Abstract

We demonstrate the feasibility of characterizing the absorption and scattering spectra of micron-scale structures in a turbid medium using a spectroscopic optical coherence tomography (SOCT) system with a bandwidth of 430–650nm. SOCT measurements are taken from phantoms composed of fluorescent microspheres. The absorption and scattering spectra are recovered with proper selections of spatial window width in the post processing step. Furthermore, we present an analysis using numerical OCT simulation based on full-wave solutions of the Maxwell’s Equation to elucidate the origination of the multiple peaks in the OCT image for a single microsphere. Finally, we demonstrate the possibility of identifying contrast agents concentrated in micron-sized scale in an SOCT image. Two different types of microspheres in gel phantom are discriminated in 3D volume based on their distinguished absorbent feature.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, "Spectroscopic optical coherence tomography," Opt. Lett. 25,111-113 (2000).
    [CrossRef]
  2. D. J. Faber, E.G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, "Light absorption of (oxy-)hemoglobin assessed by spectroscopic optical coherence tomography," Opt. Lett. 28, 1436-1438 (2003).
    [CrossRef] [PubMed]
  3. S. A. Boppart, M. E. Brezinski, C Pitris, and J. G. Fujimoto, "Optical Coherence Tomography for Neurosurgical Imaging of Human Intracortical Melanoma," Neurosurgery 43, 834-841 (1998).
    [CrossRef] [PubMed]
  4. Z. Yaqoob, E. Mc Dowell, J. Wu, X. Heng, J. Fingler, and C. Yang, "Molecular contrast optical coherence tomography: a pump-probe scheme using indocyanine green as a contrast agent," J. Biomed. Opt. 11, 054017 (2006).
    [CrossRef] [PubMed]
  5. K. D. Rao, M. A. Choma, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, "Molecular contrast in optical coherence tomography by use of a pump-probe technique," Opt. Lett. 28, 340-342 (2003).
    [CrossRef] [PubMed]
  6. C. Yang, L. E. L. McGuckin., J. D. Simon, M. A. Choma, B. E. Applegate, and J. A. Izatt, "Spectral triangulation molecular contrast optical coherence tomography with indocyanine green as the contrast agent," Opt. Lett. 29, 2016-2018 (2004).
    [CrossRef] [PubMed]
  7. C. Xu, J. Ye, D. L. Marks, and S. A. Boppart, "Near-infrared dyes as contrast-enhancing agents for spectroscopic optical coherence tomography," Opt. Lett. 29, 1647-1649 (2004).
    [CrossRef] [PubMed]
  8. D. C. Adler, T. H. Ko, P. R. Herz, and J. G. Fujimoto, "Optical coherence tomography contrast enhancement using spectroscopic analysis with spectral autocorrelation," Opt. Express 12, 5487-5501 (2004).
    [CrossRef] [PubMed]
  9. R. N. Graf and A. Wax, "Nuclear morphology measurements using Fourier domain low coherence interferometry," Opt. Express 13, 4693-4698 (2005).
    [CrossRef]
  10. T. S. Troutman, J. K. Barton, and M. Romanowski, "Optical coherence tomography with plasmon resonant nanorods of gold," Opt. Lett. 32, 1438-1440 (2007).
    [CrossRef] [PubMed]
  11. J. Chen, F. Saeki, B. J. Wiley, Hu Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, "Gold Nanocages: Bioconjugation and Their Potential Use as Optical Imaging Contrast Agents," Nano Lett. 5, 473-477 (2005).
    [CrossRef] [PubMed]
  12. J. K. Barton, N. J. Halas, J. L. West, and R. A. Drezek, "Nanoshells as an Optical Coherence Tomography Contrast Agent," Proc. SPIE, 5316, (2004).
    [CrossRef]
  13. A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, "Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy," Nano Lett. 7, 1929-1934 (2007).
    [CrossRef] [PubMed]
  14. A. L. Oldenburg, M.N. Hansen, D. A. Zweifel, A. Wei, and S. A. Boppart, "Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography," Opt. Express 14, 6724-6738 (2006).
    [CrossRef] [PubMed]
  15. W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999).
    [CrossRef]
  16. A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara, "Ultrahigh-Resolution Full-Field Optical Coherence Tomography," Appl. Opt. 43, 2874-2883 (2004).
    [CrossRef] [PubMed]
  17. C. Xu, D. L. Marks, M N. Do, and S. A. Boppart, "Separation of absorption and scattering profiles in spectroscopic optical coherence tomography using a least-squares algorithm," Opt. Express 12, 4790-4803 (2004).
    [CrossRef] [PubMed]
  18. C. Xu, P. S. Carney, and S. A. Boppart, "Wavelength-dependent scattering in spectroscopic optical coherence tomography," Opt. Express 13, 5450-5462 (2005).
    [CrossRef] [PubMed]
  19. T. Dennis, S. D. D., A. Dienstfrey, G. Singh and P. Rice, "Analyzing quantitative light scattering spectra of phantoms measured with optical coherence tomography," J. Biomed. Opt. 13, 024004 (2008).
    [CrossRef] [PubMed]
  20. R. N. Graf, W. J. Browmn, and A. Wax, "Parallel frequency-domain optical coherence tomography scatter-mode imaging of the hamster cheek pouch using a thermal light source," Opt. Express 33, 1285-1287 (2008).
  21. Y. L. Xu "Electromagnetic scattering by an aggregate of spheresParallel frequency-domain optical coherence tomography scatter-mode imaging of the hamster cheek pouch using a thermal light source," Appl. Opt. 34, 4573-4588 (1995).
    [CrossRef] [PubMed]
  22. J. L. Hollmann, A. K. Dunn, and C. A. DiMarzio, "Computational microscopy in embryo imaging," Opt. Express 29, 2267-2269 (2004).
  23. Y. Liu, X. Li, Y. L. Kim, and V. Backman, "Elastic backscattering spectroscopic microscopy," Opt. Lett. 30, 2445-2447 (2005).
    [CrossRef] [PubMed]
  24. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "A solid tissue phantom for photon migration studies," Phys. Med. Biol. 42, 1971-1979 (1997).
    [CrossRef] [PubMed]
  25. R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, "Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography," Opt. Lett. 25, 820-822 (2000).
    [CrossRef]
  26. C. Xu, F. Kamalabadi, and S. A. Boppart, "Comparative performance analysis of time-frequency distributions for spectroscopic optical coherence tomography," Appl. Opt. 44, 1813-1822 (2005).
    [CrossRef] [PubMed]
  27. A. Wax, C. Yang, and J. A. Izatt, "Fourier-domain low-coherence interferometry for light-scattering spectroscopy," Opt. Lett. 28, 1230-1232 (2003).
    [CrossRef] [PubMed]

