEE Photon. Technol. Lett. 10(10), 1401–1403 (1998).
[CrossRef]

Ngo, N. Q.

D. Liu, N. Q. Ngo, G. Ning, P. Shum, and S. C. Tjin, “Tunable microwave photonic notch filter using a dual-wavelength fiber laser with phase modulation,” Opt. Commun. 266(1), 240–248 (2006).
[CrossRef]

Ning, G.

D. Liu, N. Q. Ngo, G. Ning, P. Shum, and S. C. Tjin, “Tunable microwave photonic notch filter using a dual-wavelength fiber laser with phase modulation,” Opt. Commun. 266(1), 240–248 (2006).
[CrossRef]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

Ortega, B.

J. Capmany, B. Ortega, and D. Pastor, “A Tutorial on Microwave Photonic Filters,” J. Lightwave Technol. 24(1), 201–229 (2006), http://www.opticsinfobase.org/JLT/abstract.cfm?URI=JLT-24-1-201 .
[CrossRef]

D. Pastor, J. Capmany, and B. Ortega, “Broadband tunable microwave transversal notch filter based on tunable uniform fiber Bragg gratings as slicing filters,” IEEE Photon. Technol. Lett. 13(7), 726–728 (2001).
[CrossRef]

J. Capmany, D. Pastor, and B. Ortega, “New and flexible fiber-optic delay line filters using chirped Bragg gratings and laser arrays,” IEEE Trans. Microw. Theory Tech. 47(7), 1321–1326 (1999).
[CrossRef]

Ou, H.

H. Fu, H. Ou, K. Zhu, and S. He, “Tunable all-optical microwave notch filter with a negative tap based on a semiconductor optical amplifier and a dispersive medium,” Opt. Laser Technol. 41(3), 213–216 (2009).
[CrossRef]

H. Ou, H. Fu, D. Chen, and S. He, “A tunable and reconfigurable microwave photonic filter based on a Raman fiber laser,” Opt. Commun. 278(1), 48–51 (2007).
[CrossRef]

Pastor, D.

J. Capmany, B. Ortega, and D. Pastor, “A Tutorial on Microwave Photonic Filters,” J. Lightwave Technol. 24(1), 201–229 (2006), http://www.opticsinfobase.org/JLT/abstract.cfm?URI=JLT-24-1-201 .
[CrossRef]

D. Pastor, J. Capmany, and B. Ortega, “Broadband tunable microwave transversal notch filter based on tunable uniform fiber Bragg gratings as slicing filters,” IEEE Photon. Technol. Lett. 13(7), 726–728 (2001).
[CrossRef]

J. Capmany, D. Pastor, and B. Ortega, “New and flexible fiber-optic delay line filters using chirped Bragg gratings and laser arrays,” IEEE Trans. Microw. Theory Tech. 47(7), 1321–1326 (1999).
[CrossRef]

Piqueras, M. A.

B. Vidal, M. A. Piqueras, and J. Marti, “Photonic microwave filter based on spectrum slicing with reconfiguration capability,” Electron. Lett. 41(23), 1286–1287 (2005).
[CrossRef]

Poëtte, J.

J. Poëtte, S. Blin, G. Brochu, L. Bramerie, R. Slavik, J.-C. Simon, S. LaRochelle, and P. Besnard, “Relative intensity noise of multiwavelength fiber laser,” Electron. Lett. 40(12), 724–726 (2004).
[CrossRef]

Shum, P.

D. Liu, N. Q. Ngo, G. Ning, P. Shum, and S. C. Tjin, “Tunable microwave photonic notch filter using a dual-wavelength fiber laser with phase modulation,” Opt. Commun. 266(1), 240–248 (2006).
[CrossRef]

Simon, J.-C.

J. Poëtte, S. Blin, G. Brochu, L. Bramerie, R. Slavik, J.-C. Simon, S. LaRochelle, and P. Besnard, “Relative intensity noise of multiwavelength fiber laser,” Electron. Lett. 40(12), 724–726 (2004).
[CrossRef]

Slavik, R.

J. Poëtte, S. Blin, G. Brochu, L. Bramerie, R. Slavik, J.-C. Simon, S. LaRochelle, and P. Besnard, “Relative intensity noise of multiwavelength fiber laser,” Electron. Lett. 40(12), 724–726 (2004).
[CrossRef]

Tjin, S. C.

D. Liu, N. Q. Ngo, G. Ning, P. Shum, and S. C. Tjin, “Tunable microwave photonic notch filter using a dual-wavelength fiber laser with phase modulation,” Opt. Commun. 266(1), 240–248 (2006).
[CrossRef]

Tucker, R. S.

T. J. Morgan, J. P. R. Lacey, and R. S. Tucker, “Widely tunable four-wave mixing in semiconductor optical amplifiers with constant conversion efficiency,” IEEE Photon. Technol. Lett. 10(10), 1401–1403 (1998).
[CrossRef]

Vidal, B.

B. Vidal, M. A. Piqueras, and J. Marti, “Photonic microwave filter based on spectrum slicing with reconfiguration capability,” Electron. Lett. 41(23), 1286–1287 (2005).
[CrossRef]

Wang, J.

J. Wang and J. Yao, “A tunable photonic microwave notch filter based on all optical mixing,” IEEE Photon. Technol. Lett. 18(2), 382–384 (2006).
[CrossRef]

J. Wang, F. Zeng, and J. P. Yao, “All optical microwave bandpass filters implemented in a radio-over-fiber-link,” IEEE Photon. Technol. Lett. 17(8), 1737–1739 (2005).
[CrossRef]

Yao, J.

