Abstract

The idea of extending cavity quantum electrodynamics experiments to sub-wavelength sized nanomechanical systems has been recently proposed in the context of optical cavity cooling and optomechanics of deformable cavities. Here we present an experiment involving a single nanorod consisting of about 109 atoms precisely positioned into the confined mode of a miniature high finesse Fabry-Pérot microcavity. We show that the optical transmission of the cavity is affected not only by the static position of the nanorod but also by its vibrational fluctuation. The Brownian motion of the nanorod is resolved with a displacement sensitivity of 200 fm/√Hz at room temperature. Besides a broad range of sensing applications, cavity-induced manipulation of optomechanical nanosystems and back-action is anticipated.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Mabuchi, Q. A. Turchette, M. S. Chapman, and H. J. Kimble, “Real-time detection of individual atoms falling through a high-finesse optical cavity,” Opt. Lett. 21(17), 1393 (1996).
    [CrossRef] [PubMed]
  2. S. Haroche, and J. M. Raymond, Exploring the Quantum (Oxford University Press, Oxford, 2006).
  3. H. J. Kimble, “Strong interactions of Single Atoms and Photons in Cavity QED,” Phys. Scr. T76(1), 127–137 (1998).
    [CrossRef]
  4. I. Favero and K. Karrai, “Cavity cooling of a nanomechanical resonator by light scattering,” N. J. Phys. 10(9), 095006 (2008).
    [CrossRef]
  5. V. Vuletic and S. Chu, “Laser cooling of atoms, ions, or molecules by coherent scattering,” Phys. Rev. Lett. 84(17), 3787–3790 (2000).
    [CrossRef] [PubMed]
  6. P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G. Rempe, “Cavity cooling of a single atom,” Nature 428(6978), 50–52 (2004).
    [CrossRef] [PubMed]
  7. I. Favero and K. Karrai, “Optomechanics of deformable optical cavities,” Nat. Photonics 3(4), 201–205 (2009).
    [CrossRef]
  8. V. B. Braginsky, and A. B. Manukin, Measurement of weak forces in physics experiments (Chicago University Press, Chicago, 1977).
  9. C. H. Metzger and K. Karrai, “Cavity cooling of a microlever,” Nature 432(7020), 1002–1005 (2004).
    [CrossRef] [PubMed]
  10. O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444(7115), 71–74 (2006).
    [CrossRef] [PubMed]
  11. S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444(7115), 67–70 (2006).
    [CrossRef] [PubMed]
  12. A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97(24), 243905 (2006).
    [CrossRef]
  13. T. Corbitt, Y. Chen, E. Innerhofer, H. Müller-Ebhardt, D. Ottaway, H. Rehbein, D. Sigg, S. Whitcomb, C. Wipf, and N. Mavalvala, “An all-optical trap for a gram-scale mirror,” Phys. Rev. Lett. 98(15), 150802 (2007).
    [CrossRef] [PubMed]
  14. D. Kleckner and D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature 444(7115), 75–78 (2006).
    [CrossRef] [PubMed]
  15. J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008).
    [CrossRef] [PubMed]
  16. O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, O. Français, and L. Rousseau, “High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor,” Phys. Rev. Lett. 97(13), 133601 (2006).
    [CrossRef] [PubMed]
  17. M. D. LaHaye, O. Buu, B. Camarota, and K. C. Schwab, “Approaching the quantum limit of a nanomechanical resonator,” Science 304(5667), 74–77 (2004).
    [CrossRef] [PubMed]
  18. F. Marquardt, J. G. E. Harris, and S. M. Girvin, “Dynamical multistability induced by radiation pressure in high-finesse micromechanical optical cavities,” Phys. Rev. Lett. 96(10), 103901 (2006).
    [CrossRef] [PubMed]
  19. D. Rugar, H. J. Mamin, and P. Guethner, “Improved fiber-optic interferometer for atomic force microscopy,” Appl. Phys. Lett. 55(25), 2588 (1989).
    [CrossRef]
  20. C. A. Regal, J. D. Teufel, and K. W. Lehnert, “Measuring nanomechanical motion with a microwave cavity interferometer,” Nat. Phys. 4(7), 555–560 (2008).
    [CrossRef]
  21. L. Sekaric, M. Zalalutdinov, S. W. Turner, A. T. Zehnder, J. M. Parpia, and H. G. Craighead, “Nanomechanical resonant structures as tunable passive modulators of light,” Appl. Phys. Lett. 80(19), 3617 (2002).
    [CrossRef]
  22. M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
    [CrossRef] [PubMed]
  23. M. Wendel, H. Lorenz, and J. P. Kotthaus, “Sharpened electron beam deposited tips for high resolution atomic force microscope lithography and imaging,” Appl. Phys. Lett. 67(25), 3732 (1995) (Nanotools, Munich, Germany. www.nanotools.com).
    [CrossRef]
  24. M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, “Exceptionally high Young's modulus observed for individual carbon nanotubes,” Nature 381(6584), 678–680 (1996).
    [CrossRef]
  25. L. D. Landau, and E. M. Lifschitz, Mechanics (Pergamon, New York, 1976).
  26. Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450(7167), 272–276 (2007).
    [CrossRef] [PubMed]
  27. N. O. Azak, M. Y. Shagam, D. M. Karabacak, K. L. Ekinci, D. H. Kim, and D. Y. Jang, “Nanomechanical displacement detection using fiber-optic interferometry,” Appl. Phys. Lett. 91(9), 093112 (2007).
    [CrossRef]
  28. see a similar discussion in the case of a Fabry-Pérot interferometer measuring the displacement of one of its two mirrors in V. B. Braginsky, and F. Khalili, Quantum Measurement p 137 (Cambridge University Press, Cambridge, 1995).
  29. Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6(4), 583–586 (2006).
    [CrossRef] [PubMed]
  30. H. G. Craighead, “Nanoelectromechanical systems,” Science 290(5496), 1532–1535 (2000).
    [CrossRef] [PubMed]
  31. I. Favero, C. Metzger, S. Camerer, D. König, H. Lorenz, J. P. Kotthaus, and K. Karrai, “Optical cooling of a micromirror of wavelength size,” Appl. Phys. Lett. 90(10), 104101 (2007).
    [CrossRef]
  32. I. De Vlaminck, J. Roels, D. Taillaert, D. Van Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90(23), 233116 (2007).
    [CrossRef]
  33. A. Ayari, P. Vincent, S. Perisanu, M. Choueib, V. Gouttenoire, M. Bechelany, D. Cornu, and S. T. Purcell, “Self-oscillations in field emission nanowire mechanical resonators: a nanometric dc-ac conversion,” Nano Lett. 7(8), 2252–2257 (2007).
    [CrossRef] [PubMed]

