Abstract

Random laser action is demonstrated in two kinds of powder samples containing rhodamine 6G (Rh6G) doped SiO2 nanoparticles which are either directly dispersed within pure silica particles or embedded in a silica gel matrix which is subsequently ground. Both organic-inorganic hybrid materials present different laser thresholds and emission features which are systematically studied and compared. The dependence of the emission kinetics, emission spectrum, random laser threshold and slope efficiency on the dye doped nanoparticles concentration is investigated in both cases. We also explore if the incorporation of additional TiO2 scatterers could enhance the random laser operation of the studied systems.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. S. Letokhov, "Stimulated emission of an ensemble of scattering particles with negative absorption," JETP Lett. 5, 212-215 (1967).
  2. Q1. D. S. Wiersma, "The physics and applications of random lasers," Nature Physics 4, 359-367 (2008).
    [CrossRef]
  3. M. A. Noginov, Solid-State Random Lasers, (Springer, Berlin, 2005).
  4. H. Cao, "Lasing in random media," Waves Random Media 13, R1-R39 (2003).
    [CrossRef]
  5. S. Mujumdar, V. Turck, R. Torre, and D. S. Wiersma, "Chaotic behavior of a random laser with static disorder," Phys. Rev. A 76, 033807 (2007).
    [CrossRef]
  6. S. John and G. Pang, "Theory of lasing in a multiple-scattering medium," Phys. Rev. A 54, 3642-3652 (1996).
    [CrossRef] [PubMed]
  7. D. S. Wiersma and A. Lagendijk, "Light diffusion with gain and random lasers," Phys. Rev. E 54, 4256-4265 (1996).
    [CrossRef]
  8. X. Jiang and C. M. Soukoulis, "Time dependent theory for random lasers," Phys. Rev. Lett. 85, 70-73 (2000).
    [CrossRef] [PubMed]
  9. A. L. Burin, M. A. Ratner, H. Cao, and R. P. H. Chang, "Model for a random laser," Phys. Rev. Lett. 87, 215503 (2001).
    [CrossRef] [PubMed]
  10. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, "Laser action in strongly scattering media," Nature 368, 436-438 (1994).
    [CrossRef]
  11. W. L. Sha, C. H. Liu, and R. R. Alfano, "Spectral and temporal measurements of laser action of Rhodamine 640 dye in strongly scattering media," Opt. Lett. 19, 1922-1924 (1994).
    [CrossRef] [PubMed]
  12. M. A. Noginov, H. J. Caulfield, N. E. Noginova, and P. Venkateswarlu, "Line narrowing in the dye solution with scattering centers," Opt. Commun. 118, 430-437 (1995).
    [CrossRef]
  13. S. García-Revilla, J. Fernández, M. A. Illarramendi, B. García-Ramiro, R. Balda, H. Cui, M. Zayat, and D. Levy, "Ultrafast random laser emission in a dye-doped silica gel powder," Opt. Express 16, 12251-12263 (2008).
    [CrossRef] [PubMed]
  14. S. García-Revilla, J. Fernández, R. Balda, M. Zayat, and D. Levy, "Real-time spectroscopy of novel solid-state random lasers," Proc. SPIE 7212, K1-11 (2009).
  15. K. Totsuka, M. A. I. Talukder, M. Matsumoto, and M. Tomita, "Excitation-power-dependent spectral shift in photoluminescence in dye molecules in strongly scattering optical media," Phys. Rev. B 59, 50-53 (1999).
    [CrossRef]
  16. H. Z. Wang, F. L. Zhao, Y. J. He, X. G. Zheng, X. G. Huang, and M. M. Wu, "Low-threshold lasing of a Rhodamine dye solution embedded with nanoparticle fractal aggregates," Opt. Lett. 23, 777-779 (1998).
    [CrossRef]
  17. G. Beckering, S. J. Zilker, and D. Haarer, "Spectral measurements of the emission from highly scattering gain media," Opt. Lett. 22, 1427-1429 (1997).
    [CrossRef]
  18. F. Shuzhen, Z. Xingyuk, W. Qingpu, Z. Chen, W. Zhengping, and L. Ruijun, "Inflection point of the spectral shifts of the random lasing in dye solution with TiO2 nanoscatterers," J. Phys. D: Appl. Phys. 42, 015105 (2009).
    [CrossRef]
  19. M. Siddique, R. R. Alfano, G. A. Berger, M. Kempe, and A. Z. Genack, "Time-resolved studies of stimulated emission from colloidal dye solutions," Opt. Lett. 21, 450-452 (1996).
    [CrossRef] [PubMed]
  20. G. Zacharakis, G. Heliotis, G. Filippidis, D. Anglos, and T. G. Papazoglou, "Investigation of the laserlike behavior of polymeric scattering gain media under subpicosecond laser excitation," Appl. Opt. 38, 6087-6092 (1999).
    [CrossRef]
  21. A. Anedda, C. M. Carbonaro, R. Corpino, P. C. Ricci, S. Grandi, and P. C. Mustarelli, "Formation of fluorescent aggregates in Rhodamine 6G doped silica glasses," J. Non-Crys Sol. 353, 481-485 (2007).
    [CrossRef]
  22. Q2. G. Hungerford, K. Suhling, and J. A. Ferreira, "Comparison of the fluorescence behaviour of rhodamine 6G in bulk and thin film tetraethylorthosilicate derived sol-gel matrices," J. Photochem. Photobiol. A 129, 71-80 (1999).
    [CrossRef]
  23. F. Del Monte, J. D. Mackenzie, and D. Levy, "Rhodamine fluorescent dimers adsorbed on the porous surface of silica gels," Langmuir 16, 7377-7382 (2000).
    [CrossRef]