J. Wang and J. Yao, “A tunable photonic microwave notch filter based on all optical mixing,” IEEE Photon. Technol. Lett. 18(2), 382–384 (2006).
[CrossRef]

Yao, J. P.

J. Wang, F. Zeng, and J. P. Yao, “All optical microwave bandpass filters implemented in a radio-over-fiber-link,” IEEE Photon. Technol. Lett. 17(8), 1737–1739 (2005).
[CrossRef]

Zeng, F.

J. Wang, F. Zeng, and J. P. Yao, “All optical microwave bandpass filters implemented in a radio-over-fiber-link,” IEEE Photon. Technol. Lett. 17(8), 1737–1739 (2005).
[CrossRef]

Zhu, K.

H. Fu, H. Ou, K. Zhu, and S. He, “Tunable all-optical microwave notch filter with a negative tap based on a semiconductor optical amplifier and a dispersive medium,” Opt. Laser Technol. 41(3), 213–216 (2009).
[CrossRef]

Electron. Lett. (3)

J. Poëtte, S. Blin, G. Brochu, L. Bramerie, R. Slavik, J.-C. Simon, S. LaRochelle, and P. Besnard, “Relative intensity noise of multiwavelength fiber laser,” Electron. Lett. 40(12), 724–726 (2004).
[CrossRef]

A. P. Foord, P. A. Davies, and P. A. Greenhalgh, “Synthesis of microwave and millimetre-wave filters using optical spectrum slicing,” Electron. Lett. 32(4), 390–391 (1996).
[CrossRef]

B. Vidal, M. A. Piqueras, and J. Marti, “Photonic microwave filter based on spectrum slicing with reconfiguration capability,” Electron. Lett. 41(23), 1286–1287 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

T. J. Morgan, J. P. R. Lacey, and R. S. Tucker, “Widely tunable four-wave mixing in semiconductor optical amplifiers with constant conversion efficiency,” IEEE Photon. Technol. Lett. 10(10), 1401–1403 (1998).
[CrossRef]

D. Pastor, J. Capmany, and B. Ortega, “Broadband tunable microwave transversal notch filter based on tunable uniform fiber Bragg gratings as slicing filters,” IEEE Photon. Technol. Lett. 13(7), 726–728 (2001).
[CrossRef]

J. Wang and J. Yao, “A tunable photonic microwave notch filter based on all optical mixing,” IEEE Photon. Technol. Lett. 18(2), 382–384 (2006).
[CrossRef]

J. Wang, F. Zeng, and J. P. Yao, “All optical microwave bandpass filters implemented in a radio-over-fiber-link,” IEEE Photon. Technol. Lett. 17(8), 1737–1739 (2005).
[CrossRef]

E. H. W. Chan and R. A. Minasian, “Sagnac-loop based equivalent negative tap photonic notch filter,” IEEE Photon. Technol. Lett. 17(8), 1740–1742 (2005).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

J. Capmany, D. Pastor, and B. Ortega, “New and flexible fiber-optic delay line filters using chirped Bragg gratings and laser arrays,” IEEE Trans. Microw. Theory Tech. 47(7), 1321–1326 (1999).
[CrossRef]

J. Lightwave Technol. (2)

Nat. Photonics (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

Opt. Commun. (2)

D. Liu, N. Q. Ngo, G. Ning, P. Shum, and S. C. Tjin, “Tunable microwave photonic notch filter using a dual-wavelength fiber laser with phase modulation,” Opt. Commun. 266(1), 240–248 (2006).
[CrossRef]

H. Ou, H. Fu, D. Chen, and S. He, “A tunable and reconfigurable microwave photonic filter based on a Raman fiber laser,” Opt. Commun. 278(1), 48–51 (2007).
[CrossRef]

Opt. Express (1)

Opt. Laser Technol. (1)

H. Fu, H. Ou, K. Zhu, and S. He, “Tunable all-optical microwave notch filter with a negative tap based on a semiconductor optical amplifier and a dispersive medium,” Opt. Laser Technol. 41(3), 213–216 (2009).
[CrossRef]

Other (2)

W. J. Jeong, J. K. Bae, K. Lee, S. B. Lee, and J. H. Lee, “Tunable photonic microwave notch filter incorporating an S-bending based, linearly tunable, chirped fiber Bragg grating,” in Proc. Opto-Electronics and Communication Conference (Australian Optical Society, 2008), paper ThD-5.

K. Lee, S. B. Lee, J. H. Lee, C. H. Kim, and Y.-G. Han, “Side-mode suppressed multiwavelength fiber laser and broadcast transmission,” in Proc. Optical Fiber Communication Conference (Optical Society of America, 2008), paper OThF1. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2008-OThF1 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the proposed photonic microwave notch filter.

Fig. 2
Fig. 2

Calculated strain induced on FBG1 (solid) and FBG2 (dotted) as a function of rotation angle (with C = 0.77).

Fig. 3
Fig. 3

Calculated frequency responses of the proposed photonic microwave notch filter at wavelength-spacing of 2 and 3 nm, respectively.

Fig. 4
Fig. 4

(a) Output spectrum of wavelength tunable dual wavelength ring laser incorporating SOA and (b) wavelength spacing versus rotation angle.

Fig. 5
Fig. 5

The measured frequency responses of photonic microwave notch filter for various wavelength spacings.

Fig. 6
Fig. 6

Measured 1st notch frequency against rotation angle.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ε=C3dsinθ1312cosθR(32cosθ)2(12xl)
Δλ=Δλ0+λB2(1pe)ε2λB1(1pe)ε1
P(f)=cos2(πfΔτ)
FSR=1/Δτ=1DΔλ

Metrics