2009 (1)

I. Favero and K. Karrai, “Optomechanics of deformable optical cavities,” Nat. Photonics 3(4), 201–205 (2009).
[CrossRef]

2008 (4)

I. Favero and K. Karrai, “Cavity cooling of a nanomechanical resonator by light scattering,” N. J. Phys. 10(9), 095006 (2008).
[CrossRef]

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008).
[CrossRef] [PubMed]

C. A. Regal, J. D. Teufel, and K. W. Lehnert, “Measuring nanomechanical motion with a microwave cavity interferometer,” Nat. Phys. 4(7), 555–560 (2008).
[CrossRef]

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[CrossRef] [PubMed]

2007 (6)

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450(7167), 272–276 (2007).
[CrossRef] [PubMed]

N. O. Azak, M. Y. Shagam, D. M. Karabacak, K. L. Ekinci, D. H. Kim, and D. Y. Jang, “Nanomechanical displacement detection using fiber-optic interferometry,” Appl. Phys. Lett. 91(9), 093112 (2007).
[CrossRef]

I. Favero, C. Metzger, S. Camerer, D. König, H. Lorenz, J. P. Kotthaus, and K. Karrai, “Optical cooling of a micromirror of wavelength size,” Appl. Phys. Lett. 90(10), 104101 (2007).
[CrossRef]

I. De Vlaminck, J. Roels, D. Taillaert, D. Van Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90(23), 233116 (2007).
[CrossRef]

A. Ayari, P. Vincent, S. Perisanu, M. Choueib, V. Gouttenoire, M. Bechelany, D. Cornu, and S. T. Purcell, “Self-oscillations in field emission nanowire mechanical resonators: a nanometric dc-ac conversion,” Nano Lett. 7(8), 2252–2257 (2007).
[CrossRef] [PubMed]

T. Corbitt, Y. Chen, E. Innerhofer, H. Müller-Ebhardt, D. Ottaway, H. Rehbein, D. Sigg, S. Whitcomb, C. Wipf, and N. Mavalvala, “An all-optical trap for a gram-scale mirror,” Phys. Rev. Lett. 98(15), 150802 (2007).
[CrossRef] [PubMed]

2006 (7)

D. Kleckner and D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature 444(7115), 75–78 (2006).
[CrossRef] [PubMed]

O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, O. Français, and L. Rousseau, “High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor,” Phys. Rev. Lett. 97(13), 133601 (2006).
[CrossRef] [PubMed]

F. Marquardt, J. G. E. Harris, and S. M. Girvin, “Dynamical multistability induced by radiation pressure in high-finesse micromechanical optical cavities,” Phys. Rev. Lett. 96(10), 103901 (2006).
[CrossRef] [PubMed]

O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444(7115), 71–74 (2006).
[CrossRef] [PubMed]

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444(7115), 67–70 (2006).
[CrossRef] [PubMed]

A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97(24), 243905 (2006).
[CrossRef]

Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6(4), 583–586 (2006).
[CrossRef] [PubMed]

2004 (3)

C. H. Metzger and K. Karrai, “Cavity cooling of a microlever,” Nature 432(7020), 1002–1005 (2004).
[CrossRef] [PubMed]

P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G. Rempe, “Cavity cooling of a single atom,” Nature 428(6978), 50–52 (2004).
[CrossRef] [PubMed]

