Abstract

This work investigates a novel color cone lasing emission (CCLE) based on a one-dimensional photonic crystal-like dye-doped cholesteric liquid crystal (DDCLC) film with a single pitch. The lasing wavelength in the CCLE is distributed continuously at 676.7–595.6 nm, as measured at a continuously increasing oblique angle relative to the helical axis of 0–50°. This work demonstrates that lasing wavelength coincides exactly with the wavelength at the long wavelength edge of the CLC reflection band at oblique angles of 0-50°. Simulation results of dispersion relations at different oblique angles using Berreman’s 4×4 matrix method agrees closely with experimental results. Some unique and important features of the CCLE are identified and discussed.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef] [PubMed]
  2. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
    [CrossRef] [PubMed]
  3. E. Yablonovitch and T. J. Gmitter, "Photonic band structure: The face-centered-cubic case.Phys. Rev. Lett. 63, 1950-1953 (1991).
    [CrossRef]
  4. E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, "Donor and acceptor modes in photonic band structure," Phys. Rev. Lett. 67, 3380-3383 (1991).
    [CrossRef] [PubMed]
  5. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The photonic band edge laser: A new approach to gain enhancement," J. Appl. Phys. 75, 1896-1899 (1994).
    [CrossRef]
  6. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University Press, New York, 1993).
  7. Y. Huang, Y. Zhou, Q. Hong, A. Rapaport, M. Bass, and S.-T. Wu, "Incident angle and polarization effects on the dye-doped cholesteric liquid crystal laser," Opt. Commun. 261, 91-96 (2006).
    [CrossRef]
  8. D.-K. Yang and S.-T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, Chichester, 2006).
    [CrossRef]
  9. K. Bjorknas, E. P. Raynes, and S. Gilmour, "Effects of molecular shape on the photoluminescence of dyes embedded in a chiral polymer with a photonic band gap," J. Mater. Sci.: Mater. Electron. 14, 397-401 (2003).
    [CrossRef]
  10. V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, "Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals," Opt. Lett. 23, 1707-1709 (1998).
    [CrossRef]
  11. H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, "Tunable mirrorless lasing in cholesteric liquid crystalline elastomers," Adv. Mater. 13, 1069-1072 (2001).
    [CrossRef]
  12. J. Schmidtke, and W. Stille, "Fluorescence of a dye-doped cholesteric liquid crystal film in the region of the stop band: theory and experiment," Eur. Phys. J. B 31, 179-194 (2003).
    [CrossRef]
  13. M. H. Song, N. Y. Ha, K. Amemiya, B. Park, Y. Takanishi, K. Ishikawa, J. W. Wu, S. Nishimura, T. Toyooka, and H. Takezoe, "Defect-mode lasing with lowered threshold in a three-layered hetero-cholesteric liquid-crystal structure," Adv. Mater. 18, 193-197 (2006).
    [CrossRef]
  14. J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, "Laser emission in a dye doped cholesteric polymer network," Adv. Mater. 14, 746-749 (2002).
    [CrossRef]
  15. Y. Zhou, Y. Huang, Z. Ge, L.-P. Chen, Q. Hong, ThomasX. Wu, and S.-T. Wu, "Enhanced photonic band edge laser emission in a cholesteric liquid crystal resonator," Phys. Rev. E 74, 061705 (2006).
    [CrossRef]
  16. S. G. Lukishova, A. W. Schmid, A. J. McNamara, R. W. Boyd, C. R. Stroud, Jr., "Room temperature single-photon source: single-dye molecule fluorescence in liquid crystal host," IEEE J. of Selected Topics in Quantum Electronics 9, 1512-1518 (2003).
    [CrossRef]
  17. S. G. Lukishova, A. W. Schmid, C. M. Supranowitz, N. Lippa, A. J. Mcnamara, R. W. Boyd, C. R. Stroud, Jr., "Dye-doped cholesteric-liquid-crystal room-temperature single photon source," J. of Modern Optics 51, 1535-1547 (2004).
  18. L. M. Blinov, G. Cipparrone, A. Mazzulla, P. Pagliusi, and V. V. Lazarev, "Lasing in cholesteric liquid cells: Competition of Bragg and leaky modes," J. Appl. Phys. 101, 053104 (2007).
    [CrossRef]
  19. K. Dolgaleva, S. K. H. Wei, S. G. Lukishova, S. H. Chen, K. Schwertz, and R. W. Boyd, "Enhanced laser performance of cholesteric liquid crystals doped with oligofluorene dye," J. Opt. Soc. Am B 25, 1496-1504 (2008).
    [CrossRef]
  20. A. Sugita, H. Takezoe, Y. Ouchi, A. Fukuda, E. Kuze and N. Goto, Numerical calculation of optical eigenmodes in cholesteric liquid crystals by 4×4 matrix method," J. Jpn. Appl. Phys. 21, 1543-1546 (1982).
    [CrossRef]