2009

S. García-Revilla, J. Fernández, R. Balda, M. Zayat, and D. Levy, "Real-time spectroscopy of novel solid-state random lasers," Proc. SPIE 7212, K1-11 (2009).

F. Shuzhen, Z. Xingyuk, W. Qingpu, Z. Chen, W. Zhengping, and L. Ruijun, "Inflection point of the spectral shifts of the random lasing in dye solution with TiO2 nanoscatterers," J. Phys. D: Appl. Phys. 42, 015105 (2009).
[CrossRef]

2008

2007

S. Mujumdar, V. Turck, R. Torre, and D. S. Wiersma, "Chaotic behavior of a random laser with static disorder," Phys. Rev. A 76, 033807 (2007).
[CrossRef]

A. Anedda, C. M. Carbonaro, R. Corpino, P. C. Ricci, S. Grandi, and P. C. Mustarelli, "Formation of fluorescent aggregates in Rhodamine 6G doped silica glasses," J. Non-Crys Sol. 353, 481-485 (2007).
[CrossRef]

2003

H. Cao, "Lasing in random media," Waves Random Media 13, R1-R39 (2003).
[CrossRef]

2001

A. L. Burin, M. A. Ratner, H. Cao, and R. P. H. Chang, "Model for a random laser," Phys. Rev. Lett. 87, 215503 (2001).
[CrossRef] [PubMed]

2000

X. Jiang and C. M. Soukoulis, "Time dependent theory for random lasers," Phys. Rev. Lett. 85, 70-73 (2000).
[CrossRef] [PubMed]

F. Del Monte, J. D. Mackenzie, and D. Levy, "Rhodamine fluorescent dimers adsorbed on the porous surface of silica gels," Langmuir 16, 7377-7382 (2000).
[CrossRef]

1999

Q2. G. Hungerford, K. Suhling, and J. A. Ferreira, "Comparison of the fluorescence behaviour of rhodamine 6G in bulk and thin film tetraethylorthosilicate derived sol-gel matrices," J. Photochem. Photobiol. A 129, 71-80 (1999).
[CrossRef]

K. Totsuka, M. A. I. Talukder, M. Matsumoto, and M. Tomita, "Excitation-power-dependent spectral shift in photoluminescence in dye molecules in strongly scattering optical media," Phys. Rev. B 59, 50-53 (1999).
[CrossRef]

G. Zacharakis, G. Heliotis, G. Filippidis, D. Anglos, and T. G. Papazoglou, "Investigation of the laserlike behavior of polymeric scattering gain media under subpicosecond laser excitation," Appl. Opt. 38, 6087-6092 (1999).
[CrossRef]