M. D. LaHaye, O. Buu, B. Camarota, and K. C. Schwab, “Approaching the quantum limit of a nanomechanical resonator,” Science 304(5667), 74–77 (2004).
[CrossRef] [PubMed]

2002 (1)

L. Sekaric, M. Zalalutdinov, S. W. Turner, A. T. Zehnder, J. M. Parpia, and H. G. Craighead, “Nanomechanical resonant structures as tunable passive modulators of light,” Appl. Phys. Lett. 80(19), 3617 (2002).
[CrossRef]

2000 (2)

V. Vuletic and S. Chu, “Laser cooling of atoms, ions, or molecules by coherent scattering,” Phys. Rev. Lett. 84(17), 3787–3790 (2000).
[CrossRef] [PubMed]

H. G. Craighead, “Nanoelectromechanical systems,” Science 290(5496), 1532–1535 (2000).
[CrossRef] [PubMed]

1998 (1)

H. J. Kimble, “Strong interactions of Single Atoms and Photons in Cavity QED,” Phys. Scr. T76(1), 127–137 (1998).
[CrossRef]

1996 (2)

H. Mabuchi, Q. A. Turchette, M. S. Chapman, and H. J. Kimble, “Real-time detection of individual atoms falling through a high-finesse optical cavity,” Opt. Lett. 21(17), 1393 (1996).
[CrossRef] [PubMed]

M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, “Exceptionally high Young's modulus observed for individual carbon nanotubes,” Nature 381(6584), 678–680 (1996).
[CrossRef]

1995 (1)

M. Wendel, H. Lorenz, and J. P. Kotthaus, “Sharpened electron beam deposited tips for high resolution atomic force microscope lithography and imaging,” Appl. Phys. Lett. 67(25), 3732 (1995) (Nanotools, Munich, Germany. www.nanotools.com).
[CrossRef]

1989 (1)

D. Rugar, H. J. Mamin, and P. Guethner, “Improved fiber-optic interferometer for atomic force microscopy,” Appl. Phys. Lett. 55(25), 2588 (1989).
[CrossRef]

Arcizet, O.

O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, O. Français, and L. Rousseau, “High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor,” Phys. Rev. Lett. 97(13), 133601 (2006).
[CrossRef] [PubMed]

O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444(7115), 71–74 (2006).
[CrossRef] [PubMed]

Aspelmeyer, M.

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444(7115), 67–70 (2006).
[CrossRef] [PubMed]

Ayari, A.

A. Ayari, P. Vincent, S. Perisanu, M. Choueib, V. Gouttenoire, M. Bechelany, D. Cornu, and S. T. Purcell, “Self-oscillations in field emission nanowire mechanical resonators: a nanometric dc-ac conversion,” Nano Lett. 7(8), 2252–2257 (2007).
[CrossRef] [PubMed]

Azak, N. O.

N. O. Azak, M. Y. Shagam, D. M. Karabacak, K. L. Ekinci, D. H. Kim, and D. Y. Jang, “Nanomechanical displacement detection using fiber-optic interferometry,” Appl. Phys. Lett. 91(9), 093112 (2007).
[CrossRef]

Baehr-Jones, T.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[CrossRef] [PubMed]

Baets, R.

I. De Vlaminck, J. Roels, D. Taillaert, D. Van Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90(23), 233116 (2007).
[CrossRef]

Bäuerle, D.

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444(7115), 67–70 (2006).
[CrossRef] [PubMed]

Bechelany, M.

A. Ayari, P. Vincent, S. Perisanu, M. Choueib, V. Gouttenoire, M. Bechelany, D. Cornu, and S. T. Purcell, “Self-oscillations in field emission nanowire mechanical resonators: a nanometric dc-ac conversion,” Nano Lett. 7(8), 2252–2257 (2007).
[CrossRef] [PubMed]

Blaser, F.

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444(7115), 67–70 (2006).
[CrossRef] [PubMed]

Böhm, H. R.

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444(7115), 67–70 (2006).
[CrossRef] [PubMed]

Borghs, G.

I. De Vlaminck, J. Roels, D. Taillaert, D. Van Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90(23), 233116 (2007).
[CrossRef]

Bouwmeester, D.

D. Kleckner and D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature 444(7115), 75–78 (2006).
[CrossRef] [PubMed]

Briant, T.

O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, O. Français, and L. Rousseau, “High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor,” Phys. Rev. Lett. 97(13), 133601 (2006).
[CrossRef] [PubMed]

O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444(7115), 71–74 (2006).
[CrossRef] [PubMed]

Buu, O.

M. D. LaHaye, O. Buu, B. Camarota, and K. C. Schwab, “Approaching the quantum limit of a nanomechanical resonator,” Science 304(5667), 74–77 (2004).
[CrossRef] [PubMed]

Callegari, C.

Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6(4), 583–586 (2006).
[CrossRef] [PubMed]

Camarota, B.

M. D. LaHaye, O. Buu, B. Camarota, and K. C. Schwab, “Approaching the quantum limit of a nanomechanical resonator,” Science 304(5667), 74–77 (2004).
[CrossRef] [PubMed]

Camerer, S.