2008 (1)

K. Dolgaleva, S. K. H. Wei, S. G. Lukishova, S. H. Chen, K. Schwertz, and R. W. Boyd, "Enhanced laser performance of cholesteric liquid crystals doped with oligofluorene dye," J. Opt. Soc. Am B 25, 1496-1504 (2008).
[CrossRef]

2007 (1)

L. M. Blinov, G. Cipparrone, A. Mazzulla, P. Pagliusi, and V. V. Lazarev, "Lasing in cholesteric liquid cells: Competition of Bragg and leaky modes," J. Appl. Phys. 101, 053104 (2007).
[CrossRef]

2006 (3)

M. H. Song, N. Y. Ha, K. Amemiya, B. Park, Y. Takanishi, K. Ishikawa, J. W. Wu, S. Nishimura, T. Toyooka, and H. Takezoe, "Defect-mode lasing with lowered threshold in a three-layered hetero-cholesteric liquid-crystal structure," Adv. Mater. 18, 193-197 (2006).
[CrossRef]

Y. Zhou, Y. Huang, Z. Ge, L.-P. Chen, Q. Hong, ThomasX. Wu, and S.-T. Wu, "Enhanced photonic band edge laser emission in a cholesteric liquid crystal resonator," Phys. Rev. E 74, 061705 (2006).
[CrossRef]

Y. Huang, Y. Zhou, Q. Hong, A. Rapaport, M. Bass, and S.-T. Wu, "Incident angle and polarization effects on the dye-doped cholesteric liquid crystal laser," Opt. Commun. 261, 91-96 (2006).
[CrossRef]

2004 (1)

S. G. Lukishova, A. W. Schmid, C. M. Supranowitz, N. Lippa, A. J. Mcnamara, R. W. Boyd, C. R. Stroud, Jr., "Dye-doped cholesteric-liquid-crystal room-temperature single photon source," J. of Modern Optics 51, 1535-1547 (2004).

2003 (3)

S. G. Lukishova, A. W. Schmid, A. J. McNamara, R. W. Boyd, C. R. Stroud, Jr., "Room temperature single-photon source: single-dye molecule fluorescence in liquid crystal host," IEEE J. of Selected Topics in Quantum Electronics 9, 1512-1518 (2003).
[CrossRef]

K. Bjorknas, E. P. Raynes, and S. Gilmour, "Effects of molecular shape on the photoluminescence of dyes embedded in a chiral polymer with a photonic band gap," J. Mater. Sci.: Mater. Electron. 14, 397-401 (2003).
[CrossRef]

J. Schmidtke, and W. Stille, "Fluorescence of a dye-doped cholesteric liquid crystal film in the region of the stop band: theory and experiment," Eur. Phys. J. B 31, 179-194 (2003).
[CrossRef]

2002 (1)

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, "Laser emission in a dye doped cholesteric polymer network," Adv. Mater. 14, 746-749 (2002).
[CrossRef]

2001 (1)

H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, "Tunable mirrorless lasing in cholesteric liquid crystalline elastomers," Adv. Mater. 13, 1069-1072 (2001).
[CrossRef]

1998 (1)

1994 (1)

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The photonic band edge laser: A new approach to gain enhancement," J. Appl. Phys. 75, 1896-1899 (1994).
[CrossRef]

1991 (2)

E. Yablonovitch and T. J. Gmitter, "Photonic band structure: The face-centered-cubic case.Phys. Rev. Lett. 63, 1950-1953 (1991).
[CrossRef]

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, "Donor and acceptor modes in photonic band structure," Phys. Rev. Lett. 67, 3380-3383 (1991).
[CrossRef] [PubMed]

1987 (2)

E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

1982 (1)

A. Sugita, H. Takezoe, Y. Ouchi, A. Fukuda, E. Kuze and N. Goto, Numerical calculation of optical eigenmodes in cholesteric liquid crystals by 4×4 matrix method," J. Jpn. Appl. Phys. 21, 1543-1546 (1982).
[CrossRef]

Amemiya, K.

M. H. Song, N. Y. Ha, K. Amemiya, B. Park, Y. Takanishi, K. Ishikawa, J. W. Wu, S. Nishimura, T. Toyooka, and H. Takezoe, "Defect-mode lasing with lowered threshold in a three-layered hetero-cholesteric liquid-crystal structure," Adv. Mater. 18, 193-197 (2006).
[CrossRef]

Bass, M.

Y. Huang, Y. Zhou, Q. Hong, A. Rapaport, M. Bass, and S.-T. Wu, "Incident angle and polarization effects on the dye-doped cholesteric liquid crystal laser," Opt. Commun. 261, 91-96 (2006).
[CrossRef]

Bjorknas, K.