2008 (2)

T. Dennis, S. D. D., A. Dienstfrey, G. Singh and P. Rice, "Analyzing quantitative light scattering spectra of phantoms measured with optical coherence tomography," J. Biomed. Opt. 13, 024004 (2008).
[CrossRef] [PubMed]

R. N. Graf, W. J. Browmn, and A. Wax, "Parallel frequency-domain optical coherence tomography scatter-mode imaging of the hamster cheek pouch using a thermal light source," Opt. Express 33, 1285-1287 (2008).

2007 (2)

T. S. Troutman, J. K. Barton, and M. Romanowski, "Optical coherence tomography with plasmon resonant nanorods of gold," Opt. Lett. 32, 1438-1440 (2007).
[CrossRef] [PubMed]

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, "Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy," Nano Lett. 7, 1929-1934 (2007).
[CrossRef] [PubMed]

2006 (2)

A. L. Oldenburg, M.N. Hansen, D. A. Zweifel, A. Wei, and S. A. Boppart, "Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography," Opt. Express 14, 6724-6738 (2006).
[CrossRef] [PubMed]

Z. Yaqoob, E. Mc Dowell, J. Wu, X. Heng, J. Fingler, and C. Yang, "Molecular contrast optical coherence tomography: a pump-probe scheme using indocyanine green as a contrast agent," J. Biomed. Opt. 11, 054017 (2006).
[CrossRef] [PubMed]

