Abstract

Double enhancement of spontaneous emission due to increased photon density of states at the emission frequency and the small group velocity of light at the excitation frequency was clearly demonstrated by angle-resolved photoluminescence experiments for dielectric multilayers composed of Ta2O5 and SiO2 with oxygen vacancies as light emitters. Theoretical emission profiles given by the weak modulation approximation agreed well with the experimental observations.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef] [PubMed]
  2. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486- 2489 (1987).
    [CrossRef] [PubMed]
  3. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 1995).
  4. K. Sakoda, Optical Properties of Photonic Crystals, 2nd edition (Springer, Berlin, 2004).
  5. K. Sakoda, "Optics of photonic crystals," Opt. Rev. 6, 381-392 (1999).
    [CrossRef]
  6. T. D. Happ, I. I. Tartakovskii, V. D. Kulakovskii, J. P. Reithmaier, M. Kamp, and A. Forchel, "Enhanced light emission of InxGa1−xAs quantum dots in a two-dimensional photonic-crystal defect microcavity," Phys. Rev. B 66, 041303 (2002).
    [CrossRef]
  7. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Depps, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
    [CrossRef] [PubMed]
  8. A. Badolato, K. Hennessy,M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, "Deterministic coupling of single quantum dots to single nanocavity modes," Science 308, 1158-1161 (2005).
    [CrossRef] [PubMed]
  9. T. Kuroda, N. Ikeda, T. Mano, Y. Sugimoto, T. Ochiai, K. Kuroda, S. Ohkouchi, N. Koguchi, K. Sakoda, and K. Asakawa, "Acceleration and suppression of photoemission of GaAs quantum dots embedded in photonic crystal microcavities," Appl. Phys. Lett. 93, 111103 (2008).
    [CrossRef]
  10. T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. S¨unner, M. Kamp, A. Forchel, and P. Lodahl, "Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide," Phys. Rev. Lett. 101, 113903 (2008).
    [CrossRef] [PubMed]
  11. G. Lecamp, P. Lalanne, and J. P. Hugonin, "Very large spontaneous-emission ® factors in photonic-crystal waveguides," Phys. Rev. Lett. 99, 023902 (2007).
    [CrossRef] [PubMed]
  12. V. S. C. Manga Rao and S. Hughes, "Single quantum-dot Purcell factor and ® factor in a photonic crystal waveguide," Phys. Rev. B 75, 205437 (2007).
    [CrossRef]
  13. P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, andW. L. Vos, "Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals," Nature 430, 654-657 (2004).
    [CrossRef] [PubMed]
  14. M. D. Tocci, M. Scalora, M. J. Bloemer, J. P. Dowling, and C. M. Bowden, "Measurement of spontaneousemission enhancement near the one-dimensional photonic band edge of semiconductor heterostructure," Phys. Rev. A 53, 2799-2803 (1996).
    [CrossRef] [PubMed]
  15. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The photonic band edge laser: A new approach to gain enhancement," J. Appl. Phys. 75, 1896-1899 (1994).
    [CrossRef]
  16. M. Scalora, J. P. Dowling, M. Tocci, M. J. Bloemer, C. M. Bowden, and J. W. Haus, "Dipole emission rates in one-dimensional photonic band-gap materials," Appl. Phys. B 60, S57-S61 (1995).
  17. P. Yeh, "Electromagnetic propagation in birefringent layered media," J. Opt. Soc. Am. 69, 742-756 (1979).
    [CrossRef]
  18. Y. Matsuhisa, Y. Huang, Y. Zhou, S.-T. Wu, Y. Takao, A. Fujii, and M. Ozaki, "Cholesteric liquid crystal laser in a dielectric mirror cavity upon band-edge excitation," Opt. Express 15, 616-622 (2007).
    [CrossRef] [PubMed]
  19. M. Astic, Ph. Delaye, R. Frey, G. Roosen, R. Andr’e, N. Belabas, I. Sagnes, and R. Raj, "Time resolved nonlinear spectroscopy at the band edge of 1D photonic crystals," J. Phys. D: Appl. Phys. 41, 224005 (2008).
    [CrossRef]
  20. Y. Sakurai, K. Nagasawa, H. Nishikawa, and Y. Ohki, "Characteristic red photoluminescence band in oxygendeficient silica glass," J. Appl. Phys. 86, 370-373 (1999).
    [CrossRef]
  21. M. Zhu, Z. Zhang, andW. Miao, "Intense photoluminescence from amorphous tantalum oxide films," Appl. Phys. Lett. 89, 021915 (1996).
    [CrossRef]

