Abstract

10-Gb/s modulation speed and transmission over 10-km SM fiber with BER < 10−11 up to 100°C temperature are achieved with optimized wafer-fused GaAs/AlGaAs-InP/InAlGaAs VCSELs incorporating re-grown tunnel junction. These VCSELs operate in the 1310-nm waveband and emit more than 1-mW single mode power in the full temperature range.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Kapon and A. Sirbu; “Long-Wavelength VCSELs: Power - efficient answer,” Nat. Photonics 3(1), 27–29 (2009).
    [CrossRef]
  2. Markus-Christian Amann and Werner Hofmann, “Single-mode and tunable VCSELs in the near- to mid-infrared,” Chin. Opt. Lett. 6(10), 743–747 (2008).
    [CrossRef]
  3. N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. H. Hu, X. S. Liu, M.-J. Li, R. Bhat, and C. E. Zah, “Long Wavelength Vertical Cavity Surface Emitting Lasers on InP with Lattice Matched AlGaInAs/InP DBR Grown by MOCVD,” IEEE J. Sel. Top. Quantum Electron. 11(5), 990–998 (2005).
    [CrossRef]
  4. A. Mircea, A. Caliman, V. Iakovlev, A. Mereuta, G. Suruceanu, C. A. Berseth, P. Royo, A. Syrbu, and E. Kapon, “Cavity Mode-Gain Peak Tradeoff for 1320-nm Wafer-Fused VCSELs With 3-mW SM Power and 10-Gb/s Modulation Speed up to 70°C,” IEEE Photon. Technol. Lett. 19(2), 121–123 (2007).
    [CrossRef]
  5. A.Sirbu, A.Mereuta, V. Iakovlev, A. Caliman, P. Royo, and E. Kapon, “10 Gbps VCSELs with high single mode output in 1310-nm and 1550-nm wavelength bands,” OFC/NFOEC-2008, paper OThS2, 1–3, (2008).
  6. N. Nishiyama, C. Caneau, J. D. Downie, M. Sauer and C.-E. Zah, “10-Gbps 1.3 and 1.55-µm InP-based VCSELs: 85°C 10-km Error-free Transmission and Room Temperature 40-km Transmission at 1.55-µm with EDC,” OFC-2006, paper PDP23, (2006).
  7. W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Böhm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M.-C. Amann, “10-Gb/s Data Transmission using BCB Passivated InGaAlAs–InP VCSELs,” IEEE Photon. Technol. Lett. 18(2), 424–426 (2006).
    [CrossRef]
  8. W. Hofmann, M. Müller, G. Böhm, M. Ortsiefer, and M.-C. Amann, “1.55μm InP-based VCSEL with Enhanced Modulation Bandwidht >10 GHz up to 85°C,” OFC/NFOEC-2009, paper OTuK5 (2009).
  9. A. Mereuta, A. Syrbu, V. Iakovlev, A. Rudra, A. Caliman, G. Suruceanu, C. A. Berseth, E. Deichsel, and E. Kapon, “1.5 μm VCSEL structure optimized for high-power and high-temperature operation,” J. Cryst. Growth 272(1-4), 520–525 (2004).
    [CrossRef]
  10. A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5-mW Single-Mode operation of wafer-fused 1550-nm VCSELs,” IEEE Photon. Technol. Lett. 16(5), 1230–1232 (2004).
    [CrossRef]
  11. A. Baecker, S. Odermatt, R. Santschi, F. Roemer, B. Witzigmann, P. Royo, V. Iakovlev, A. Caliman, A. Mereuta, A. Syrbu, and E. Kapon, “Transverse Optical Mode Analysis of Long-wavelength VCSELs for High Single-Mode Power Operation.” 8-th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), paper WB2 (2008).