2005 (5)

2004 (6)

2003 (3)

2000 (2)

1999 (1)

1998 (1)

S. A. Boppart, M. E. Brezinski, C Pitris, and J. G. Fujimoto, "Optical Coherence Tomography for Neurosurgical Imaging of Human Intracortical Melanoma," Neurosurgery 43, 834-841 (1998).
[CrossRef] [PubMed]

1997 (1)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "A solid tissue phantom for photon migration studies," Phys. Med. Biol. 42, 1971-1979 (1997).
[CrossRef] [PubMed]

1995 (1)

Aalders, M. C. G.

Adler, D. C.

Backman, V.

Barton, J. K.

Boccara, C.

Boppart, S. A.

A. L. Oldenburg, M.N. Hansen, D. A. Zweifel, A. Wei, and S. A. Boppart, "Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography," Opt. Express 14, 6724-6738 (2006).
[CrossRef] [PubMed]

C. Xu, F. Kamalabadi, and S. A. Boppart, "Comparative performance analysis of time-frequency distributions for spectroscopic optical coherence tomography," Appl. Opt. 44, 1813-1822 (2005).
[CrossRef] [PubMed]

C. Xu, P. S. Carney, and S. A. Boppart, "Wavelength-dependent scattering in spectroscopic optical coherence tomography," Opt. Express 13, 5450-5462 (2005).
[CrossRef] [PubMed]

C. Xu, D. L. Marks, M N. Do, and S. A. Boppart, "Separation of absorption and scattering profiles in spectroscopic optical coherence tomography using a least-squares algorithm," Opt. Express 12, 4790-4803 (2004).
[CrossRef] [PubMed]

C. Xu, J. Ye, D. L. Marks, and S. A. Boppart, "Near-infrared dyes as contrast-enhancing agents for spectroscopic optical coherence tomography," Opt. Lett. 29, 1647-1649 (2004).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999).
[CrossRef]

S. A. Boppart, M. E. Brezinski, C Pitris, and J. G. Fujimoto, "Optical Coherence Tomography for Neurosurgical Imaging of Human Intracortical Melanoma," Neurosurgery 43, 834-841 (1998).
[CrossRef] [PubMed]

Brezinski, M. E.

S. A. Boppart, M. E. Brezinski, C Pitris, and J. G. Fujimoto, "Optical Coherence Tomography for Neurosurgical Imaging of Human Intracortical Melanoma," Neurosurgery 43, 834-841 (1998).
[CrossRef] [PubMed]

Browmn, W. J.

R. N. Graf, W. J. Browmn, and A. Wax, "Parallel frequency-domain optical coherence tomography scatter-mode imaging of the hamster cheek pouch using a thermal light source," Opt. Express 33, 1285-1287 (2008).

Carney, P. S.

Chen, J.

J. Chen, F. Saeki, B. J. Wiley, Hu Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, "Gold Nanocages: Bioconjugation and Their Potential Use as Optical Imaging Contrast Agents," Nano Lett. 5, 473-477 (2005).
[CrossRef] [PubMed]

Choma, M. A.

Cubeddu, R.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "A solid tissue phantom for photon migration studies," Phys. Med. Biol. 42, 1971-1979 (1997).
[CrossRef] [PubMed]

Dennis, T.

T. Dennis, S. D. D., A. Dienstfrey, G. Singh and P. Rice, "Analyzing quantitative light scattering spectra of phantoms measured with optical coherence tomography," J. Biomed. Opt. 13, 024004 (2008).
[CrossRef] [PubMed]

DiMarzio, C. A.

J. L. Hollmann, A. K. Dunn, and C. A. DiMarzio, "Computational microscopy in embryo imaging," Opt. Express 29, 2267-2269 (2004).

Do, M N.

Drexler, W.

Drezek, R. A.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, "Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy," Nano Lett. 7, 1929-1934 (2007).
[CrossRef] [PubMed]

Dubois, A.