2008 (3)

T. Kuroda, N. Ikeda, T. Mano, Y. Sugimoto, T. Ochiai, K. Kuroda, S. Ohkouchi, N. Koguchi, K. Sakoda, and K. Asakawa, "Acceleration and suppression of photoemission of GaAs quantum dots embedded in photonic crystal microcavities," Appl. Phys. Lett. 93, 111103 (2008).
[CrossRef]

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. S¨unner, M. Kamp, A. Forchel, and P. Lodahl, "Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide," Phys. Rev. Lett. 101, 113903 (2008).
[CrossRef] [PubMed]

M. Astic, Ph. Delaye, R. Frey, G. Roosen, R. Andr’e, N. Belabas, I. Sagnes, and R. Raj, "Time resolved nonlinear spectroscopy at the band edge of 1D photonic crystals," J. Phys. D: Appl. Phys. 41, 224005 (2008).
[CrossRef]

2007 (3)

Y. Matsuhisa, Y. Huang, Y. Zhou, S.-T. Wu, Y. Takao, A. Fujii, and M. Ozaki, "Cholesteric liquid crystal laser in a dielectric mirror cavity upon band-edge excitation," Opt. Express 15, 616-622 (2007).
[CrossRef] [PubMed]

G. Lecamp, P. Lalanne, and J. P. Hugonin, "Very large spontaneous-emission ® factors in photonic-crystal waveguides," Phys. Rev. Lett. 99, 023902 (2007).
[CrossRef] [PubMed]

V. S. C. Manga Rao and S. Hughes, "Single quantum-dot Purcell factor and ® factor in a photonic crystal waveguide," Phys. Rev. B 75, 205437 (2007).
[CrossRef]

2005 (1)

A. Badolato, K. Hennessy,M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, "Deterministic coupling of single quantum dots to single nanocavity modes," Science 308, 1158-1161 (2005).
[CrossRef] [PubMed]

2004 (2)

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Depps, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, andW. L. Vos, "Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals," Nature 430, 654-657 (2004).
[CrossRef] [PubMed]

2002 (1)

T. D. Happ, I. I. Tartakovskii, V. D. Kulakovskii, J. P. Reithmaier, M. Kamp, and A. Forchel, "Enhanced light emission of InxGa1−xAs quantum dots in a two-dimensional photonic-crystal defect microcavity," Phys. Rev. B 66, 041303 (2002).
[CrossRef]

1999 (2)

K. Sakoda, "Optics of photonic crystals," Opt. Rev. 6, 381-392 (1999).
[CrossRef]

Y. Sakurai, K. Nagasawa, H. Nishikawa, and Y. Ohki, "Characteristic red photoluminescence band in oxygendeficient silica glass," J. Appl. Phys. 86, 370-373 (1999).
[CrossRef]

1996 (2)

M. Zhu, Z. Zhang, andW. Miao, "Intense photoluminescence from amorphous tantalum oxide films," Appl. Phys. Lett. 89, 021915 (1996).
[CrossRef]

M. D. Tocci, M. Scalora, M. J. Bloemer, J. P. Dowling, and C. M. Bowden, "Measurement of spontaneousemission enhancement near the one-dimensional photonic band edge of semiconductor heterostructure," Phys. Rev. A 53, 2799-2803 (1996).
[CrossRef] [PubMed]

1995 (1)

M. Scalora, J. P. Dowling, M. Tocci, M. J. Bloemer, C. M. Bowden, and J. W. Haus, "Dipole emission rates in one-dimensional photonic band-gap materials," Appl. Phys. B 60, S57-S61 (1995).