2009 (1)

E. Kapon and A. Sirbu; “Long-Wavelength VCSELs: Power - efficient answer,” Nat. Photonics 3(1), 27–29 (2009).
[CrossRef]

2008 (1)

2007 (1)

A. Mircea, A. Caliman, V. Iakovlev, A. Mereuta, G. Suruceanu, C. A. Berseth, P. Royo, A. Syrbu, and E. Kapon, “Cavity Mode-Gain Peak Tradeoff for 1320-nm Wafer-Fused VCSELs With 3-mW SM Power and 10-Gb/s Modulation Speed up to 70°C,” IEEE Photon. Technol. Lett. 19(2), 121–123 (2007).
[CrossRef]

2006 (1)

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Böhm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M.-C. Amann, “10-Gb/s Data Transmission using BCB Passivated InGaAlAs–InP VCSELs,” IEEE Photon. Technol. Lett. 18(2), 424–426 (2006).
[CrossRef]

2005 (1)

N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. H. Hu, X. S. Liu, M.-J. Li, R. Bhat, and C. E. Zah, “Long Wavelength Vertical Cavity Surface Emitting Lasers on InP with Lattice Matched AlGaInAs/InP DBR Grown by MOCVD,” IEEE J. Sel. Top. Quantum Electron. 11(5), 990–998 (2005).
[CrossRef]

2004 (2)

A. Mereuta, A. Syrbu, V. Iakovlev, A. Rudra, A. Caliman, G. Suruceanu, C. A. Berseth, E. Deichsel, and E. Kapon, “1.5 μm VCSEL structure optimized for high-power and high-temperature operation,” J. Cryst. Growth 272(1-4), 520–525 (2004).
[CrossRef]

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5-mW Single-Mode operation of wafer-fused 1550-nm VCSELs,” IEEE Photon. Technol. Lett. 16(5), 1230–1232 (2004).
[CrossRef]

Achtenhagen, M.

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5-mW Single-Mode operation of wafer-fused 1550-nm VCSELs,” IEEE Photon. Technol. Lett. 16(5), 1230–1232 (2004).
[CrossRef]

Amann, M.-C.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Böhm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M.-C. Amann, “10-Gb/s Data Transmission using BCB Passivated InGaAlAs–InP VCSELs,” IEEE Photon. Technol. Lett. 18(2), 424–426 (2006).
[CrossRef]

Amann, Markus-Christian

Berseth, C. A.

A. Mircea, A. Caliman, V. Iakovlev, A. Mereuta, G. Suruceanu, C. A. Berseth, P. Royo, A. Syrbu, and E. Kapon, “Cavity Mode-Gain Peak Tradeoff for 1320-nm Wafer-Fused VCSELs With 3-mW SM Power and 10-Gb/s Modulation Speed up to 70°C,” IEEE Photon. Technol. Lett. 19(2), 121–123 (2007).
[CrossRef]

A. Mereuta, A. Syrbu, V. Iakovlev, A. Rudra, A. Caliman, G. Suruceanu, C. A. Berseth, E. Deichsel, and E. Kapon, “1.5 μm VCSEL structure optimized for high-power and high-temperature operation,” J. Cryst. Growth 272(1-4), 520–525 (2004).
[CrossRef]

Berseth, C.-A.

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5-mW Single-Mode operation of wafer-fused 1550-nm VCSELs,” IEEE Photon. Technol. Lett. 16(5), 1230–1232 (2004).
[CrossRef]

Bhat, R.

N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. H. Hu, X. S. Liu, M.-J. Li, R. Bhat, and C. E. Zah, “Long Wavelength Vertical Cavity Surface Emitting Lasers on InP with Lattice Matched AlGaInAs/InP DBR Grown by MOCVD,” IEEE J. Sel. Top. Quantum Electron. 11(5), 990–998 (2005).
[CrossRef]

Böhm, G.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Böhm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M.-C. Amann, “10-Gb/s Data Transmission using BCB Passivated InGaAlAs–InP VCSELs,” IEEE Photon. Technol. Lett. 18(2), 424–426 (2006).
[CrossRef]

Caliman, A.

A. Mircea, A. Caliman, V. Iakovlev, A. Mereuta, G. Suruceanu, C. A. Berseth, P. Royo, A. Syrbu, and E. Kapon, “Cavity Mode-Gain Peak Tradeoff for 1320-nm Wafer-Fused VCSELs With 3-mW SM Power and 10-Gb/s Modulation Speed up to 70°C,” IEEE Photon. Technol. Lett. 19(2), 121–123 (2007).
[CrossRef]

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5-mW Single-Mode operation of wafer-fused 1550-nm VCSELs,” IEEE Photon. Technol. Lett. 16(5), 1230–1232 (2004).
[CrossRef]

A. Mereuta, A. Syrbu, V. Iakovlev, A. Rudra, A. Caliman, G. Suruceanu, C. A. Berseth, E. Deichsel, and E. Kapon, “1.5 μm VCSEL structure optimized for high-power and high-temperature operation,” J. Cryst. Growth 272(1-4), 520–525 (2004).
[CrossRef]

Caneau, C.