K. Bjorknas, E. P. Raynes, and S. Gilmour, "Effects of molecular shape on the photoluminescence of dyes embedded in a chiral polymer with a photonic band gap," J. Mater. Sci.: Mater. Electron. 14, 397-401 (2003).
[CrossRef]

Blinov, L. M.

L. M. Blinov, G. Cipparrone, A. Mazzulla, P. Pagliusi, and V. V. Lazarev, "Lasing in cholesteric liquid cells: Competition of Bragg and leaky modes," J. Appl. Phys. 101, 053104 (2007).
[CrossRef]

Bloemer, M. J.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The photonic band edge laser: A new approach to gain enhancement," J. Appl. Phys. 75, 1896-1899 (1994).
[CrossRef]

Bowden, C. M.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The photonic band edge laser: A new approach to gain enhancement," J. Appl. Phys. 75, 1896-1899 (1994).
[CrossRef]

Boyd, R. W.

K. Dolgaleva, S. K. H. Wei, S. G. Lukishova, S. H. Chen, K. Schwertz, and R. W. Boyd, "Enhanced laser performance of cholesteric liquid crystals doped with oligofluorene dye," J. Opt. Soc. Am B 25, 1496-1504 (2008).
[CrossRef]

S. G. Lukishova, A. W. Schmid, C. M. Supranowitz, N. Lippa, A. J. Mcnamara, R. W. Boyd, C. R. Stroud, Jr., "Dye-doped cholesteric-liquid-crystal room-temperature single photon source," J. of Modern Optics 51, 1535-1547 (2004).

S. G. Lukishova, A. W. Schmid, A. J. McNamara, R. W. Boyd, C. R. Stroud, Jr., "Room temperature single-photon source: single-dye molecule fluorescence in liquid crystal host," IEEE J. of Selected Topics in Quantum Electronics 9, 1512-1518 (2003).
[CrossRef]

Brommer, K. D.

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, "Donor and acceptor modes in photonic band structure," Phys. Rev. Lett. 67, 3380-3383 (1991).
[CrossRef] [PubMed]

Chen, L.-P.

Y. Zhou, Y. Huang, Z. Ge, L.-P. Chen, Q. Hong, ThomasX. Wu, and S.-T. Wu, "Enhanced photonic band edge laser emission in a cholesteric liquid crystal resonator," Phys. Rev. E 74, 061705 (2006).
[CrossRef]

Chen, S. H.

K. Dolgaleva, S. K. H. Wei, S. G. Lukishova, S. H. Chen, K. Schwertz, and R. W. Boyd, "Enhanced laser performance of cholesteric liquid crystals doped with oligofluorene dye," J. Opt. Soc. Am B 25, 1496-1504 (2008).
[CrossRef]

Cipparrone, G.

L. M. Blinov, G. Cipparrone, A. Mazzulla, P. Pagliusi, and V. V. Lazarev, "Lasing in cholesteric liquid cells: Competition of Bragg and leaky modes," J. Appl. Phys. 101, 053104 (2007).
[CrossRef]

Dolgaleva, K.

K. Dolgaleva, S. K. H. Wei, S. G. Lukishova, S. H. Chen, K. Schwertz, and R. W. Boyd, "Enhanced laser performance of cholesteric liquid crystals doped with oligofluorene dye," J. Opt. Soc. Am B 25, 1496-1504 (2008).
[CrossRef]

Dowling, J. P.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The photonic band edge laser: A new approach to gain enhancement," J. Appl. Phys. 75, 1896-1899 (1994).
[CrossRef]

Fan, B.

Finkelmann, H.

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, "Laser emission in a dye doped cholesteric polymer network," Adv. Mater. 14, 746-749 (2002).
[CrossRef]

H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, "Tunable mirrorless lasing in cholesteric liquid crystalline elastomers," Adv. Mater. 13, 1069-1072 (2001).
[CrossRef]

Fukuda, A.

A. Sugita, H. Takezoe, Y. Ouchi, A. Fukuda, E. Kuze and N. Goto, Numerical calculation of optical eigenmodes in cholesteric liquid crystals by 4×4 matrix method," J. Jpn. Appl. Phys. 21, 1543-1546 (1982).
[CrossRef]

Ge, Z.

Y. Zhou, Y. Huang, Z. Ge, L.-P. Chen, Q. Hong, ThomasX. Wu, and S.-T. Wu, "Enhanced photonic band edge laser emission in a cholesteric liquid crystal resonator," Phys. Rev. E 74, 061705 (2006).
[CrossRef]

Genack, A. Z.

Gilmour, S.

K. Bjorknas, E. P. Raynes, and S. Gilmour, "Effects of molecular shape on the photoluminescence of dyes embedded in a chiral polymer with a photonic band gap," J. Mater. Sci.: Mater. Electron. 14, 397-401 (2003).
[CrossRef]

Gmitter, T. J.