1994 (1)

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The photonic band edge laser: A new approach to gain enhancement," J. Appl. Phys. 75, 1896-1899 (1994).
[CrossRef]

1987 (2)

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486- 2489 (1987).
[CrossRef] [PubMed]

1979 (1)

Asakawa, K.

T. Kuroda, N. Ikeda, T. Mano, Y. Sugimoto, T. Ochiai, K. Kuroda, S. Ohkouchi, N. Koguchi, K. Sakoda, and K. Asakawa, "Acceleration and suppression of photoemission of GaAs quantum dots embedded in photonic crystal microcavities," Appl. Phys. Lett. 93, 111103 (2008).
[CrossRef]

Astic, M.

M. Astic, Ph. Delaye, R. Frey, G. Roosen, R. Andr’e, N. Belabas, I. Sagnes, and R. Raj, "Time resolved nonlinear spectroscopy at the band edge of 1D photonic crystals," J. Phys. D: Appl. Phys. 41, 224005 (2008).
[CrossRef]

Atature, M.

A. Badolato, K. Hennessy,M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, "Deterministic coupling of single quantum dots to single nanocavity modes," Science 308, 1158-1161 (2005).
[CrossRef] [PubMed]

Badolato, A.

A. Badolato, K. Hennessy,M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, "Deterministic coupling of single quantum dots to single nanocavity modes," Science 308, 1158-1161 (2005).
[CrossRef] [PubMed]

Bloemer, M. J.

M. D. Tocci, M. Scalora, M. J. Bloemer, J. P. Dowling, and C. M. Bowden, "Measurement of spontaneousemission enhancement near the one-dimensional photonic band edge of semiconductor heterostructure," Phys. Rev. A 53, 2799-2803 (1996).
[CrossRef] [PubMed]

M. Scalora, J. P. Dowling, M. Tocci, M. J. Bloemer, C. M. Bowden, and J. W. Haus, "Dipole emission rates in one-dimensional photonic band-gap materials," Appl. Phys. B 60, S57-S61 (1995).

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The photonic band edge laser: A new approach to gain enhancement," J. Appl. Phys. 75, 1896-1899 (1994).
[CrossRef]

Bowden, C. M.

M. D. Tocci, M. Scalora, M. J. Bloemer, J. P. Dowling, and C. M. Bowden, "Measurement of spontaneousemission enhancement near the one-dimensional photonic band edge of semiconductor heterostructure," Phys. Rev. A 53, 2799-2803 (1996).
[CrossRef] [PubMed]

M. Scalora, J. P. Dowling, M. Tocci, M. J. Bloemer, C. M. Bowden, and J. W. Haus, "Dipole emission rates in one-dimensional photonic band-gap materials," Appl. Phys. B 60, S57-S61 (1995).

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The photonic band edge laser: A new approach to gain enhancement," J. Appl. Phys. 75, 1896-1899 (1994).
[CrossRef]

Delaye, Ph.

M. Astic, Ph. Delaye, R. Frey, G. Roosen, R. Andr’e, N. Belabas, I. Sagnes, and R. Raj, "Time resolved nonlinear spectroscopy at the band edge of 1D photonic crystals," J. Phys. D: Appl. Phys. 41, 224005 (2008).
[CrossRef]

Depps, D. G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Depps, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Dowling, J. P.

M. D. Tocci, M. Scalora, M. J. Bloemer, J. P. Dowling, and C. M. Bowden, "Measurement of spontaneousemission enhancement near the one-dimensional photonic band edge of semiconductor heterostructure," Phys. Rev. A 53, 2799-2803 (1996).
[CrossRef] [PubMed]

M. Scalora, J. P. Dowling, M. Tocci, M. J. Bloemer, C. M. Bowden, and J. W. Haus, "Dipole emission rates in one-dimensional photonic band-gap materials," Appl. Phys. B 60, S57-S61 (1995).

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The photonic band edge laser: A new approach to gain enhancement," J. Appl. Phys. 75, 1896-1899 (1994).
[CrossRef]

Dreiser, J.