N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. H. Hu, X. S. Liu, M.-J. Li, R. Bhat, and C. E. Zah, “Long Wavelength Vertical Cavity Surface Emitting Lasers on InP with Lattice Matched AlGaInAs/InP DBR Grown by MOCVD,” IEEE J. Sel. Top. Quantum Electron. 11(5), 990–998 (2005).
[CrossRef]

Chao, L.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Böhm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M.-C. Amann, “10-Gb/s Data Transmission using BCB Passivated InGaAlAs–InP VCSELs,” IEEE Photon. Technol. Lett. 18(2), 424–426 (2006).
[CrossRef]

Deichsel, E.

A. Mereuta, A. Syrbu, V. Iakovlev, A. Rudra, A. Caliman, G. Suruceanu, C. A. Berseth, E. Deichsel, and E. Kapon, “1.5 μm VCSEL structure optimized for high-power and high-temperature operation,” J. Cryst. Growth 272(1-4), 520–525 (2004).
[CrossRef]

Guryanov, G.

N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. H. Hu, X. S. Liu, M.-J. Li, R. Bhat, and C. E. Zah, “Long Wavelength Vertical Cavity Surface Emitting Lasers on InP with Lattice Matched AlGaInAs/InP DBR Grown by MOCVD,” IEEE J. Sel. Top. Quantum Electron. 11(5), 990–998 (2005).
[CrossRef]

Hall, B.

N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. H. Hu, X. S. Liu, M.-J. Li, R. Bhat, and C. E. Zah, “Long Wavelength Vertical Cavity Surface Emitting Lasers on InP with Lattice Matched AlGaInAs/InP DBR Grown by MOCVD,” IEEE J. Sel. Top. Quantum Electron. 11(5), 990–998 (2005).
[CrossRef]

Hofmann, W.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Böhm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M.-C. Amann, “10-Gb/s Data Transmission using BCB Passivated InGaAlAs–InP VCSELs,” IEEE Photon. Technol. Lett. 18(2), 424–426 (2006).
[CrossRef]

Hofmann, Werner

Hu, M. H.

N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. H. Hu, X. S. Liu, M.-J. Li, R. Bhat, and C. E. Zah, “Long Wavelength Vertical Cavity Surface Emitting Lasers on InP with Lattice Matched AlGaInAs/InP DBR Grown by MOCVD,” IEEE J. Sel. Top. Quantum Electron. 11(5), 990–998 (2005).
[CrossRef]

Iakovlev, V.

A. Mircea, A. Caliman, V. Iakovlev, A. Mereuta, G. Suruceanu, C. A. Berseth, P. Royo, A. Syrbu, and E. Kapon, “Cavity Mode-Gain Peak Tradeoff for 1320-nm Wafer-Fused VCSELs With 3-mW SM Power and 10-Gb/s Modulation Speed up to 70°C,” IEEE Photon. Technol. Lett. 19(2), 121–123 (2007).
[CrossRef]

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5-mW Single-Mode operation of wafer-fused 1550-nm VCSELs,” IEEE Photon. Technol. Lett. 16(5), 1230–1232 (2004).
[CrossRef]

A. Mereuta, A. Syrbu, V. Iakovlev, A. Rudra, A. Caliman, G. Suruceanu, C. A. Berseth, E. Deichsel, and E. Kapon, “1.5 μm VCSEL structure optimized for high-power and high-temperature operation,” J. Cryst. Growth 272(1-4), 520–525 (2004).
[CrossRef]

Kapon, E.