E. Yablonovitch and T. J. Gmitter, "Photonic band structure: The face-centered-cubic case.Phys. Rev. Lett. 63, 1950-1953 (1991).
[CrossRef]

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, "Donor and acceptor modes in photonic band structure," Phys. Rev. Lett. 67, 3380-3383 (1991).
[CrossRef] [PubMed]

Goto, N.

A. Sugita, H. Takezoe, Y. Ouchi, A. Fukuda, E. Kuze and N. Goto, Numerical calculation of optical eigenmodes in cholesteric liquid crystals by 4×4 matrix method," J. Jpn. Appl. Phys. 21, 1543-1546 (1982).
[CrossRef]

Ha, N. Y.

M. H. Song, N. Y. Ha, K. Amemiya, B. Park, Y. Takanishi, K. Ishikawa, J. W. Wu, S. Nishimura, T. Toyooka, and H. Takezoe, "Defect-mode lasing with lowered threshold in a three-layered hetero-cholesteric liquid-crystal structure," Adv. Mater. 18, 193-197 (2006).
[CrossRef]

Hong, Q.

Y. Zhou, Y. Huang, Z. Ge, L.-P. Chen, Q. Hong, ThomasX. Wu, and S.-T. Wu, "Enhanced photonic band edge laser emission in a cholesteric liquid crystal resonator," Phys. Rev. E 74, 061705 (2006).
[CrossRef]

Y. Huang, Y. Zhou, Q. Hong, A. Rapaport, M. Bass, and S.-T. Wu, "Incident angle and polarization effects on the dye-doped cholesteric liquid crystal laser," Opt. Commun. 261, 91-96 (2006).
[CrossRef]

Huang, Y.

Y. Zhou, Y. Huang, Z. Ge, L.-P. Chen, Q. Hong, ThomasX. Wu, and S.-T. Wu, "Enhanced photonic band edge laser emission in a cholesteric liquid crystal resonator," Phys. Rev. E 74, 061705 (2006).
[CrossRef]

Y. Huang, Y. Zhou, Q. Hong, A. Rapaport, M. Bass, and S.-T. Wu, "Incident angle and polarization effects on the dye-doped cholesteric liquid crystal laser," Opt. Commun. 261, 91-96 (2006).
[CrossRef]

Ishikawa, K.

M. H. Song, N. Y. Ha, K. Amemiya, B. Park, Y. Takanishi, K. Ishikawa, J. W. Wu, S. Nishimura, T. Toyooka, and H. Takezoe, "Defect-mode lasing with lowered threshold in a three-layered hetero-cholesteric liquid-crystal structure," Adv. Mater. 18, 193-197 (2006).
[CrossRef]

Joannopoulos, J. D.

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, "Donor and acceptor modes in photonic band structure," Phys. Rev. Lett. 67, 3380-3383 (1991).
[CrossRef] [PubMed]

John, S.

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Kim, S. T.

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, "Laser emission in a dye doped cholesteric polymer network," Adv. Mater. 14, 746-749 (2002).
[CrossRef]

H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, "Tunable mirrorless lasing in cholesteric liquid crystalline elastomers," Adv. Mater. 13, 1069-1072 (2001).
[CrossRef]

Kopp, V. I.

Kuze, E.

A. Sugita, H. Takezoe, Y. Ouchi, A. Fukuda, E. Kuze and N. Goto, Numerical calculation of optical eigenmodes in cholesteric liquid crystals by 4×4 matrix method," J. Jpn. Appl. Phys. 21, 1543-1546 (1982).
[CrossRef]

Lazarev, V. V.

L. M. Blinov, G. Cipparrone, A. Mazzulla, P. Pagliusi, and V. V. Lazarev, "Lasing in cholesteric liquid cells: Competition of Bragg and leaky modes," J. Appl. Phys. 101, 053104 (2007).
[CrossRef]

Lippa, N.

S. G. Lukishova, A. W. Schmid, C. M. Supranowitz, N. Lippa, A. J. Mcnamara, R. W. Boyd, C. R. Stroud, Jr., "Dye-doped cholesteric-liquid-crystal room-temperature single photon source," J. of Modern Optics 51, 1535-1547 (2004).

Lukishova, S. G.

K. Dolgaleva, S. K. H. Wei, S. G. Lukishova, S. H. Chen, K. Schwertz, and R. W. Boyd, "Enhanced laser performance of cholesteric liquid crystals doped with oligofluorene dye," J. Opt. Soc. Am B 25, 1496-1504 (2008).
[CrossRef]

S. G. Lukishova, A. W. Schmid, C. M. Supranowitz, N. Lippa, A. J. Mcnamara, R. W. Boyd, C. R. Stroud, Jr., "Dye-doped cholesteric-liquid-crystal room-temperature single photon source," J. of Modern Optics 51, 1535-1547 (2004).