1998

1997

1996

S. John and G. Pang, "Theory of lasing in a multiple-scattering medium," Phys. Rev. A 54, 3642-3652 (1996).
[CrossRef] [PubMed]

D. S. Wiersma and A. Lagendijk, "Light diffusion with gain and random lasers," Phys. Rev. E 54, 4256-4265 (1996).
[CrossRef]

M. Siddique, R. R. Alfano, G. A. Berger, M. Kempe, and A. Z. Genack, "Time-resolved studies of stimulated emission from colloidal dye solutions," Opt. Lett. 21, 450-452 (1996).
[CrossRef] [PubMed]

1995

M. A. Noginov, H. J. Caulfield, N. E. Noginova, and P. Venkateswarlu, "Line narrowing in the dye solution with scattering centers," Opt. Commun. 118, 430-437 (1995).
[CrossRef]

1994

W. L. Sha, C. H. Liu, and R. R. Alfano, "Spectral and temporal measurements of laser action of Rhodamine 640 dye in strongly scattering media," Opt. Lett. 19, 1922-1924 (1994).
[CrossRef] [PubMed]

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, "Laser action in strongly scattering media," Nature 368, 436-438 (1994).
[CrossRef]

1967

V. S. Letokhov, "Stimulated emission of an ensemble of scattering particles with negative absorption," JETP Lett. 5, 212-215 (1967).

Alfano, R. R.

Anedda, A.

A. Anedda, C. M. Carbonaro, R. Corpino, P. C. Ricci, S. Grandi, and P. C. Mustarelli, "Formation of fluorescent aggregates in Rhodamine 6G doped silica glasses," J. Non-Crys Sol. 353, 481-485 (2007).
[CrossRef]

Anglos, D.

Balachandran, R. M.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, "Laser action in strongly scattering media," Nature 368, 436-438 (1994).
[CrossRef]

Balda, R.

S. García-Revilla, J. Fernández, R. Balda, M. Zayat, and D. Levy, "Real-time spectroscopy of novel solid-state random lasers," Proc. SPIE 7212, K1-11 (2009).

S. García-Revilla, J. Fernández, M. A. Illarramendi, B. García-Ramiro, R. Balda, H. Cui, M. Zayat, and D. Levy, "Ultrafast random laser emission in a dye-doped silica gel powder," Opt. Express 16, 12251-12263 (2008).
[CrossRef] [PubMed]

Beckering, G.

Berger, G. A.

Burin, A. L.

A. L. Burin, M. A. Ratner, H. Cao, and R. P. H. Chang, "Model for a random laser," Phys. Rev. Lett. 87, 215503 (2001).
[CrossRef] [PubMed]

Cao, H.

H. Cao, "Lasing in random media," Waves Random Media 13, R1-R39 (2003).
[CrossRef]

A. L. Burin, M. A. Ratner, H. Cao, and R. P. H. Chang, "Model for a random laser," Phys. Rev. Lett. 87, 215503 (2001).
[CrossRef] [PubMed]

Carbonaro, C. M.

A. Anedda, C. M. Carbonaro, R. Corpino, P. C. Ricci, S. Grandi, and P. C. Mustarelli, "Formation of fluorescent aggregates in Rhodamine 6G doped silica glasses," J. Non-Crys Sol. 353, 481-485 (2007).
[CrossRef]

Caulfield, H. J.

M. A. Noginov, H. J. Caulfield, N. E. Noginova, and P. Venkateswarlu, "Line narrowing in the dye solution with scattering centers," Opt. Commun. 118, 430-437 (1995).
[CrossRef]

Chang, R. P. H.

A. L. Burin, M. A. Ratner, H. Cao, and R. P. H. Chang, "Model for a random laser," Phys. Rev. Lett. 87, 215503 (2001).
[CrossRef] [PubMed]

Chen, Z.

F. Shuzhen, Z. Xingyuk, W. Qingpu, Z. Chen, W. Zhengping, and L. Ruijun, "Inflection point of the spectral shifts of the random lasing in dye solution with TiO2 nanoscatterers," J. Phys. D: Appl. Phys. 42, 015105 (2009).
[CrossRef]

Corpino, R.