A. Badolato, K. Hennessy,M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, "Deterministic coupling of single quantum dots to single nanocavity modes," Science 308, 1158-1161 (2005).
[CrossRef] [PubMed]

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Depps, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Forchel, A.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. S¨unner, M. Kamp, A. Forchel, and P. Lodahl, "Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide," Phys. Rev. Lett. 101, 113903 (2008).
[CrossRef] [PubMed]

T. D. Happ, I. I. Tartakovskii, V. D. Kulakovskii, J. P. Reithmaier, M. Kamp, and A. Forchel, "Enhanced light emission of InxGa1−xAs quantum dots in a two-dimensional photonic-crystal defect microcavity," Phys. Rev. B 66, 041303 (2002).
[CrossRef]

Frey, R.

M. Astic, Ph. Delaye, R. Frey, G. Roosen, R. Andr’e, N. Belabas, I. Sagnes, and R. Raj, "Time resolved nonlinear spectroscopy at the band edge of 1D photonic crystals," J. Phys. D: Appl. Phys. 41, 224005 (2008).
[CrossRef]

Fujii, A.

Gibbs, H. M.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Depps, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Happ, T. D.

T. D. Happ, I. I. Tartakovskii, V. D. Kulakovskii, J. P. Reithmaier, M. Kamp, and A. Forchel, "Enhanced light emission of InxGa1−xAs quantum dots in a two-dimensional photonic-crystal defect microcavity," Phys. Rev. B 66, 041303 (2002).
[CrossRef]

Haus, J. W.

M. Scalora, J. P. Dowling, M. Tocci, M. J. Bloemer, C. M. Bowden, and J. W. Haus, "Dipole emission rates in one-dimensional photonic band-gap materials," Appl. Phys. B 60, S57-S61 (1995).

Hendrickson, J.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Depps, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Hennessy, K.

A. Badolato, K. Hennessy,M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, "Deterministic coupling of single quantum dots to single nanocavity modes," Science 308, 1158-1161 (2005).
[CrossRef] [PubMed]

Hu, E.

A. Badolato, K. Hennessy,M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, "Deterministic coupling of single quantum dots to single nanocavity modes," Science 308, 1158-1161 (2005).
[CrossRef] [PubMed]

Huang, Y.

Hughes, S.

V. S. C. Manga Rao and S. Hughes, "Single quantum-dot Purcell factor and ® factor in a photonic crystal waveguide," Phys. Rev. B 75, 205437 (2007).
[CrossRef]

Hugonin, J. P.

G. Lecamp, P. Lalanne, and J. P. Hugonin, "Very large spontaneous-emission ® factors in photonic-crystal waveguides," Phys. Rev. Lett. 99, 023902 (2007).
[CrossRef] [PubMed]

Ikeda, N.

T. Kuroda, N. Ikeda, T. Mano, Y. Sugimoto, T. Ochiai, K. Kuroda, S. Ohkouchi, N. Koguchi, K. Sakoda, and K. Asakawa, "Acceleration and suppression of photoemission of GaAs quantum dots embedded in photonic crystal microcavities," Appl. Phys. Lett. 93, 111103 (2008).
[CrossRef]

Imamoglu, A.

A. Badolato, K. Hennessy,M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, "Deterministic coupling of single quantum dots to single nanocavity modes," Science 308, 1158-1161 (2005).
[CrossRef] [PubMed]

Irman, A.

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, andW. L. Vos, "Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals," Nature 430, 654-657 (2004).
[CrossRef] [PubMed]

John, S.

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486- 2489 (1987).
[CrossRef] [PubMed]

Julsgaard, B.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. S¨unner, M. Kamp, A. Forchel, and P. Lodahl, "Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide," Phys. Rev. Lett. 101, 113903 (2008).
[CrossRef] [PubMed]

Kamp, M.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. S¨unner, M. Kamp, A. Forchel, and P. Lodahl, "Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide," Phys. Rev. Lett. 101, 113903 (2008).
[CrossRef] [PubMed]

T. D. Happ, I. I. Tartakovskii, V. D. Kulakovskii, J. P. Reithmaier, M. Kamp, and A. Forchel, "Enhanced light emission of InxGa1−xAs quantum dots in a two-dimensional photonic-crystal defect microcavity," Phys. Rev. B 66, 041303 (2002).
[CrossRef]

Khitrova, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Depps, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Koguchi, N.