I. Favero, C. Metzger, S. Camerer, D. König, H. Lorenz, J. P. Kotthaus, and K. Karrai, “Optical cooling of a micromirror of wavelength size,” Appl. Phys. Lett. 90(10), 104101 (2007).
[CrossRef]

Chapman, M. S.

Chen, Y.

T. Corbitt, Y. Chen, E. Innerhofer, H. Müller-Ebhardt, D. Ottaway, H. Rehbein, D. Sigg, S. Whitcomb, C. Wipf, and N. Mavalvala, “An all-optical trap for a gram-scale mirror,” Phys. Rev. Lett. 98(15), 150802 (2007).
[CrossRef] [PubMed]

Choueib, M.

A. Ayari, P. Vincent, S. Perisanu, M. Choueib, V. Gouttenoire, M. Bechelany, D. Cornu, and S. T. Purcell, “Self-oscillations in field emission nanowire mechanical resonators: a nanometric dc-ac conversion,” Nano Lett. 7(8), 2252–2257 (2007).
[CrossRef] [PubMed]

Chu, S.

V. Vuletic and S. Chu, “Laser cooling of atoms, ions, or molecules by coherent scattering,” Phys. Rev. Lett. 84(17), 3787–3790 (2000).
[CrossRef] [PubMed]

Cohadon, P. F.

O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444(7115), 71–74 (2006).
[CrossRef] [PubMed]

Cohadon, P.-F.

O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, O. Français, and L. Rousseau, “High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor,” Phys. Rev. Lett. 97(13), 133601 (2006).
[CrossRef] [PubMed]

Colombe, Y.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450(7167), 272–276 (2007).
[CrossRef] [PubMed]

Corbitt, T.

T. Corbitt, Y. Chen, E. Innerhofer, H. Müller-Ebhardt, D. Ottaway, H. Rehbein, D. Sigg, S. Whitcomb, C. Wipf, and N. Mavalvala, “An all-optical trap for a gram-scale mirror,” Phys. Rev. Lett. 98(15), 150802 (2007).
[CrossRef] [PubMed]

Cornu, D.

A. Ayari, P. Vincent, S. Perisanu, M. Choueib, V. Gouttenoire, M. Bechelany, D. Cornu, and S. T. Purcell, “Self-oscillations in field emission nanowire mechanical resonators: a nanometric dc-ac conversion,” Nano Lett. 7(8), 2252–2257 (2007).
[CrossRef] [PubMed]

Craighead, H. G.

L. Sekaric, M. Zalalutdinov, S. W. Turner, A. T. Zehnder, J. M. Parpia, and H. G. Craighead, “Nanomechanical resonant structures as tunable passive modulators of light,” Appl. Phys. Lett. 80(19), 3617 (2002).
[CrossRef]

H. G. Craighead, “Nanoelectromechanical systems,” Science 290(5496), 1532–1535 (2000).
[CrossRef] [PubMed]

De Vlaminck, I.

I. De Vlaminck, J. Roels, D. Taillaert, D. Van Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90(23), 233116 (2007).
[CrossRef]

Del’Haye, P.

A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97(24), 243905 (2006).
[CrossRef]

Dubois, G.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450(7167), 272–276 (2007).
[CrossRef] [PubMed]

Ebbesen, T. W.

M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, “Exceptionally high Young's modulus observed for individual carbon nanotubes,” Nature 381(6584), 678–680 (1996).
[CrossRef]

Ekinci, K. L.

N. O. Azak, M. Y. Shagam, D. M. Karabacak, K. L. Ekinci, D. H. Kim, and D. Y. Jang, “Nanomechanical displacement detection using fiber-optic interferometry,” Appl. Phys. Lett. 91(9), 093112 (2007).
[CrossRef]

Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6(4), 583–586 (2006).
[CrossRef] [PubMed]

Favero, I.

I. Favero and K. Karrai, “Optomechanics of deformable optical cavities,” Nat. Photonics 3(4), 201–205 (2009).
[CrossRef]

I. Favero and K. Karrai, “Cavity cooling of a nanomechanical resonator by light scattering,” N. J. Phys. 10(9), 095006 (2008).
[CrossRef]

I. Favero, C. Metzger, S. Camerer, D. König, H. Lorenz, J. P. Kotthaus, and K. Karrai, “Optical cooling of a micromirror of wavelength size,” Appl. Phys. Lett. 90(10), 104101 (2007).
[CrossRef]

Feng, X. L.

Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6(4), 583–586 (2006).
[CrossRef] [PubMed]

Français, O.

O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, O. Français, and L. Rousseau, “High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor,” Phys. Rev. Lett. 97(13), 133601 (2006).
[CrossRef] [PubMed]

Gibson, J. M.

M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, “Exceptionally high Young's modulus observed for individual carbon nanotubes,” Nature 381(6584), 678–680 (1996).
[CrossRef]

Gigan, S.