A. Anedda, C. M. Carbonaro, R. Corpino, P. C. Ricci, S. Grandi, and P. C. Mustarelli, "Formation of fluorescent aggregates in Rhodamine 6G doped silica glasses," J. Non-Crys Sol. 353, 481-485 (2007).
[CrossRef]

Cui, H.

Del Monte, F.

F. Del Monte, J. D. Mackenzie, and D. Levy, "Rhodamine fluorescent dimers adsorbed on the porous surface of silica gels," Langmuir 16, 7377-7382 (2000).
[CrossRef]

Fernández, J.

S. García-Revilla, J. Fernández, R. Balda, M. Zayat, and D. Levy, "Real-time spectroscopy of novel solid-state random lasers," Proc. SPIE 7212, K1-11 (2009).

S. García-Revilla, J. Fernández, M. A. Illarramendi, B. García-Ramiro, R. Balda, H. Cui, M. Zayat, and D. Levy, "Ultrafast random laser emission in a dye-doped silica gel powder," Opt. Express 16, 12251-12263 (2008).
[CrossRef] [PubMed]

Ferreira, J. A.

Q2. G. Hungerford, K. Suhling, and J. A. Ferreira, "Comparison of the fluorescence behaviour of rhodamine 6G in bulk and thin film tetraethylorthosilicate derived sol-gel matrices," J. Photochem. Photobiol. A 129, 71-80 (1999).
[CrossRef]

Filippidis, G.

García-Ramiro, B.

García-Revilla, S.

S. García-Revilla, J. Fernández, R. Balda, M. Zayat, and D. Levy, "Real-time spectroscopy of novel solid-state random lasers," Proc. SPIE 7212, K1-11 (2009).

S. García-Revilla, J. Fernández, M. A. Illarramendi, B. García-Ramiro, R. Balda, H. Cui, M. Zayat, and D. Levy, "Ultrafast random laser emission in a dye-doped silica gel powder," Opt. Express 16, 12251-12263 (2008).
[CrossRef] [PubMed]

Genack, A. Z.

Gomes, A. S. L.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, "Laser action in strongly scattering media," Nature 368, 436-438 (1994).
[CrossRef]

Grandi, S.

A. Anedda, C. M. Carbonaro, R. Corpino, P. C. Ricci, S. Grandi, and P. C. Mustarelli, "Formation of fluorescent aggregates in Rhodamine 6G doped silica glasses," J. Non-Crys Sol. 353, 481-485 (2007).
[CrossRef]

Haarer, D.

He, Y. J.

Heliotis, G.

Huang, X. G.

Hungerford, G.

Q2. G. Hungerford, K. Suhling, and J. A. Ferreira, "Comparison of the fluorescence behaviour of rhodamine 6G in bulk and thin film tetraethylorthosilicate derived sol-gel matrices," J. Photochem. Photobiol. A 129, 71-80 (1999).
[CrossRef]

Illarramendi, M. A.

Jiang, X.

X. Jiang and C. M. Soukoulis, "Time dependent theory for random lasers," Phys. Rev. Lett. 85, 70-73 (2000).
[CrossRef] [PubMed]

John, S.

S. John and G. Pang, "Theory of lasing in a multiple-scattering medium," Phys. Rev. A 54, 3642-3652 (1996).
[CrossRef] [PubMed]

Kempe, M.

Lagendijk, A.

D. S. Wiersma and A. Lagendijk, "Light diffusion with gain and random lasers," Phys. Rev. E 54, 4256-4265 (1996).
[CrossRef]

Lawandy, N. M.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, "Laser action in strongly scattering media," Nature 368, 436-438 (1994).
[CrossRef]

Letokhov, V. S.

V. S. Letokhov, "Stimulated emission of an ensemble of scattering particles with negative absorption," JETP Lett. 5, 212-215 (1967).

Levy, D.

S. García-Revilla, J. Fernández, R. Balda, M. Zayat, and D. Levy, "Real-time spectroscopy of novel solid-state random lasers," Proc. SPIE 7212, K1-11 (2009).