T. Kuroda, N. Ikeda, T. Mano, Y. Sugimoto, T. Ochiai, K. Kuroda, S. Ohkouchi, N. Koguchi, K. Sakoda, and K. Asakawa, "Acceleration and suppression of photoemission of GaAs quantum dots embedded in photonic crystal microcavities," Appl. Phys. Lett. 93, 111103 (2008).
[CrossRef]

Kulakovskii, V. D.

T. D. Happ, I. I. Tartakovskii, V. D. Kulakovskii, J. P. Reithmaier, M. Kamp, and A. Forchel, "Enhanced light emission of InxGa1−xAs quantum dots in a two-dimensional photonic-crystal defect microcavity," Phys. Rev. B 66, 041303 (2002).
[CrossRef]

Kuroda, K.

T. Kuroda, N. Ikeda, T. Mano, Y. Sugimoto, T. Ochiai, K. Kuroda, S. Ohkouchi, N. Koguchi, K. Sakoda, and K. Asakawa, "Acceleration and suppression of photoemission of GaAs quantum dots embedded in photonic crystal microcavities," Appl. Phys. Lett. 93, 111103 (2008).
[CrossRef]

Kuroda, T.

T. Kuroda, N. Ikeda, T. Mano, Y. Sugimoto, T. Ochiai, K. Kuroda, S. Ohkouchi, N. Koguchi, K. Sakoda, and K. Asakawa, "Acceleration and suppression of photoemission of GaAs quantum dots embedded in photonic crystal microcavities," Appl. Phys. Lett. 93, 111103 (2008).
[CrossRef]

Lalanne, P.

G. Lecamp, P. Lalanne, and J. P. Hugonin, "Very large spontaneous-emission ® factors in photonic-crystal waveguides," Phys. Rev. Lett. 99, 023902 (2007).
[CrossRef] [PubMed]

Lecamp, G.

G. Lecamp, P. Lalanne, and J. P. Hugonin, "Very large spontaneous-emission ® factors in photonic-crystal waveguides," Phys. Rev. Lett. 99, 023902 (2007).
[CrossRef] [PubMed]

Lodahl, P.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. S¨unner, M. Kamp, A. Forchel, and P. Lodahl, "Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide," Phys. Rev. Lett. 101, 113903 (2008).
[CrossRef] [PubMed]

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, andW. L. Vos, "Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals," Nature 430, 654-657 (2004).
[CrossRef] [PubMed]

Lund-Hansen, T.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. S¨unner, M. Kamp, A. Forchel, and P. Lodahl, "Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide," Phys. Rev. Lett. 101, 113903 (2008).
[CrossRef] [PubMed]

Manga Rao, V. S. C.

V. S. C. Manga Rao and S. Hughes, "Single quantum-dot Purcell factor and ® factor in a photonic crystal waveguide," Phys. Rev. B 75, 205437 (2007).
[CrossRef]

Mano, T.

T. Kuroda, N. Ikeda, T. Mano, Y. Sugimoto, T. Ochiai, K. Kuroda, S. Ohkouchi, N. Koguchi, K. Sakoda, and K. Asakawa, "Acceleration and suppression of photoemission of GaAs quantum dots embedded in photonic crystal microcavities," Appl. Phys. Lett. 93, 111103 (2008).
[CrossRef]

Matsuhisa, Y.

Nagasawa, K.

Y. Sakurai, K. Nagasawa, H. Nishikawa, and Y. Ohki, "Characteristic red photoluminescence band in oxygendeficient silica glass," J. Appl. Phys. 86, 370-373 (1999).
[CrossRef]

Nikolaev, I. S.

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, andW. L. Vos, "Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals," Nature 430, 654-657 (2004).
[CrossRef] [PubMed]

Nishikawa, H.