E. Kapon and A. Sirbu; “Long-Wavelength VCSELs: Power - efficient answer,” Nat. Photonics 3(1), 27–29 (2009).
[CrossRef]

A. Mircea, A. Caliman, V. Iakovlev, A. Mereuta, G. Suruceanu, C. A. Berseth, P. Royo, A. Syrbu, and E. Kapon, “Cavity Mode-Gain Peak Tradeoff for 1320-nm Wafer-Fused VCSELs With 3-mW SM Power and 10-Gb/s Modulation Speed up to 70°C,” IEEE Photon. Technol. Lett. 19(2), 121–123 (2007).
[CrossRef]

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5-mW Single-Mode operation of wafer-fused 1550-nm VCSELs,” IEEE Photon. Technol. Lett. 16(5), 1230–1232 (2004).
[CrossRef]

A. Mereuta, A. Syrbu, V. Iakovlev, A. Rudra, A. Caliman, G. Suruceanu, C. A. Berseth, E. Deichsel, and E. Kapon, “1.5 μm VCSEL structure optimized for high-power and high-temperature operation,” J. Cryst. Growth 272(1-4), 520–525 (2004).
[CrossRef]

Li, M.-J.

N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. H. Hu, X. S. Liu, M.-J. Li, R. Bhat, and C. E. Zah, “Long Wavelength Vertical Cavity Surface Emitting Lasers on InP with Lattice Matched AlGaInAs/InP DBR Grown by MOCVD,” IEEE J. Sel. Top. Quantum Electron. 11(5), 990–998 (2005).
[CrossRef]

Liu, X. S.

N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. H. Hu, X. S. Liu, M.-J. Li, R. Bhat, and C. E. Zah, “Long Wavelength Vertical Cavity Surface Emitting Lasers on InP with Lattice Matched AlGaInAs/InP DBR Grown by MOCVD,” IEEE J. Sel. Top. Quantum Electron. 11(5), 990–998 (2005).
[CrossRef]

Maute, M.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Böhm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M.-C. Amann, “10-Gb/s Data Transmission using BCB Passivated InGaAlAs–InP VCSELs,” IEEE Photon. Technol. Lett. 18(2), 424–426 (2006).
[CrossRef]

Mereuta, A.

A. Mircea, A. Caliman, V. Iakovlev, A. Mereuta, G. Suruceanu, C. A. Berseth, P. Royo, A. Syrbu, and E. Kapon, “Cavity Mode-Gain Peak Tradeoff for 1320-nm Wafer-Fused VCSELs With 3-mW SM Power and 10-Gb/s Modulation Speed up to 70°C,” IEEE Photon. Technol. Lett. 19(2), 121–123 (2007).
[CrossRef]

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5-mW Single-Mode operation of wafer-fused 1550-nm VCSELs,” IEEE Photon. Technol. Lett. 16(5), 1230–1232 (2004).
[CrossRef]

A. Mereuta, A. Syrbu, V. Iakovlev, A. Rudra, A. Caliman, G. Suruceanu, C. A. Berseth, E. Deichsel, and E. Kapon, “1.5 μm VCSEL structure optimized for high-power and high-temperature operation,” J. Cryst. Growth 272(1-4), 520–525 (2004).
[CrossRef]

Mircea, A.

A. Mircea, A. Caliman, V. Iakovlev, A. Mereuta, G. Suruceanu, C. A. Berseth, P. Royo, A. Syrbu, and E. Kapon, “Cavity Mode-Gain Peak Tradeoff for 1320-nm Wafer-Fused VCSELs With 3-mW SM Power and 10-Gb/s Modulation Speed up to 70°C,” IEEE Photon. Technol. Lett. 19(2), 121–123 (2007).
[CrossRef]

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5-mW Single-Mode operation of wafer-fused 1550-nm VCSELs,” IEEE Photon. Technol. Lett. 16(5), 1230–1232 (2004).
[CrossRef]

Nishiyama, N.

N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. H. Hu, X. S. Liu, M.-J. Li, R. Bhat, and C. E. Zah, “Long Wavelength Vertical Cavity Surface Emitting Lasers on InP with Lattice Matched AlGaInAs/InP DBR Grown by MOCVD,” IEEE J. Sel. Top. Quantum Electron. 11(5), 990–998 (2005).
[CrossRef]

Ortsiefer, M.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Böhm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M.-C. Amann, “10-Gb/s Data Transmission using BCB Passivated InGaAlAs–InP VCSELs,” IEEE Photon. Technol. Lett. 18(2), 424–426 (2006).
[CrossRef]

Rosskopf, J.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Böhm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M.-C. Amann, “10-Gb/s Data Transmission using BCB Passivated InGaAlAs–InP VCSELs,” IEEE Photon. Technol. Lett. 18(2), 424–426 (2006).
[CrossRef]

Royo, P.