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444(7115), 67–70 (2006).
[CrossRef] [PubMed]

Girvin, S. M.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008).
[CrossRef] [PubMed]

F. Marquardt, J. G. E. Harris, and S. M. Girvin, “Dynamical multistability induced by radiation pressure in high-finesse micromechanical optical cavities,” Phys. Rev. Lett. 96(10), 103901 (2006).
[CrossRef] [PubMed]

Gouttenoire, V.

A. Ayari, P. Vincent, S. Perisanu, M. Choueib, V. Gouttenoire, M. Bechelany, D. Cornu, and S. T. Purcell, “Self-oscillations in field emission nanowire mechanical resonators: a nanometric dc-ac conversion,” Nano Lett. 7(8), 2252–2257 (2007).
[CrossRef] [PubMed]

Guethner, P.

D. Rugar, H. J. Mamin, and P. Guethner, “Improved fiber-optic interferometer for atomic force microscopy,” Appl. Phys. Lett. 55(25), 2588 (1989).
[CrossRef]

Harris, J. G. E.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008).
[CrossRef] [PubMed]

F. Marquardt, J. G. E. Harris, and S. M. Girvin, “Dynamical multistability induced by radiation pressure in high-finesse micromechanical optical cavities,” Phys. Rev. Lett. 96(10), 103901 (2006).
[CrossRef] [PubMed]

Heidmann, A.

O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, O. Français, and L. Rousseau, “High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor,” Phys. Rev. Lett. 97(13), 133601 (2006).
[CrossRef] [PubMed]

O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444(7115), 71–74 (2006).
[CrossRef] [PubMed]

Hertzberg, J. B.

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444(7115), 67–70 (2006).
[CrossRef] [PubMed]

Hochberg, M.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[CrossRef] [PubMed]

Hunger, D.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450(7167), 272–276 (2007).
[CrossRef] [PubMed]

Innerhofer, E.

T. Corbitt, Y. Chen, E. Innerhofer, H. Müller-Ebhardt, D. Ottaway, H. Rehbein, D. Sigg, S. Whitcomb, C. Wipf, and N. Mavalvala, “An all-optical trap for a gram-scale mirror,” Phys. Rev. Lett. 98(15), 150802 (2007).
[CrossRef] [PubMed]

Jang, D. Y.

N. O. Azak, M. Y. Shagam, D. M. Karabacak, K. L. Ekinci, D. H. Kim, and D. Y. Jang, “Nanomechanical displacement detection using fiber-optic interferometry,” Appl. Phys. Lett. 91(9), 093112 (2007).
[CrossRef]

Jayich, A. M.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008).
[CrossRef] [PubMed]

Karabacak, D. M.

N. O. Azak, M. Y. Shagam, D. M. Karabacak, K. L. Ekinci, D. H. Kim, and D. Y. Jang, “Nanomechanical displacement detection using fiber-optic interferometry,” Appl. Phys. Lett. 91(9), 093112 (2007).
[CrossRef]

Karrai, K.

I. Favero and K. Karrai, “Optomechanics of deformable optical cavities,” Nat. Photonics 3(4), 201–205 (2009).
[CrossRef]

I. Favero and K. Karrai, “Cavity cooling of a nanomechanical resonator by light scattering,” N. J. Phys. 10(9), 095006 (2008).
[CrossRef]

I. Favero, C. Metzger, S. Camerer, D. König, H. Lorenz, J. P. Kotthaus, and K. Karrai, “Optical cooling of a micromirror of wavelength size,” Appl. Phys. Lett. 90(10), 104101 (2007).
[CrossRef]

C. H. Metzger and K. Karrai, “Cavity cooling of a microlever,” Nature 432(7020), 1002–1005 (2004).
[CrossRef] [PubMed]

Kim, D. H.

N. O. Azak, M. Y. Shagam, D. M. Karabacak, K. L. Ekinci, D. H. Kim, and D. Y. Jang, “Nanomechanical displacement detection using fiber-optic interferometry,” Appl. Phys. Lett. 91(9), 093112 (2007).
[CrossRef]

Kimble, H. J.

Kippenberg, T. J.

A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97(24), 243905 (2006).
[CrossRef]

Kleckner, D.

D. Kleckner and D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature 444(7115), 75–78 (2006).
[CrossRef] [PubMed]

König, D.

I. Favero, C. Metzger, S. Camerer, D. König, H. Lorenz, J. P. Kotthaus, and K. Karrai, “Optical cooling of a micromirror of wavelength size,” Appl. Phys. Lett. 90(10), 104101 (2007).
[CrossRef]

Kotthaus, J. P.

I. Favero, C. Metzger, S. Camerer, D. König, H. Lorenz, J. P. Kotthaus, and K. Karrai, “Optical cooling of a micromirror of wavelength size,” Appl. Phys. Lett. 90(10), 104101 (2007).
[CrossRef]

M. Wendel, H. Lorenz, and J. P. Kotthaus, “Sharpened electron beam deposited tips for high resolution atomic force microscope lithography and imaging,” Appl. Phys. Lett. 67(25), 3732 (1995) (Nanotools, Munich, Germany. www.nanotools.com).
[CrossRef]

Lagae, L.