Y. Sakurai, K. Nagasawa, H. Nishikawa, and Y. Ohki, "Characteristic red photoluminescence band in oxygendeficient silica glass," J. Appl. Phys. 86, 370-373 (1999).
[CrossRef]

Ochiai, T.

T. Kuroda, N. Ikeda, T. Mano, Y. Sugimoto, T. Ochiai, K. Kuroda, S. Ohkouchi, N. Koguchi, K. Sakoda, and K. Asakawa, "Acceleration and suppression of photoemission of GaAs quantum dots embedded in photonic crystal microcavities," Appl. Phys. Lett. 93, 111103 (2008).
[CrossRef]

Ohki, Y.

Y. Sakurai, K. Nagasawa, H. Nishikawa, and Y. Ohki, "Characteristic red photoluminescence band in oxygendeficient silica glass," J. Appl. Phys. 86, 370-373 (1999).
[CrossRef]

Ohkouchi, S.

T. Kuroda, N. Ikeda, T. Mano, Y. Sugimoto, T. Ochiai, K. Kuroda, S. Ohkouchi, N. Koguchi, K. Sakoda, and K. Asakawa, "Acceleration and suppression of photoemission of GaAs quantum dots embedded in photonic crystal microcavities," Appl. Phys. Lett. 93, 111103 (2008).
[CrossRef]

Overgaag, K.

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, andW. L. Vos, "Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals," Nature 430, 654-657 (2004).
[CrossRef] [PubMed]

Ozaki, M.

Petroff, P. M.

A. Badolato, K. Hennessy,M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, "Deterministic coupling of single quantum dots to single nanocavity modes," Science 308, 1158-1161 (2005).
[CrossRef] [PubMed]

Reithmaier, J. P.

T. D. Happ, I. I. Tartakovskii, V. D. Kulakovskii, J. P. Reithmaier, M. Kamp, and A. Forchel, "Enhanced light emission of InxGa1−xAs quantum dots in a two-dimensional photonic-crystal defect microcavity," Phys. Rev. B 66, 041303 (2002).
[CrossRef]

Roosen, G.

M. Astic, Ph. Delaye, R. Frey, G. Roosen, R. Andr’e, N. Belabas, I. Sagnes, and R. Raj, "Time resolved nonlinear spectroscopy at the band edge of 1D photonic crystals," J. Phys. D: Appl. Phys. 41, 224005 (2008).
[CrossRef]

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Depps, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

S¨unner, T.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. S¨unner, M. Kamp, A. Forchel, and P. Lodahl, "Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide," Phys. Rev. Lett. 101, 113903 (2008).
[CrossRef] [PubMed]

Sakoda, K.

T. Kuroda, N. Ikeda, T. Mano, Y. Sugimoto, T. Ochiai, K. Kuroda, S. Ohkouchi, N. Koguchi, K. Sakoda, and K. Asakawa, "Acceleration and suppression of photoemission of GaAs quantum dots embedded in photonic crystal microcavities," Appl. Phys. Lett. 93, 111103 (2008).
[CrossRef]

K. Sakoda, "Optics of photonic crystals," Opt. Rev. 6, 381-392 (1999).
[CrossRef]

Sakurai, Y.

Y. Sakurai, K. Nagasawa, H. Nishikawa, and Y. Ohki, "Characteristic red photoluminescence band in oxygendeficient silica glass," J. Appl. Phys. 86, 370-373 (1999).
[CrossRef]

Scalora, M.

M. D. Tocci, M. Scalora, M. J. Bloemer, J. P. Dowling, and C. M. Bowden, "Measurement of spontaneousemission enhancement near the one-dimensional photonic band edge of semiconductor heterostructure," Phys. Rev. A 53, 2799-2803 (1996).
[CrossRef] [PubMed]

M. Scalora, J. P. Dowling, M. Tocci, M. J. Bloemer, C. M. Bowden, and J. W. Haus, "Dipole emission rates in one-dimensional photonic band-gap materials," Appl. Phys. B 60, S57-S61 (1995).