A. Mircea, A. Caliman, V. Iakovlev, A. Mereuta, G. Suruceanu, C. A. Berseth, P. Royo, A. Syrbu, and E. Kapon, “Cavity Mode-Gain Peak Tradeoff for 1320-nm Wafer-Fused VCSELs With 3-mW SM Power and 10-Gb/s Modulation Speed up to 70°C,” IEEE Photon. Technol. Lett. 19(2), 121–123 (2007).
[CrossRef]

Rudra, A.

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5-mW Single-Mode operation of wafer-fused 1550-nm VCSELs,” IEEE Photon. Technol. Lett. 16(5), 1230–1232 (2004).
[CrossRef]

A. Mereuta, A. Syrbu, V. Iakovlev, A. Rudra, A. Caliman, G. Suruceanu, C. A. Berseth, E. Deichsel, and E. Kapon, “1.5 μm VCSEL structure optimized for high-power and high-temperature operation,” J. Cryst. Growth 272(1-4), 520–525 (2004).
[CrossRef]

Sirbu, A.

E. Kapon and A. Sirbu; “Long-Wavelength VCSELs: Power - efficient answer,” Nat. Photonics 3(1), 27–29 (2009).
[CrossRef]

Suruceanu, G.

A. Mircea, A. Caliman, V. Iakovlev, A. Mereuta, G. Suruceanu, C. A. Berseth, P. Royo, A. Syrbu, and E. Kapon, “Cavity Mode-Gain Peak Tradeoff for 1320-nm Wafer-Fused VCSELs With 3-mW SM Power and 10-Gb/s Modulation Speed up to 70°C,” IEEE Photon. Technol. Lett. 19(2), 121–123 (2007).
[CrossRef]

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5-mW Single-Mode operation of wafer-fused 1550-nm VCSELs,” IEEE Photon. Technol. Lett. 16(5), 1230–1232 (2004).
[CrossRef]

A. Mereuta, A. Syrbu, V. Iakovlev, A. Rudra, A. Caliman, G. Suruceanu, C. A. Berseth, E. Deichsel, and E. Kapon, “1.5 μm VCSEL structure optimized for high-power and high-temperature operation,” J. Cryst. Growth 272(1-4), 520–525 (2004).
[CrossRef]

Syrbu, A.

A. Mircea, A. Caliman, V. Iakovlev, A. Mereuta, G. Suruceanu, C. A. Berseth, P. Royo, A. Syrbu, and E. Kapon, “Cavity Mode-Gain Peak Tradeoff for 1320-nm Wafer-Fused VCSELs With 3-mW SM Power and 10-Gb/s Modulation Speed up to 70°C,” IEEE Photon. Technol. Lett. 19(2), 121–123 (2007).
[CrossRef]

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5-mW Single-Mode operation of wafer-fused 1550-nm VCSELs,” IEEE Photon. Technol. Lett. 16(5), 1230–1232 (2004).
[CrossRef]

A. Mereuta, A. Syrbu, V. Iakovlev, A. Rudra, A. Caliman, G. Suruceanu, C. A. Berseth, E. Deichsel, and E. Kapon, “1.5 μm VCSEL structure optimized for high-power and high-temperature operation,” J. Cryst. Growth 272(1-4), 520–525 (2004).
[CrossRef]

Zah, C. E.

N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. H. Hu, X. S. Liu, M.-J. Li, R. Bhat, and C. E. Zah, “Long Wavelength Vertical Cavity Surface Emitting Lasers on InP with Lattice Matched AlGaInAs/InP DBR Grown by MOCVD,” IEEE J. Sel. Top. Quantum Electron. 11(5), 990–998 (2005).
[CrossRef]

Zhang, S.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Böhm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M.-C. Amann, “10-Gb/s Data Transmission using BCB Passivated InGaAlAs–InP VCSELs,” IEEE Photon. Technol. Lett. 18(2), 424–426 (2006).
[CrossRef]

Zhu, N. H.