S. García-Revilla, J. Fernández, M. A. Illarramendi, B. García-Ramiro, R. Balda, H. Cui, M. Zayat, and D. Levy, "Ultrafast random laser emission in a dye-doped silica gel powder," Opt. Express 16, 12251-12263 (2008).
[CrossRef] [PubMed]

F. Del Monte, J. D. Mackenzie, and D. Levy, "Rhodamine fluorescent dimers adsorbed on the porous surface of silica gels," Langmuir 16, 7377-7382 (2000).
[CrossRef]

Liu, C. H.

Mackenzie, J. D.

F. Del Monte, J. D. Mackenzie, and D. Levy, "Rhodamine fluorescent dimers adsorbed on the porous surface of silica gels," Langmuir 16, 7377-7382 (2000).
[CrossRef]

Matsumoto, M.

K. Totsuka, M. A. I. Talukder, M. Matsumoto, and M. Tomita, "Excitation-power-dependent spectral shift in photoluminescence in dye molecules in strongly scattering optical media," Phys. Rev. B 59, 50-53 (1999).
[CrossRef]

Mujumdar, S.

S. Mujumdar, V. Turck, R. Torre, and D. S. Wiersma, "Chaotic behavior of a random laser with static disorder," Phys. Rev. A 76, 033807 (2007).
[CrossRef]

Mustarelli, P. C.

A. Anedda, C. M. Carbonaro, R. Corpino, P. C. Ricci, S. Grandi, and P. C. Mustarelli, "Formation of fluorescent aggregates in Rhodamine 6G doped silica glasses," J. Non-Crys Sol. 353, 481-485 (2007).
[CrossRef]

Noginov, M. A.

M. A. Noginov, H. J. Caulfield, N. E. Noginova, and P. Venkateswarlu, "Line narrowing in the dye solution with scattering centers," Opt. Commun. 118, 430-437 (1995).
[CrossRef]

Noginova, N. E.

M. A. Noginov, H. J. Caulfield, N. E. Noginova, and P. Venkateswarlu, "Line narrowing in the dye solution with scattering centers," Opt. Commun. 118, 430-437 (1995).
[CrossRef]

Pang, G.

S. John and G. Pang, "Theory of lasing in a multiple-scattering medium," Phys. Rev. A 54, 3642-3652 (1996).
[CrossRef] [PubMed]

Papazoglou, T. G.

Qingpu, W.

F. Shuzhen, Z. Xingyuk, W. Qingpu, Z. Chen, W. Zhengping, and L. Ruijun, "Inflection point of the spectral shifts of the random lasing in dye solution with TiO2 nanoscatterers," J. Phys. D: Appl. Phys. 42, 015105 (2009).
[CrossRef]

Ratner, M. A.

A. L. Burin, M. A. Ratner, H. Cao, and R. P. H. Chang, "Model for a random laser," Phys. Rev. Lett. 87, 215503 (2001).
[CrossRef] [PubMed]

Ricci, P. C.

A. Anedda, C. M. Carbonaro, R. Corpino, P. C. Ricci, S. Grandi, and P. C. Mustarelli, "Formation of fluorescent aggregates in Rhodamine 6G doped silica glasses," J. Non-Crys Sol. 353, 481-485 (2007).
[CrossRef]

Ruijun, L.

F. Shuzhen, Z. Xingyuk, W. Qingpu, Z. Chen, W. Zhengping, and L. Ruijun, "Inflection point of the spectral shifts of the random lasing in dye solution with TiO2 nanoscatterers," J. Phys. D: Appl. Phys. 42, 015105 (2009).
[CrossRef]

Sauvain, E.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, "Laser action in strongly scattering media," Nature 368, 436-438 (1994).
[CrossRef]

Sha, W. L.

Shuzhen, F.

F. Shuzhen, Z. Xingyuk, W. Qingpu, Z. Chen, W. Zhengping, and L. Ruijun, "Inflection point of the spectral shifts of the random lasing in dye solution with TiO2 nanoscatterers," J. Phys. D: Appl. Phys. 42, 015105 (2009).
[CrossRef]

Siddique, M.

Soukoulis, C. M.