S. G. Lukishova, A. W. Schmid, A. J. McNamara, R. W. Boyd, C. R. Stroud, Jr., "Room temperature single-photon source: single-dye molecule fluorescence in liquid crystal host," IEEE J. of Selected Topics in Quantum Electronics 9, 1512-1518 (2003).
[CrossRef]

Mazzulla, A.

L. M. Blinov, G. Cipparrone, A. Mazzulla, P. Pagliusi, and V. V. Lazarev, "Lasing in cholesteric liquid cells: Competition of Bragg and leaky modes," J. Appl. Phys. 101, 053104 (2007).
[CrossRef]

Mcnamara, A. J.

S. G. Lukishova, A. W. Schmid, C. M. Supranowitz, N. Lippa, A. J. Mcnamara, R. W. Boyd, C. R. Stroud, Jr., "Dye-doped cholesteric-liquid-crystal room-temperature single photon source," J. of Modern Optics 51, 1535-1547 (2004).

S. G. Lukishova, A. W. Schmid, A. J. McNamara, R. W. Boyd, C. R. Stroud, Jr., "Room temperature single-photon source: single-dye molecule fluorescence in liquid crystal host," IEEE J. of Selected Topics in Quantum Electronics 9, 1512-1518 (2003).
[CrossRef]

Meade, R. D.

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, "Donor and acceptor modes in photonic band structure," Phys. Rev. Lett. 67, 3380-3383 (1991).
[CrossRef] [PubMed]

Muñoz, A.

H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, "Tunable mirrorless lasing in cholesteric liquid crystalline elastomers," Adv. Mater. 13, 1069-1072 (2001).
[CrossRef]

Nishimura, S.

M. H. Song, N. Y. Ha, K. Amemiya, B. Park, Y. Takanishi, K. Ishikawa, J. W. Wu, S. Nishimura, T. Toyooka, and H. Takezoe, "Defect-mode lasing with lowered threshold in a three-layered hetero-cholesteric liquid-crystal structure," Adv. Mater. 18, 193-197 (2006).
[CrossRef]

Ouchi, Y.

A. Sugita, H. Takezoe, Y. Ouchi, A. Fukuda, E. Kuze and N. Goto, Numerical calculation of optical eigenmodes in cholesteric liquid crystals by 4×4 matrix method," J. Jpn. Appl. Phys. 21, 1543-1546 (1982).
[CrossRef]

Pagliusi, P.

L. M. Blinov, G. Cipparrone, A. Mazzulla, P. Pagliusi, and V. V. Lazarev, "Lasing in cholesteric liquid cells: Competition of Bragg and leaky modes," J. Appl. Phys. 101, 053104 (2007).
[CrossRef]

Palffy-Muhoray, P.

H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, "Tunable mirrorless lasing in cholesteric liquid crystalline elastomers," Adv. Mater. 13, 1069-1072 (2001).
[CrossRef]

Park, B.

M. H. Song, N. Y. Ha, K. Amemiya, B. Park, Y. Takanishi, K. Ishikawa, J. W. Wu, S. Nishimura, T. Toyooka, and H. Takezoe, "Defect-mode lasing with lowered threshold in a three-layered hetero-cholesteric liquid-crystal structure," Adv. Mater. 18, 193-197 (2006).
[CrossRef]

Rapaport, A.

Y. Huang, Y. Zhou, Q. Hong, A. Rapaport, M. Bass, and S.-T. Wu, "Incident angle and polarization effects on the dye-doped cholesteric liquid crystal laser," Opt. Commun. 261, 91-96 (2006).
[CrossRef]

Rappe, A. M.

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, "Donor and acceptor modes in photonic band structure," Phys. Rev. Lett. 67, 3380-3383 (1991).
[CrossRef] [PubMed]

Raynes, E. P.

K. Bjorknas, E. P. Raynes, and S. Gilmour, "Effects of molecular shape on the photoluminescence of dyes embedded in a chiral polymer with a photonic band gap," J. Mater. Sci.: Mater. Electron. 14, 397-401 (2003).
[CrossRef]

Scalora, M.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The photonic band edge laser: A new approach to gain enhancement," J. Appl. Phys. 75, 1896-1899 (1994).
[CrossRef]

Schmid, A. W.

S. G. Lukishova, A. W. Schmid, C. M. Supranowitz, N. Lippa, A. J. Mcnamara, R. W. Boyd, C. R. Stroud, Jr., "Dye-doped cholesteric-liquid-crystal room-temperature single photon source," J. of Modern Optics 51, 1535-1547 (2004).

S. G. Lukishova, A. W. Schmid, A. J. McNamara, R. W. Boyd, C. R. Stroud, Jr., "Room temperature single-photon source: single-dye molecule fluorescence in liquid crystal host," IEEE J. of Selected Topics in Quantum Electronics 9, 1512-1518 (2003).
[CrossRef]

Schmidtke, J.