I. De Vlaminck, J. Roels, D. Taillaert, D. Van Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90(23), 233116 (2007).
[CrossRef]

LaHaye, M. D.

M. D. LaHaye, O. Buu, B. Camarota, and K. C. Schwab, “Approaching the quantum limit of a nanomechanical resonator,” Science 304(5667), 74–77 (2004).
[CrossRef] [PubMed]

Langer, G.

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444(7115), 67–70 (2006).
[CrossRef] [PubMed]

Lehnert, K. W.

C. A. Regal, J. D. Teufel, and K. W. Lehnert, “Measuring nanomechanical motion with a microwave cavity interferometer,” Nat. Phys. 4(7), 555–560 (2008).
[CrossRef]

Li, M.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[CrossRef] [PubMed]

Linke, F.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450(7167), 272–276 (2007).
[CrossRef] [PubMed]

Lorenz, H.

I. Favero, C. Metzger, S. Camerer, D. König, H. Lorenz, J. P. Kotthaus, and K. Karrai, “Optical cooling of a micromirror of wavelength size,” Appl. Phys. Lett. 90(10), 104101 (2007).
[CrossRef]

M. Wendel, H. Lorenz, and J. P. Kotthaus, “Sharpened electron beam deposited tips for high resolution atomic force microscope lithography and imaging,” Appl. Phys. Lett. 67(25), 3732 (1995) (Nanotools, Munich, Germany. www.nanotools.com).
[CrossRef]

Mabuchi, H.

Mamin, H. J.

D. Rugar, H. J. Mamin, and P. Guethner, “Improved fiber-optic interferometer for atomic force microscopy,” Appl. Phys. Lett. 55(25), 2588 (1989).
[CrossRef]

Marquardt, F.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008).
[CrossRef] [PubMed]

F. Marquardt, J. G. E. Harris, and S. M. Girvin, “Dynamical multistability induced by radiation pressure in high-finesse micromechanical optical cavities,” Phys. Rev. Lett. 96(10), 103901 (2006).
[CrossRef] [PubMed]

Maunz, P.

P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G. Rempe, “Cavity cooling of a single atom,” Nature 428(6978), 50–52 (2004).
[CrossRef] [PubMed]

Mavalvala, N.

T. Corbitt, Y. Chen, E. Innerhofer, H. Müller-Ebhardt, D. Ottaway, H. Rehbein, D. Sigg, S. Whitcomb, C. Wipf, and N. Mavalvala, “An all-optical trap for a gram-scale mirror,” Phys. Rev. Lett. 98(15), 150802 (2007).
[CrossRef] [PubMed]

Metzger, C.

I. Favero, C. Metzger, S. Camerer, D. König, H. Lorenz, J. P. Kotthaus, and K. Karrai, “Optical cooling of a micromirror of wavelength size,” Appl. Phys. Lett. 90(10), 104101 (2007).
[CrossRef]

Metzger, C. H.

C. H. Metzger and K. Karrai, “Cavity cooling of a microlever,” Nature 432(7020), 1002–1005 (2004).
[CrossRef] [PubMed]

Müller-Ebhardt, H.

T. Corbitt, Y. Chen, E. Innerhofer, H. Müller-Ebhardt, D. Ottaway, H. Rehbein, D. Sigg, S. Whitcomb, C. Wipf, and N. Mavalvala, “An all-optical trap for a gram-scale mirror,” Phys. Rev. Lett. 98(15), 150802 (2007).
[CrossRef] [PubMed]

Nooshi, N.

A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97(24), 243905 (2006).
[CrossRef]

Ottaway, D.

T. Corbitt, Y. Chen, E. Innerhofer, H. Müller-Ebhardt, D. Ottaway, H. Rehbein, D. Sigg, S. Whitcomb, C. Wipf, and N. Mavalvala, “An all-optical trap for a gram-scale mirror,” Phys. Rev. Lett. 98(15), 150802 (2007).
[CrossRef] [PubMed]

Parpia, J. M.

L. Sekaric, M. Zalalutdinov, S. W. Turner, A. T. Zehnder, J. M. Parpia, and H. G. Craighead, “Nanomechanical resonant structures as tunable passive modulators of light,” Appl. Phys. Lett. 80(19), 3617 (2002).
[CrossRef]

Paternostro, M.

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444(7115), 67–70 (2006).
[CrossRef] [PubMed]

Perisanu, S.

A. Ayari, P. Vincent, S. Perisanu, M. Choueib, V. Gouttenoire, M. Bechelany, D. Cornu, and S. T. Purcell, “Self-oscillations in field emission nanowire mechanical resonators: a nanometric dc-ac conversion,” Nano Lett. 7(8), 2252–2257 (2007).
[CrossRef] [PubMed]

Pernice, W. H. P.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[CrossRef] [PubMed]

Pinard, M.

O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, O. Français, and L. Rousseau, “High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor,” Phys. Rev. Lett. 97(13), 133601 (2006).
[CrossRef] [PubMed]

O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444(7115), 71–74 (2006).
[CrossRef] [PubMed]

Pinkse, P. W. H.