X. Jiang and C. M. Soukoulis, "Time dependent theory for random lasers," Phys. Rev. Lett. 85, 70-73 (2000).
[CrossRef] [PubMed]

Suhling, K.

Q2. G. Hungerford, K. Suhling, and J. A. Ferreira, "Comparison of the fluorescence behaviour of rhodamine 6G in bulk and thin film tetraethylorthosilicate derived sol-gel matrices," J. Photochem. Photobiol. A 129, 71-80 (1999).
[CrossRef]

Talukder, M. A. I.

K. Totsuka, M. A. I. Talukder, M. Matsumoto, and M. Tomita, "Excitation-power-dependent spectral shift in photoluminescence in dye molecules in strongly scattering optical media," Phys. Rev. B 59, 50-53 (1999).
[CrossRef]

Tomita, M.

K. Totsuka, M. A. I. Talukder, M. Matsumoto, and M. Tomita, "Excitation-power-dependent spectral shift in photoluminescence in dye molecules in strongly scattering optical media," Phys. Rev. B 59, 50-53 (1999).
[CrossRef]

Torre, R.

S. Mujumdar, V. Turck, R. Torre, and D. S. Wiersma, "Chaotic behavior of a random laser with static disorder," Phys. Rev. A 76, 033807 (2007).
[CrossRef]

Totsuka, K.

K. Totsuka, M. A. I. Talukder, M. Matsumoto, and M. Tomita, "Excitation-power-dependent spectral shift in photoluminescence in dye molecules in strongly scattering optical media," Phys. Rev. B 59, 50-53 (1999).
[CrossRef]

Turck, V.

S. Mujumdar, V. Turck, R. Torre, and D. S. Wiersma, "Chaotic behavior of a random laser with static disorder," Phys. Rev. A 76, 033807 (2007).
[CrossRef]

Venkateswarlu, P.

M. A. Noginov, H. J. Caulfield, N. E. Noginova, and P. Venkateswarlu, "Line narrowing in the dye solution with scattering centers," Opt. Commun. 118, 430-437 (1995).
[CrossRef]

Wang, H. Z.

Wiersma, D. S.

Q1. D. S. Wiersma, "The physics and applications of random lasers," Nature Physics 4, 359-367 (2008).
[CrossRef]

S. Mujumdar, V. Turck, R. Torre, and D. S. Wiersma, "Chaotic behavior of a random laser with static disorder," Phys. Rev. A 76, 033807 (2007).
[CrossRef]

D. S. Wiersma and A. Lagendijk, "Light diffusion with gain and random lasers," Phys. Rev. E 54, 4256-4265 (1996).
[CrossRef]

Wu, M. M.

Xingyuk, Z.

F. Shuzhen, Z. Xingyuk, W. Qingpu, Z. Chen, W. Zhengping, and L. Ruijun, "Inflection point of the spectral shifts of the random lasing in dye solution with TiO2 nanoscatterers," J. Phys. D: Appl. Phys. 42, 015105 (2009).
[CrossRef]

Zacharakis, G.

Zayat, M.

S. García-Revilla, J. Fernández, R. Balda, M. Zayat, and D. Levy, "Real-time spectroscopy of novel solid-state random lasers," Proc. SPIE 7212, K1-11 (2009).

S. García-Revilla, J. Fernández, M. A. Illarramendi, B. García-Ramiro, R. Balda, H. Cui, M. Zayat, and D. Levy, "Ultrafast random laser emission in a dye-doped silica gel powder," Opt. Express 16, 12251-12263 (2008).
[CrossRef] [PubMed]

Zhao, F. L.

Zheng, X. G.

Zhengping, W.

F. Shuzhen, Z. Xingyuk, W. Qingpu, Z. Chen, W. Zhengping, and L. Ruijun, "Inflection point of the spectral shifts of the random lasing in dye solution with TiO2 nanoscatterers," J. Phys. D: Appl. Phys. 42, 015105 (2009).
[CrossRef]

Zilker, S. J.

Appl. Opt.