J. Schmidtke, and W. Stille, "Fluorescence of a dye-doped cholesteric liquid crystal film in the region of the stop band: theory and experiment," Eur. Phys. J. B 31, 179-194 (2003).
[CrossRef]

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, "Laser emission in a dye doped cholesteric polymer network," Adv. Mater. 14, 746-749 (2002).
[CrossRef]

Schwertz, K.

K. Dolgaleva, S. K. H. Wei, S. G. Lukishova, S. H. Chen, K. Schwertz, and R. W. Boyd, "Enhanced laser performance of cholesteric liquid crystals doped with oligofluorene dye," J. Opt. Soc. Am B 25, 1496-1504 (2008).
[CrossRef]

Song, M. H.

M. H. Song, N. Y. Ha, K. Amemiya, B. Park, Y. Takanishi, K. Ishikawa, J. W. Wu, S. Nishimura, T. Toyooka, and H. Takezoe, "Defect-mode lasing with lowered threshold in a three-layered hetero-cholesteric liquid-crystal structure," Adv. Mater. 18, 193-197 (2006).
[CrossRef]

Stille, W.

J. Schmidtke, and W. Stille, "Fluorescence of a dye-doped cholesteric liquid crystal film in the region of the stop band: theory and experiment," Eur. Phys. J. B 31, 179-194 (2003).
[CrossRef]

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, "Laser emission in a dye doped cholesteric polymer network," Adv. Mater. 14, 746-749 (2002).
[CrossRef]

Stroud, C. R.

S. G. Lukishova, A. W. Schmid, C. M. Supranowitz, N. Lippa, A. J. Mcnamara, R. W. Boyd, C. R. Stroud, Jr., "Dye-doped cholesteric-liquid-crystal room-temperature single photon source," J. of Modern Optics 51, 1535-1547 (2004).

S. G. Lukishova, A. W. Schmid, A. J. McNamara, R. W. Boyd, C. R. Stroud, Jr., "Room temperature single-photon source: single-dye molecule fluorescence in liquid crystal host," IEEE J. of Selected Topics in Quantum Electronics 9, 1512-1518 (2003).
[CrossRef]

Sugita, A.

A. Sugita, H. Takezoe, Y. Ouchi, A. Fukuda, E. Kuze and N. Goto, Numerical calculation of optical eigenmodes in cholesteric liquid crystals by 4×4 matrix method," J. Jpn. Appl. Phys. 21, 1543-1546 (1982).
[CrossRef]

Supranowitz, C. M.

S. G. Lukishova, A. W. Schmid, C. M. Supranowitz, N. Lippa, A. J. Mcnamara, R. W. Boyd, C. R. Stroud, Jr., "Dye-doped cholesteric-liquid-crystal room-temperature single photon source," J. of Modern Optics 51, 1535-1547 (2004).

Taheri, B.

H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, "Tunable mirrorless lasing in cholesteric liquid crystalline elastomers," Adv. Mater. 13, 1069-1072 (2001).
[CrossRef]

Takanishi, Y.

M. H. Song, N. Y. Ha, K. Amemiya, B. Park, Y. Takanishi, K. Ishikawa, J. W. Wu, S. Nishimura, T. Toyooka, and H. Takezoe, "Defect-mode lasing with lowered threshold in a three-layered hetero-cholesteric liquid-crystal structure," Adv. Mater. 18, 193-197 (2006).
[CrossRef]

Takezoe, H.

M. H. Song, N. Y. Ha, K. Amemiya, B. Park, Y. Takanishi, K. Ishikawa, J. W. Wu, S. Nishimura, T. Toyooka, and H. Takezoe, "Defect-mode lasing with lowered threshold in a three-layered hetero-cholesteric liquid-crystal structure," Adv. Mater. 18, 193-197 (2006).
[CrossRef]

A. Sugita, H. Takezoe, Y. Ouchi, A. Fukuda, E. Kuze and N. Goto, Numerical calculation of optical eigenmodes in cholesteric liquid crystals by 4×4 matrix method," J. Jpn. Appl. Phys. 21, 1543-1546 (1982).
[CrossRef]

Thomas, Q.

Y. Zhou, Y. Huang, Z. Ge, L.-P. Chen, Q. Hong, ThomasX. Wu, and S.-T. Wu, "Enhanced photonic band edge laser emission in a cholesteric liquid crystal resonator," Phys. Rev. E 74, 061705 (2006).
[CrossRef]

Toyooka, T.

M. H. Song, N. Y. Ha, K. Amemiya, B. Park, Y. Takanishi, K. Ishikawa, J. W. Wu, S. Nishimura, T. Toyooka, and H. Takezoe, "Defect-mode lasing with lowered threshold in a three-layered hetero-cholesteric liquid-crystal structure," Adv. Mater. 18, 193-197 (2006).
[CrossRef]

Vithana, H. K. M.