Dunn, A. K.

J. L. Hollmann, A. K. Dunn, and C. A. DiMarzio, "Computational microscopy in embryo imaging," Opt. Express 29, 2267-2269 (2004).

Faber, D. J.

Fercher, A. F.

Fingler, J.

Z. Yaqoob, E. Mc Dowell, J. Wu, X. Heng, J. Fingler, and C. Yang, "Molecular contrast optical coherence tomography: a pump-probe scheme using indocyanine green as a contrast agent," J. Biomed. Opt. 11, 054017 (2006).
[CrossRef] [PubMed]

Fujimoto, J. G.

Gobin, A. M.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, "Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy," Nano Lett. 7, 1929-1934 (2007).
[CrossRef] [PubMed]

Graf, R. N.

R. N. Graf, W. J. Browmn, and A. Wax, "Parallel frequency-domain optical coherence tomography scatter-mode imaging of the hamster cheek pouch using a thermal light source," Opt. Express 33, 1285-1287 (2008).

R. N. Graf and A. Wax, "Nuclear morphology measurements using Fourier domain low coherence interferometry," Opt. Express 13, 4693-4698 (2005).
[CrossRef]

Grieve, K.

Halas, N. J.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, "Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy," Nano Lett. 7, 1929-1934 (2007).
[CrossRef] [PubMed]

Hansen, M.N.

Heng, X.

Z. Yaqoob, E. Mc Dowell, J. Wu, X. Heng, J. Fingler, and C. Yang, "Molecular contrast optical coherence tomography: a pump-probe scheme using indocyanine green as a contrast agent," J. Biomed. Opt. 11, 054017 (2006).
[CrossRef] [PubMed]

Herz, P. R.

Hitzenberger, C. K.

Hollmann, J. L.

J. L. Hollmann, A. K. Dunn, and C. A. DiMarzio, "Computational microscopy in embryo imaging," Opt. Express 29, 2267-2269 (2004).

Hu Cang, B. J.

J. Chen, F. Saeki, B. J. Wiley, Hu Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, "Gold Nanocages: Bioconjugation and Their Potential Use as Optical Imaging Contrast Agents," Nano Lett. 5, 473-477 (2005).
[CrossRef] [PubMed]

Ippen, E. P.

Izatt, J. A.

James, W. D.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, "Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy," Nano Lett. 7, 1929-1934 (2007).
[CrossRef] [PubMed]

Kamalabadi, F.

Kartner, F. X.

Kärtner, F. X.

Kim, Y. L.

Ko, T. H.

Kowalczyk, A.

Lecaque, R.

Lee, M. H.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, "Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy," Nano Lett. 7, 1929-1934 (2007).
[CrossRef] [PubMed]

Leitgeb, R.

Li, X.

Li, X. D.

Liu, Y.

Marks, D. L.

Mc Dowell, E.

Z. Yaqoob, E. Mc Dowell, J. Wu, X. Heng, J. Fingler, and C. Yang, "Molecular contrast optical coherence tomography: a pump-probe scheme using indocyanine green as a contrast agent," J. Biomed. Opt. 11, 054017 (2006).
[CrossRef] [PubMed]

McGuckin, L. E. L.

Mik, E.G.

Moneron, G.

Morgner, U.

Oldenburg, A. L.

Pifferi, A.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "A solid tissue phantom for photon migration studies," Phys. Med. Biol. 42, 1971-1979 (1997).
[CrossRef] [PubMed]

Pitris, C

S. A. Boppart, M. E. Brezinski, C Pitris, and J. G. Fujimoto, "Optical Coherence Tomography for Neurosurgical Imaging of Human Intracortical Melanoma," Neurosurgery 43, 834-841 (1998).
[CrossRef] [PubMed]

Pitris, C.

Rao, K. D.

Rollins, A. M.

Romanowski, M.

Saeki, F.

J. Chen, F. Saeki, B. J. Wiley, Hu Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, "Gold Nanocages: Bioconjugation and Their Potential Use as Optical Imaging Contrast Agents," Nano Lett. 5, 473-477 (2005).
[CrossRef] [PubMed]

Sticker, M.