J. Non-Crys Sol.

A. Anedda, C. M. Carbonaro, R. Corpino, P. C. Ricci, S. Grandi, and P. C. Mustarelli, "Formation of fluorescent aggregates in Rhodamine 6G doped silica glasses," J. Non-Crys Sol. 353, 481-485 (2007).
[CrossRef]

J. Photochem. Photobiol. A

Q2. G. Hungerford, K. Suhling, and J. A. Ferreira, "Comparison of the fluorescence behaviour of rhodamine 6G in bulk and thin film tetraethylorthosilicate derived sol-gel matrices," J. Photochem. Photobiol. A 129, 71-80 (1999).
[CrossRef]

J. Phys. D: Appl. Phys.

F. Shuzhen, Z. Xingyuk, W. Qingpu, Z. Chen, W. Zhengping, and L. Ruijun, "Inflection point of the spectral shifts of the random lasing in dye solution with TiO2 nanoscatterers," J. Phys. D: Appl. Phys. 42, 015105 (2009).
[CrossRef]

JETP Lett.

V. S. Letokhov, "Stimulated emission of an ensemble of scattering particles with negative absorption," JETP Lett. 5, 212-215 (1967).

Langmuir

F. Del Monte, J. D. Mackenzie, and D. Levy, "Rhodamine fluorescent dimers adsorbed on the porous surface of silica gels," Langmuir 16, 7377-7382 (2000).
[CrossRef]

Nature

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, "Laser action in strongly scattering media," Nature 368, 436-438 (1994).
[CrossRef]

Nature Physics

Q1. D. S. Wiersma, "The physics and applications of random lasers," Nature Physics 4, 359-367 (2008).
[CrossRef]

Opt. Commun.

M. A. Noginov, H. J. Caulfield, N. E. Noginova, and P. Venkateswarlu, "Line narrowing in the dye solution with scattering centers," Opt. Commun. 118, 430-437 (1995).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

S. Mujumdar, V. Turck, R. Torre, and D. S. Wiersma, "Chaotic behavior of a random laser with static disorder," Phys. Rev. A 76, 033807 (2007).
[CrossRef]

S. John and G. Pang, "Theory of lasing in a multiple-scattering medium," Phys. Rev. A 54, 3642-3652 (1996).
[CrossRef] [PubMed]

Phys. Rev. B

K. Totsuka, M. A. I. Talukder, M. Matsumoto, and M. Tomita, "Excitation-power-dependent spectral shift in photoluminescence in dye molecules in strongly scattering optical media," Phys. Rev. B 59, 50-53 (1999).
[CrossRef]

Phys. Rev. E

D. S. Wiersma and A. Lagendijk, "Light diffusion with gain and random lasers," Phys. Rev. E 54, 4256-4265 (1996).
[CrossRef]

Phys. Rev. Lett.

X. Jiang and C. M. Soukoulis, "Time dependent theory for random lasers," Phys. Rev. Lett. 85, 70-73 (2000).
[CrossRef] [PubMed]

A. L. Burin, M. A. Ratner, H. Cao, and R. P. H. Chang, "Model for a random laser," Phys. Rev. Lett. 87, 215503 (2001).
[CrossRef] [PubMed]

Proc. SPIE

S. García-Revilla, J. Fernández, R. Balda, M. Zayat, and D. Levy, "Real-time spectroscopy of novel solid-state random lasers," Proc. SPIE 7212, K1-11 (2009).

Waves Random Media

H. Cao, "Lasing in random media," Waves Random Media 13, R1-R39 (2003).
[CrossRef]

Other

M. A. Noginov, Solid-State Random Lasers, (Springer, Berlin, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

(a) Normalized emission spectra of the GP of a bulk silica gel containing 4 wt% Rh6G-SiO2 nanoparticles obtained at 8 µJ/pulse (red), 9.5 µJ/pulse (blue), 11 µJ/pulse (green), 100 µJ/pulse (orange), and 900 µJ/pulse (black). (b) Pump energy dependence of the emission linewidths. (c) Emission peak maximum as a function of the pump energy.

Fig. 2.
Fig. 2.