Wei, S. K. H.

K. Dolgaleva, S. K. H. Wei, S. G. Lukishova, S. H. Chen, K. Schwertz, and R. W. Boyd, "Enhanced laser performance of cholesteric liquid crystals doped with oligofluorene dye," J. Opt. Soc. Am B 25, 1496-1504 (2008).
[CrossRef]

Wu, J. W.

M. H. Song, N. Y. Ha, K. Amemiya, B. Park, Y. Takanishi, K. Ishikawa, J. W. Wu, S. Nishimura, T. Toyooka, and H. Takezoe, "Defect-mode lasing with lowered threshold in a three-layered hetero-cholesteric liquid-crystal structure," Adv. Mater. 18, 193-197 (2006).
[CrossRef]

Wu, S.-T.

Y. Zhou, Y. Huang, Z. Ge, L.-P. Chen, Q. Hong, ThomasX. Wu, and S.-T. Wu, "Enhanced photonic band edge laser emission in a cholesteric liquid crystal resonator," Phys. Rev. E 74, 061705 (2006).
[CrossRef]

Y. Huang, Y. Zhou, Q. Hong, A. Rapaport, M. Bass, and S.-T. Wu, "Incident angle and polarization effects on the dye-doped cholesteric liquid crystal laser," Opt. Commun. 261, 91-96 (2006).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch and T. J. Gmitter, "Photonic band structure: The face-centered-cubic case.Phys. Rev. Lett. 63, 1950-1953 (1991).
[CrossRef]

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, "Donor and acceptor modes in photonic band structure," Phys. Rev. Lett. 67, 3380-3383 (1991).
[CrossRef] [PubMed]

E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

Zhou, Y.

Y. Huang, Y. Zhou, Q. Hong, A. Rapaport, M. Bass, and S.-T. Wu, "Incident angle and polarization effects on the dye-doped cholesteric liquid crystal laser," Opt. Commun. 261, 91-96 (2006).
[CrossRef]

Y. Zhou, Y. Huang, Z. Ge, L.-P. Chen, Q. Hong, ThomasX. Wu, and S.-T. Wu, "Enhanced photonic band edge laser emission in a cholesteric liquid crystal resonator," Phys. Rev. E 74, 061705 (2006).
[CrossRef]

Adv. Mater. (3)

H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, "Tunable mirrorless lasing in cholesteric liquid crystalline elastomers," Adv. Mater. 13, 1069-1072 (2001).
[CrossRef]

M. H. Song, N. Y. Ha, K. Amemiya, B. Park, Y. Takanishi, K. Ishikawa, J. W. Wu, S. Nishimura, T. Toyooka, and H. Takezoe, "Defect-mode lasing with lowered threshold in a three-layered hetero-cholesteric liquid-crystal structure," Adv. Mater. 18, 193-197 (2006).
[CrossRef]

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, "Laser emission in a dye doped cholesteric polymer network," Adv. Mater. 14, 746-749 (2002).
[CrossRef]

Eur. Phys. J. B (1)

J. Schmidtke, and W. Stille, "Fluorescence of a dye-doped cholesteric liquid crystal film in the region of the stop band: theory and experiment," Eur. Phys. J. B 31, 179-194 (2003).
[CrossRef]

IEEE J. of Selected Topics in Quantum Electronics (1)

S. G. Lukishova, A. W. Schmid, A. J. McNamara, R. W. Boyd, C. R. Stroud, Jr., "Room temperature single-photon source: single-dye molecule fluorescence in liquid crystal host," IEEE J. of Selected Topics in Quantum Electronics 9, 1512-1518 (2003).
[CrossRef]

J. Appl. Phys. (2)

L. M. Blinov, G. Cipparrone, A. Mazzulla, P. Pagliusi, and V. V. Lazarev, "Lasing in cholesteric liquid cells: Competition of Bragg and leaky modes," J. Appl. Phys. 101, 053104 (2007).
[CrossRef]

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The photonic band edge laser: A new approach to gain enhancement," J. Appl. Phys. 75, 1896-1899 (1994).
[CrossRef]

J. Jpn. Appl. Phys. (1)

A. Sugita, H. Takezoe, Y. Ouchi, A. Fukuda, E. Kuze and N. Goto, Numerical calculation of optical eigenmodes in cholesteric liquid crystals by 4×4 matrix method," J. Jpn. Appl. Phys. 21, 1543-1546 (1982).
[CrossRef]

J. Mater. Sci.: Mater. Electron. (1)

K. Bjorknas, E. P. Raynes, and S. Gilmour, "Effects of molecular shape on the photoluminescence of dyes embedded in a chiral polymer with a photonic band gap," J. Mater. Sci.: Mater. Electron. 14, 397-401 (2003).
[CrossRef]

J. of Modern Optics (1)

S. G. Lukishova, A. W. Schmid, C. M. Supranowitz, N. Lippa, A. J. Mcnamara, R. W. Boyd, C. R. Stroud, Jr., "Dye-doped cholesteric-liquid-crystal room-temperature single photon source," J. of Modern Optics 51, 1535-1547 (2004).