Taroni, P.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "A solid tissue phantom for photon migration studies," Phys. Med. Biol. 42, 1971-1979 (1997).
[CrossRef] [PubMed]

Torricelli, A.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "A solid tissue phantom for photon migration studies," Phys. Med. Biol. 42, 1971-1979 (1997).
[CrossRef] [PubMed]

Troutman, T. S.

Vabre, L.

Valentini, G.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "A solid tissue phantom for photon migration studies," Phys. Med. Biol. 42, 1971-1979 (1997).
[CrossRef] [PubMed]

van Leeuwen, T. G.

Wax, A.

Wei, A.

West, J. L.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, "Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy," Nano Lett. 7, 1929-1934 (2007).
[CrossRef] [PubMed]

Wiley, B. J.

J. Chen, F. Saeki, B. J. Wiley, Hu Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, "Gold Nanocages: Bioconjugation and Their Potential Use as Optical Imaging Contrast Agents," Nano Lett. 5, 473-477 (2005).
[CrossRef] [PubMed]

Wojtkowski, M.

Wu, J.

Z. Yaqoob, E. Mc Dowell, J. Wu, X. Heng, J. Fingler, and C. Yang, "Molecular contrast optical coherence tomography: a pump-probe scheme using indocyanine green as a contrast agent," J. Biomed. Opt. 11, 054017 (2006).
[CrossRef] [PubMed]

Xu, C.

Xu, Y. L.

Yang, C.

Yaqoob, Z.

Z. Yaqoob, E. Mc Dowell, J. Wu, X. Heng, J. Fingler, and C. Yang, "Molecular contrast optical coherence tomography: a pump-probe scheme using indocyanine green as a contrast agent," J. Biomed. Opt. 11, 054017 (2006).
[CrossRef] [PubMed]

Yazdanfar, S.

Ye, J.

Zweifel, D. A.

Appl. Opt. (3)

J. Biomed. Opt. (2)

T. Dennis, S. D. D., A. Dienstfrey, G. Singh and P. Rice, "Analyzing quantitative light scattering spectra of phantoms measured with optical coherence tomography," J. Biomed. Opt. 13, 024004 (2008).
[CrossRef] [PubMed]

Z. Yaqoob, E. Mc Dowell, J. Wu, X. Heng, J. Fingler, and C. Yang, "Molecular contrast optical coherence tomography: a pump-probe scheme using indocyanine green as a contrast agent," J. Biomed. Opt. 11, 054017 (2006).
[CrossRef] [PubMed]

Nano Lett. (2)

J. Chen, F. Saeki, B. J. Wiley, Hu Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, "Gold Nanocages: Bioconjugation and Their Potential Use as Optical Imaging Contrast Agents," Nano Lett. 5, 473-477 (2005).
[CrossRef] [PubMed]

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, "Near-Infrared Resonant Nanoshells for Combined Optical Imaging and Photothermal Cancer Therapy," Nano Lett. 7, 1929-1934 (2007).
[CrossRef] [PubMed]

Neurosurgery (1)

S. A. Boppart, M. E. Brezinski, C Pitris, and J. G. Fujimoto, "Optical Coherence Tomography for Neurosurgical Imaging of Human Intracortical Melanoma," Neurosurgery 43, 834-841 (1998).
[CrossRef] [PubMed]

Opt. Express (7)

Opt. Lett. (10)

T. S. Troutman, J. K. Barton, and M. Romanowski, "Optical coherence tomography with plasmon resonant nanorods of gold," Opt. Lett. 32, 1438-1440 (2007).
[CrossRef] [PubMed]

U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, "Spectroscopic optical coherence tomography," Opt. Lett. 25,111-113 (2000).
[CrossRef]

D. J. Faber, E.G. Mik, M. C. G. Aalders, and T. G. van Leeuwen, "Light absorption of (oxy-)hemoglobin assessed by spectroscopic optical coherence tomography," Opt. Lett. 28, 1436-1438 (2003).
[CrossRef] [PubMed]