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The photonic band edge laser: A new approach to gain enhancement," J. Appl. Phys. 75, 1896-1899 (1994).
[CrossRef]

Scherer, A.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Depps, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Shchekin, O. B.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Depps, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Stobbe, S.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. S¨unner, M. Kamp, A. Forchel, and P. Lodahl, "Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide," Phys. Rev. Lett. 101, 113903 (2008).
[CrossRef] [PubMed]

Sugimoto, Y.

T. Kuroda, N. Ikeda, T. Mano, Y. Sugimoto, T. Ochiai, K. Kuroda, S. Ohkouchi, N. Koguchi, K. Sakoda, and K. Asakawa, "Acceleration and suppression of photoemission of GaAs quantum dots embedded in photonic crystal microcavities," Appl. Phys. Lett. 93, 111103 (2008).
[CrossRef]

Takao, Y.

Tartakovskii, I. I.

T. D. Happ, I. I. Tartakovskii, V. D. Kulakovskii, J. P. Reithmaier, M. Kamp, and A. Forchel, "Enhanced light emission of InxGa1−xAs quantum dots in a two-dimensional photonic-crystal defect microcavity," Phys. Rev. B 66, 041303 (2002).
[CrossRef]

Thyrrestrup, H.

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. S¨unner, M. Kamp, A. Forchel, and P. Lodahl, "Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide," Phys. Rev. Lett. 101, 113903 (2008).
[CrossRef] [PubMed]

Tocci, M.

M. Scalora, J. P. Dowling, M. Tocci, M. J. Bloemer, C. M. Bowden, and J. W. Haus, "Dipole emission rates in one-dimensional photonic band-gap materials," Appl. Phys. B 60, S57-S61 (1995).

Tocci, M. D.

M. D. Tocci, M. Scalora, M. J. Bloemer, J. P. Dowling, and C. M. Bowden, "Measurement of spontaneousemission enhancement near the one-dimensional photonic band edge of semiconductor heterostructure," Phys. Rev. A 53, 2799-2803 (1996).
[CrossRef] [PubMed]

van Driel, A. F.

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, andW. L. Vos, "Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals," Nature 430, 654-657 (2004).
[CrossRef] [PubMed]

Vanmaekelbergh, D.

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, andW. L. Vos, "Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals," Nature 430, 654-657 (2004).
[CrossRef] [PubMed]

Wu, S.-T.

Yablonovitch, E.

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

Yeh, P.

Yoshie, T.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Depps, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Zhang, Z.

M. Zhu, Z. Zhang, andW. Miao, "Intense photoluminescence from amorphous tantalum oxide films," Appl. Phys. Lett. 89, 021915 (1996).
[CrossRef]

Zhou, Y.

Zhu, M.

M. Zhu, Z. Zhang, andW. Miao, "Intense photoluminescence from amorphous tantalum oxide films," Appl. Phys. Lett. 89, 021915 (1996).
[CrossRef]

Appl. Phys. B (1)

M. Scalora, J. P. Dowling, M. Tocci, M. J. Bloemer, C. M. Bowden, and J. W. Haus, "Dipole emission rates in one-dimensional photonic band-gap materials," Appl. Phys. B 60, S57-S61 (1995).

Appl. Phys. Lett. (2)

T. Kuroda, N. Ikeda, T. Mano, Y. Sugimoto, T. Ochiai, K. Kuroda, S. Ohkouchi, N. Koguchi, K. Sakoda, and K. Asakawa, "Acceleration and suppression of photoemission of GaAs quantum dots embedded in photonic crystal microcavities," Appl. Phys. Lett. 93, 111103 (2008).
[CrossRef]

M. Zhu, Z. Zhang, andW. Miao, "Intense photoluminescence from amorphous tantalum oxide films," Appl. Phys. Lett. 89, 021915 (1996).
[CrossRef]

J. Appl. Phys. (2)

Y. Sakurai, K. Nagasawa, H. Nishikawa, and Y. Ohki, "Characteristic red photoluminescence band in oxygendeficient silica glass," J. Appl. Phys. 86, 370-373 (1999).
[CrossRef]