J. Opt. Soc. Am B (1)

K. Dolgaleva, S. K. H. Wei, S. G. Lukishova, S. H. Chen, K. Schwertz, and R. W. Boyd, "Enhanced laser performance of cholesteric liquid crystals doped with oligofluorene dye," J. Opt. Soc. Am B 25, 1496-1504 (2008).
[CrossRef]

Opt. Commun. (1)

Y. Huang, Y. Zhou, Q. Hong, A. Rapaport, M. Bass, and S.-T. Wu, "Incident angle and polarization effects on the dye-doped cholesteric liquid crystal laser," Opt. Commun. 261, 91-96 (2006).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. E (1)

Y. Zhou, Y. Huang, Z. Ge, L.-P. Chen, Q. Hong, ThomasX. Wu, and S.-T. Wu, "Enhanced photonic band edge laser emission in a cholesteric liquid crystal resonator," Phys. Rev. E 74, 061705 (2006).
[CrossRef]

Phys. Rev. Lett. (4)

E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef] [PubMed]

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

E. Yablonovitch and T. J. Gmitter, "Photonic band structure: The face-centered-cubic case.Phys. Rev. Lett. 63, 1950-1953 (1991).
[CrossRef]

E. Yablonovitch, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, "Donor and acceptor modes in photonic band structure," Phys. Rev. Lett. 67, 3380-3383 (1991).
[CrossRef] [PubMed]

Other (2)

D.-K. Yang and S.-T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, Chichester, 2006).
[CrossRef]

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University Press, New York, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Top views of Experimental setups for measuring (a) the fluorescence (or lasing) and (b) the reflection spectra of the dye-doped cholesteric liquid crystal (DDCLC) cell. N: cell normal; λ/2: half waveplate for 532nm; PBS: polarizing beam splitter; L1: lens; α: angle of incidence of the pumped pulses relative to N.

Fig. 2.
Fig. 2.

(a) One CCLE pattern is generated instantly and presented on the screens placed at both sides of the cell after the cell is excited by the pumped pulses with energy 8.3µJ/pulse. (b) Obtained continuous distributions of the lasing spectra in CCLE measured at oblique angles relative to N continuously increasing from θ1=0° to 50°.

Fig. 3.
Fig. 3.

Six lasing spectra measured at θ1=(a) 0°, (b) 17°, (c) 29°, (d) 35°, (e) 39°, and (f) 46° are randomly selected from Fig. 2(b) and compared with reflection spectra measured at those six oblique angles θ2 (=θ1).

Fig. 4.
Fig. 4.

Dispersion relation, (a) ωN(kN), or equivalently, (b) kN(λ), at different oblique angles θ=0–46° in a planar CLC structure. The parameters ωN(≡ω/(2πc/P)) and kN(≡k/(2π/P)) represent the normalized angular frequency and the normalized wave number of the incident optical eigenmodes (OEMs), respectively, where P is the pitch of the CLC.

Fig. 5.
Fig. 5.

The oe-17-15-12910-i005.jpg (oe-17-15-12910-i006.jpg) and oe-17-15-12910-i007.jpg (oe-17-15-12910-i008.jpg) dots represent, respectively, the measured lasing wavelength at the LWE (SWE) of the CLC reflection band (λlas(LWE) (λlas(SWE)) in Fig. 3) and the simulated wavelength at the LWE (SWE) of the CLC stop band in which vg→0 and DOS→∞ (λ(vg→0 and DOS→∞) at LWE (SWE) in Fig. 4) at different oblique angles.

Fig. 6.
Fig. 6.

(a) Variation of the lasing intensity of the CCLE (at the LWE) with the incident pumped energy at oblique angles of 0–46°. (b) Variation of the energy threshold of the CCLE with the oblique angle.

Fig. 7.
Fig. 7.

Fluorescence and reflection spectra of the cell in CLC phase are measured at different oblique angles of θ1=θ2=0–46° when the cell is pumped by incident pulses with energy of 2.3µJ/pulse. The gray curve is the obtained fluorescence spectrum of the DDCLC cell in the isotropic phase measured at 0°.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

λ c = n av P c o s ϕ ,
λ LWE = n e P ,
λ SWE = n o P ,
w i = ρ i E i * · d 2
v g d ω d ( R e ( k ) ) = c d ω N d ( Re ( k N ) ) ,

Metrics