P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G. Rempe, “Cavity cooling of a single atom,” Nature 428(6978), 50–52 (2004).
[CrossRef] [PubMed]

Puppe, T.

P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G. Rempe, “Cavity cooling of a single atom,” Nature 428(6978), 50–52 (2004).
[CrossRef] [PubMed]

Purcell, S. T.

A. Ayari, P. Vincent, S. Perisanu, M. Choueib, V. Gouttenoire, M. Bechelany, D. Cornu, and S. T. Purcell, “Self-oscillations in field emission nanowire mechanical resonators: a nanometric dc-ac conversion,” Nano Lett. 7(8), 2252–2257 (2007).
[CrossRef] [PubMed]

Regal, C. A.

C. A. Regal, J. D. Teufel, and K. W. Lehnert, “Measuring nanomechanical motion with a microwave cavity interferometer,” Nat. Phys. 4(7), 555–560 (2008).
[CrossRef]

Rehbein, H.

T. Corbitt, Y. Chen, E. Innerhofer, H. Müller-Ebhardt, D. Ottaway, H. Rehbein, D. Sigg, S. Whitcomb, C. Wipf, and N. Mavalvala, “An all-optical trap for a gram-scale mirror,” Phys. Rev. Lett. 98(15), 150802 (2007).
[CrossRef] [PubMed]

Reichel, J.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450(7167), 272–276 (2007).
[CrossRef] [PubMed]

Rempe, G.

P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G. Rempe, “Cavity cooling of a single atom,” Nature 428(6978), 50–52 (2004).
[CrossRef] [PubMed]

Roels, J.

I. De Vlaminck, J. Roels, D. Taillaert, D. Van Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90(23), 233116 (2007).
[CrossRef]

Roukes, M. L.

Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6(4), 583–586 (2006).
[CrossRef] [PubMed]

Rousseau, L.

O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, O. Français, and L. Rousseau, “High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor,” Phys. Rev. Lett. 97(13), 133601 (2006).
[CrossRef] [PubMed]

Rugar, D.

D. Rugar, H. J. Mamin, and P. Guethner, “Improved fiber-optic interferometer for atomic force microscopy,” Appl. Phys. Lett. 55(25), 2588 (1989).
[CrossRef]

Schliesser, A.

A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97(24), 243905 (2006).
[CrossRef]

Schuster, I.

P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G. Rempe, “Cavity cooling of a single atom,” Nature 428(6978), 50–52 (2004).
[CrossRef] [PubMed]

Schwab, K. C.

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444(7115), 67–70 (2006).
[CrossRef] [PubMed]

M. D. LaHaye, O. Buu, B. Camarota, and K. C. Schwab, “Approaching the quantum limit of a nanomechanical resonator,” Science 304(5667), 74–77 (2004).
[CrossRef] [PubMed]

Sekaric, L.

L. Sekaric, M. Zalalutdinov, S. W. Turner, A. T. Zehnder, J. M. Parpia, and H. G. Craighead, “Nanomechanical resonant structures as tunable passive modulators of light,” Appl. Phys. Lett. 80(19), 3617 (2002).
[CrossRef]

Shagam, M. Y.

N. O. Azak, M. Y. Shagam, D. M. Karabacak, K. L. Ekinci, D. H. Kim, and D. Y. Jang, “Nanomechanical displacement detection using fiber-optic interferometry,” Appl. Phys. Lett. 91(9), 093112 (2007).
[CrossRef]

Sigg, D.

T. Corbitt, Y. Chen, E. Innerhofer, H. Müller-Ebhardt, D. Ottaway, H. Rehbein, D. Sigg, S. Whitcomb, C. Wipf, and N. Mavalvala, “An all-optical trap for a gram-scale mirror,” Phys. Rev. Lett. 98(15), 150802 (2007).
[CrossRef] [PubMed]

Steinmetz, T.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450(7167), 272–276 (2007).
[CrossRef] [PubMed]

Syassen, N.

P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G. Rempe, “Cavity cooling of a single atom,” Nature 428(6978), 50–52 (2004).
[CrossRef] [PubMed]

Taillaert, D.

I. De Vlaminck, J. Roels, D. Taillaert, D. Van Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90(23), 233116 (2007).
[CrossRef]

Tang, H. X.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[CrossRef] [PubMed]

Teufel, J. D.

C. A. Regal, J. D. Teufel, and K. W. Lehnert, “Measuring nanomechanical motion with a microwave cavity interferometer,” Nat. Phys. 4(7), 555–560 (2008).
[CrossRef]

Thompson, J. D.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008).
[CrossRef] [PubMed]

Treacy, M. M. J.

M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, “Exceptionally high Young's modulus observed for individual carbon nanotubes,” Nature 381(6584), 678–680 (1996).
[CrossRef]

Turchette, Q. A.

Turner, S. W.

L. Sekaric, M. Zalalutdinov, S. W. Turner, A. T. Zehnder, J. M. Parpia, and H. G. Craighead, “Nanomechanical resonant structures as tunable passive modulators of light,” Appl. Phys. Lett. 80(19), 3617 (2002).
[CrossRef]

Vahala, K. J.