K. D. Rao, M. A. Choma, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, "Molecular contrast in optical coherence tomography by use of a pump-probe technique," Opt. Lett. 28, 340-342 (2003).
[CrossRef] [PubMed]

C. Yang, L. E. L. McGuckin., J. D. Simon, M. A. Choma, B. E. Applegate, and J. A. Izatt, "Spectral triangulation molecular contrast optical coherence tomography with indocyanine green as the contrast agent," Opt. Lett. 29, 2016-2018 (2004).
[CrossRef] [PubMed]

C. Xu, J. Ye, D. L. Marks, and S. A. Boppart, "Near-infrared dyes as contrast-enhancing agents for spectroscopic optical coherence tomography," Opt. Lett. 29, 1647-1649 (2004).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999).
[CrossRef]

Y. Liu, X. Li, Y. L. Kim, and V. Backman, "Elastic backscattering spectroscopic microscopy," Opt. Lett. 30, 2445-2447 (2005).
[CrossRef] [PubMed]

R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, "Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography," Opt. Lett. 25, 820-822 (2000).
[CrossRef]

A. Wax, C. Yang, and J. A. Izatt, "Fourier-domain low-coherence interferometry for light-scattering spectroscopy," Opt. Lett. 28, 1230-1232 (2003).
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "A solid tissue phantom for photon migration studies," Phys. Med. Biol. 42, 1971-1979 (1997).
[CrossRef] [PubMed]

Other (1)

J. K. Barton, N. J. Halas, J. L. West, and R. A. Drezek, "Nanoshells as an Optical Coherence Tomography Contrast Agent," Proc. SPIE, 5316, (2004).
[CrossRef]

Supplementary Material (1)

» Media 1: MPG (3554 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic sketch of the system and data processing procedure. (a) Source image are focused by Lens (L1) on the aperture (AP). Lens (L2) and NA=0.1 objective lens (OL) focuses AP filtered light on sample. The beamsplitter (BS) redirects light collected by OL to spectroscope coupled by spectrograph (SG) and CCD camera. (b–d) procedure of post-processing and image formation.

Fig. 2.
Fig. 2.

Schematic sketch to illustrate the image formation algorithm. (a) Scattering field from microsphere located at origin. E s is the scattered field from the sample when reaching the pupil of objective lens. (b) Reflected reference field. The reference plane is placed between the objective lens and the scatterers. The reference E-field E ref (dots line) is approximated as a reflected Gaussian beam, backward following the illumination Gaussian profile (solid line) with a phase delay.

Fig. 3.
Fig. 3.

Simulated (a) and experimental (b) OCT image of 6µm yellow-green fluorescent microspheres and the extracted spectra by two different spatial Gaussian windows (c–d).

Fig. 4.
Fig. 4.

Simulated en face microscopic (a–c) and OCT images (e–f) of 6µm microsphere for an objective lens with NA=0.1, NA=0.2 and NA=0.3 respectively.

Fig. 5.
Fig. 5.

(a). (Media 1) 3D OCT image of the scattering phantom containing yellowgreen and polystyrene microspheres; volume=125*85*100µm in x-y-z. See the animation of scanning and 360 degree view in Movie1.mpg (3.5M). (b) En face projection images on x-y plane of original 3D OCT, (d) 3D-YG and (e) 3D-POLY data. (c) En face fluorescence image at the same position taken prior to OCT scanning. Bar=20µm.

Fig. 6.
Fig. 6.

(a). Intensity based OCT image of the scattering phantom containing fluorescent and non-absorbing microsphere; (b). False-color coded SOCT image for discrimination; Gray scale colorbar is designated for the dB intensity and Hue colorbar encodes the result of subtracting YG coefficient map from polystyrene one.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Es(rp)=1krpEi(θ,ϕ)exp(ikrp);
Eref(p)=Econst exp (p2w2(lc))exp(iklc+ikp22R(lc))exp(ik·2lref),
EI(rq)=02ππΔθ2π+Δθ2E(rp)exp(ikrprqM)dθ.

Metrics