(a) Normalized temporal profiles of the GP of a bulk silica gel containing 4 wt% Rh6G-SiO2 nanoparticles obtained at 3 µJ/pulse (point line), 8 µJ/pulse (dashed line), 11 µJ/pulse (dash-dot line), and 900 µJ/pulse (full line). (b) FWHM of the temporal profiles as a function of the pump pulse energy.

Fig. 3.
Fig. 3.

(a) Pump energy dependence of the effective emission linewidth obtained in the GP of different silica gels containing 0.1 wt% (red dots), 1 wt% (turquoise squares), 2 wt% (blue triangles), 3 wt% (black crosses), 4 wt% (green diamonds), and 5 wt% (orange circles) Rh6G-SiO2 nanoparticles. (b) Integrated intensity of the emission spectra as a function of the pump pulse energy. (c) FWHM of the time profiles obtained in the mentioned GP samples as a function of the pump pulse energy.

Fig. 4.
Fig. 4.

(a) Normalized emission spectra of the GP of different bulk silica gels containing 0.1 wt% (red), 1 wt% (turquoise), 2 wt% (blue), 3 wt% (black), 4 wt% (green), and 5 wt% (orange) Rh6G-SiO2 nanoparticles obtained at 900 µJ/pulse. (b) Emission peak maximum as a function of the Rh6G-SiO2 nanoparticles concentration.

Fig. 5.
Fig. 5.

FWHM of the temporal profiles obtained as a function of the pump pulse energy in the GP of different silica gels containing 4 wt% Rh6G-SiO2 nanoparticles and 0 wt% (dots), 0.1 wt% (squares) and 0.8 wt% (triangles) TiO2 dispersors.

Fig. 6.
Fig. 6.

(a) Normalized emission spectra of 8 wt% Rh6G-SiO2 nanoparticles dispersed in silica powder obtained at 23 µJ/pulse (red), 37 µJ/pulse (blue), 45 µJ/pulse (green), 75 µJ/pulse (orange), and 900 µJ/pulse (black). (b) Pump energy dependence of the emission linewidths. (c) Emission peak maximum as a function of the pump energy.

Fig. 7.
Fig. 7.

(a) Normalized temporal profiles of 8 wt% Rh6G-SiO2 nanoparticles dispersed in silica powder obtained at 3 µJ/pulse (point line), 46 µJ/pulse (dashed line), 55 µJ/pulse (dash-dot line), and 900 µJ/pulse (full line). (b) FWHM of the temporal profiles as a function of the pump pulse energy.

Fig. 8.
Fig. 8.

(a) Pump energy dependence of the effective emission linewidth obtained in 2 wt% (red dots), 4 wt% (blue squares), 6 wt% (black triangles), and 8 wt% (green crosses) Rh6G-SiO2 nanoparticles dispersed in silica powder. (b) Integrated intensity of the emission spectra as a function of the pump pulse energy. (c) FWHM of the time profiles obtained in the DP samples containing 2 wt% (red dots) and 8 wt% (green crosses) Rh6G-SiO2 nanoparticles as a function of the pump pulse energy.

Fig. 9.
Fig. 9.

(a) Normalized emission spectra obtained in the 2 wt% (red), 4 wt% (blue), 6 wt% (black), and 8 wt% (green) Rh6G-SiO2 nanoparticles dispersed in silica powder at 900 µJ/pulse. (b) Emission peak maximum as a function of the Rh6G-SiO2 nanoparticles concentration.

Fig. 10.
Fig. 10.

(a) Pump energy dependence of the effective emission linewidth obtained in 4 wt% Rh6G-SiO2 nanoparticles dispersed in silica powder with 0.7 wt% (red dots), 1.4 wt% (blue squares), 2.8 wt% (black triangles), and 7.1 wt% (green crosses) TiO2 scatterers (~405 nm). (b) Integrated intensity of the emission spectra as a function of the pump pulse energy. (c) FWHM of the time profiles obtained in the DP samples containing 0.7 wt% (red dots) and 7.1 wt% (green crosses) TiO2 as a function of the pump pulse energy.

Fig. 11.
Fig. 11.

Irradiation time dependence of the integrated emission intensity of the GP containing 2 wt% Rh6G-SiO2 nanoparticles after exciting at 532 nm with 35 µJ/pulse.

Metrics