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Böhm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M.-C. Amann, “10-Gb/s Data Transmission using BCB Passivated InGaAlAs–InP VCSELs,” IEEE Photon. Technol. Lett. 18(2), 424–426 (2006).
[CrossRef]

Chin. Opt. Lett. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

N. Nishiyama, C. Caneau, B. Hall, G. Guryanov, M. H. Hu, X. S. Liu, M.-J. Li, R. Bhat, and C. E. Zah, “Long Wavelength Vertical Cavity Surface Emitting Lasers on InP with Lattice Matched AlGaInAs/InP DBR Grown by MOCVD,” IEEE J. Sel. Top. Quantum Electron. 11(5), 990–998 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

A. Mircea, A. Caliman, V. Iakovlev, A. Mereuta, G. Suruceanu, C. A. Berseth, P. Royo, A. Syrbu, and E. Kapon, “Cavity Mode-Gain Peak Tradeoff for 1320-nm Wafer-Fused VCSELs With 3-mW SM Power and 10-Gb/s Modulation Speed up to 70°C,” IEEE Photon. Technol. Lett. 19(2), 121–123 (2007).
[CrossRef]

W. Hofmann, N. H. Zhu, M. Ortsiefer, G. Böhm, J. Rosskopf, L. Chao, S. Zhang, M. Maute, and M.-C. Amann, “10-Gb/s Data Transmission using BCB Passivated InGaAlAs–InP VCSELs,” IEEE Photon. Technol. Lett. 18(2), 424–426 (2006).
[CrossRef]

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5-mW Single-Mode operation of wafer-fused 1550-nm VCSELs,” IEEE Photon. Technol. Lett. 16(5), 1230–1232 (2004).
[CrossRef]

J. Cryst. Growth (1)

A. Mereuta, A. Syrbu, V. Iakovlev, A. Rudra, A. Caliman, G. Suruceanu, C. A. Berseth, E. Deichsel, and E. Kapon, “1.5 μm VCSEL structure optimized for high-power and high-temperature operation,” J. Cryst. Growth 272(1-4), 520–525 (2004).
[CrossRef]

Nat. Photonics (1)

E. Kapon and A. Sirbu; “Long-Wavelength VCSELs: Power - efficient answer,” Nat. Photonics 3(1), 27–29 (2009).
[CrossRef]

Other (4)

A. Baecker, S. Odermatt, R. Santschi, F. Roemer, B. Witzigmann, P. Royo, V. Iakovlev, A. Caliman, A. Mereuta, A. Syrbu, and E. Kapon, “Transverse Optical Mode Analysis of Long-wavelength VCSELs for High Single-Mode Power Operation.” 8-th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), paper WB2 (2008).

W. Hofmann, M. Müller, G. Böhm, M. Ortsiefer, and M.-C. Amann, “1.55μm InP-based VCSEL with Enhanced Modulation Bandwidht >10 GHz up to 85°C,” OFC/NFOEC-2009, paper OTuK5 (2009).

A.Sirbu, A.Mereuta, V. Iakovlev, A. Caliman, P. Royo, and E. Kapon, “10 Gbps VCSELs with high single mode output in 1310-nm and 1550-nm wavelength bands,” OFC/NFOEC-2008, paper OThS2, 1–3, (2008).

N. Nishiyama, C. Caneau, J. D. Downie, M. Sauer and C.-E. Zah, “10-Gbps 1.3 and 1.55-µm InP-based VCSELs: 85°C 10-km Error-free Transmission and Room Temperature 40-km Transmission at 1.55-µm with EDC,” OFC-2006, paper PDP23, (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic cross-section of the wafer-fused VCSEL.

Fig. 2
Fig. 2

Light-current-voltage characteristics of a 6-µm aperture device in the 20-100°C temperature range (the current-voltage curves are only for 20 and 100°C, respectively).

Fig. 3
Fig. 3

VCSEL spectra at different currents at room temperature (a) and at 100°C (b).

Fig. 4
Fig. 4

Relative intensity noise (RIN) spectra of a 1310-nm band VCSEL measured at different currents (from 2 to 10-mA) at room temperature (a) and at 85°C (b).

Fig. 5
Fig. 5

Resonance frequency (ROF) spectra of a 1310-nm band VCSEL measured at different diode currents at room temperature (a) and 85°C (b).

Fig. 6
Fig. 6

B Back-to Back and 10-km 10-Gb/s eye diagrams (insets) measured at 20°C (a) and 100°C (b).Back-to-back and 10-km BER measured at 20°C (a) and 100°C (b) (see text for details).

Metrics