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The photonic band edge laser: A new approach to gain enhancement," J. Appl. Phys. 75, 1896-1899 (1994).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. D: Appl. Phys. (1)

M. Astic, Ph. Delaye, R. Frey, G. Roosen, R. Andr’e, N. Belabas, I. Sagnes, and R. Raj, "Time resolved nonlinear spectroscopy at the band edge of 1D photonic crystals," J. Phys. D: Appl. Phys. 41, 224005 (2008).
[CrossRef]

Nature (2)

P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, andW. L. Vos, "Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals," Nature 430, 654-657 (2004).
[CrossRef] [PubMed]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Depps, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Rev. (1)

K. Sakoda, "Optics of photonic crystals," Opt. Rev. 6, 381-392 (1999).
[CrossRef]

Phys. Rev. A (1)

M. D. Tocci, M. Scalora, M. J. Bloemer, J. P. Dowling, and C. M. Bowden, "Measurement of spontaneousemission enhancement near the one-dimensional photonic band edge of semiconductor heterostructure," Phys. Rev. A 53, 2799-2803 (1996).
[CrossRef] [PubMed]

Phys. Rev. B (2)

V. S. C. Manga Rao and S. Hughes, "Single quantum-dot Purcell factor and ® factor in a photonic crystal waveguide," Phys. Rev. B 75, 205437 (2007).
[CrossRef]

T. D. Happ, I. I. Tartakovskii, V. D. Kulakovskii, J. P. Reithmaier, M. Kamp, and A. Forchel, "Enhanced light emission of InxGa1−xAs quantum dots in a two-dimensional photonic-crystal defect microcavity," Phys. Rev. B 66, 041303 (2002).
[CrossRef]

Phys. Rev. Lett. (4)

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486- 2489 (1987).
[CrossRef] [PubMed]

T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. S¨unner, M. Kamp, A. Forchel, and P. Lodahl, "Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide," Phys. Rev. Lett. 101, 113903 (2008).
[CrossRef] [PubMed]

G. Lecamp, P. Lalanne, and J. P. Hugonin, "Very large spontaneous-emission ® factors in photonic-crystal waveguides," Phys. Rev. Lett. 99, 023902 (2007).
[CrossRef] [PubMed]

Science (1)

A. Badolato, K. Hennessy,M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, "Deterministic coupling of single quantum dots to single nanocavity modes," Science 308, 1158-1161 (2005).
[CrossRef] [PubMed]

Other (2)

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 1995).

K. Sakoda, Optical Properties of Photonic Crystals, 2nd edition (Springer, Berlin, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Typical dispersion relation of PCs. (b) Energy conservation across the surface of a PC.

Fig. 2.
Fig. 2.

Experimental configuration.

Fig. 3.
Fig. 3.

(a) Emission spectrum at ϕ=0°. (b) Transmission spectrum in the direction normal to the sample surface. (c) Product of the genuine emission spectrum and the transmittance. (d) Excitation intensity dependence of the emission peak intensity. Solid and open circles stand for the lower and upper frequency peaks, respectively. The two straight lines represent the best fit by the power law dependence.

Fig. 4.
Fig. 4.

Emission spectra observed at the detection angle, ϕ, from −15° to 45°.

Fig. 5.
Fig. 5.

Calculated emission spectra.

Fig. 6.
Fig. 6.

(a) Emission spectra measured by 579 to 593 nm excitation at 45° incidence. Each spectrum is shifted by 2 nmfor clarity. (b) Red circles: Emission peak intensity as a function of the excitation wavelength at 45° and 40° incidence. Blue line: Emission spectrum at ϕ=0°.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ω=ω0+22m*(kk0)2,
1ε(x)=η0+η1eiGx+η1*eiGx,
{x1ε(x)x+y1ε(x)y}Hz=ω2c2Hz,
ω±caπ2(η0±η1)+a2ky2(η0η1)
+ach22η0η1±2π2η02η1(π2a2ky2)π2(η0±η1)+a2ky2(η0η1),
dsdk (ωkx)2(cωkysinϕ)2+sin2ϕ .

Metrics