A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97(24), 243905 (2006).
[CrossRef]

Van Thourhout, D.

I. De Vlaminck, J. Roels, D. Taillaert, D. Van Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90(23), 233116 (2007).
[CrossRef]

Vincent, P.

A. Ayari, P. Vincent, S. Perisanu, M. Choueib, V. Gouttenoire, M. Bechelany, D. Cornu, and S. T. Purcell, “Self-oscillations in field emission nanowire mechanical resonators: a nanometric dc-ac conversion,” Nano Lett. 7(8), 2252–2257 (2007).
[CrossRef] [PubMed]

Vuletic, V.

V. Vuletic and S. Chu, “Laser cooling of atoms, ions, or molecules by coherent scattering,” Phys. Rev. Lett. 84(17), 3787–3790 (2000).
[CrossRef] [PubMed]

Wendel, M.

M. Wendel, H. Lorenz, and J. P. Kotthaus, “Sharpened electron beam deposited tips for high resolution atomic force microscope lithography and imaging,” Appl. Phys. Lett. 67(25), 3732 (1995) (Nanotools, Munich, Germany. www.nanotools.com).
[CrossRef]

Whitcomb, S.

T. Corbitt, Y. Chen, E. Innerhofer, H. Müller-Ebhardt, D. Ottaway, H. Rehbein, D. Sigg, S. Whitcomb, C. Wipf, and N. Mavalvala, “An all-optical trap for a gram-scale mirror,” Phys. Rev. Lett. 98(15), 150802 (2007).
[CrossRef] [PubMed]

Wipf, C.

T. Corbitt, Y. Chen, E. Innerhofer, H. Müller-Ebhardt, D. Ottaway, H. Rehbein, D. Sigg, S. Whitcomb, C. Wipf, and N. Mavalvala, “An all-optical trap for a gram-scale mirror,” Phys. Rev. Lett. 98(15), 150802 (2007).
[CrossRef] [PubMed]

Xiong, C.

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[CrossRef] [PubMed]

Yang, Y. T.

Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6(4), 583–586 (2006).
[CrossRef] [PubMed]

Zalalutdinov, M.

L. Sekaric, M. Zalalutdinov, S. W. Turner, A. T. Zehnder, J. M. Parpia, and H. G. Craighead, “Nanomechanical resonant structures as tunable passive modulators of light,” Appl. Phys. Lett. 80(19), 3617 (2002).
[CrossRef]

Zehnder, A. T.

L. Sekaric, M. Zalalutdinov, S. W. Turner, A. T. Zehnder, J. M. Parpia, and H. G. Craighead, “Nanomechanical resonant structures as tunable passive modulators of light,” Appl. Phys. Lett. 80(19), 3617 (2002).
[CrossRef]

Zeilinger, A.

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444(7115), 67–70 (2006).
[CrossRef] [PubMed]

Zwickl, B. M.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008).
[CrossRef] [PubMed]

Appl. Phys. Lett. (6)

D. Rugar, H. J. Mamin, and P. Guethner, “Improved fiber-optic interferometer for atomic force microscopy,” Appl. Phys. Lett. 55(25), 2588 (1989).
[CrossRef]

L. Sekaric, M. Zalalutdinov, S. W. Turner, A. T. Zehnder, J. M. Parpia, and H. G. Craighead, “Nanomechanical resonant structures as tunable passive modulators of light,” Appl. Phys. Lett. 80(19), 3617 (2002).
[CrossRef]

M. Wendel, H. Lorenz, and J. P. Kotthaus, “Sharpened electron beam deposited tips for high resolution atomic force microscope lithography and imaging,” Appl. Phys. Lett. 67(25), 3732 (1995) (Nanotools, Munich, Germany. www.nanotools.com).
[CrossRef]

N. O. Azak, M. Y. Shagam, D. M. Karabacak, K. L. Ekinci, D. H. Kim, and D. Y. Jang, “Nanomechanical displacement detection using fiber-optic interferometry,” Appl. Phys. Lett. 91(9), 093112 (2007).
[CrossRef]

I. Favero, C. Metzger, S. Camerer, D. König, H. Lorenz, J. P. Kotthaus, and K. Karrai, “Optical cooling of a micromirror of wavelength size,” Appl. Phys. Lett. 90(10), 104101 (2007).
[CrossRef]

I. De Vlaminck, J. Roels, D. Taillaert, D. Van Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90(23), 233116 (2007).
[CrossRef]

N. J. Phys. (1)

I. Favero and K. Karrai, “Cavity cooling of a nanomechanical resonator by light scattering,” N. J. Phys. 10(9), 095006 (2008).
[CrossRef]

Nano Lett. (2)

A. Ayari, P. Vincent, S. Perisanu, M. Choueib, V. Gouttenoire, M. Bechelany, D. Cornu, and S. T. Purcell, “Self-oscillations in field emission nanowire mechanical resonators: a nanometric dc-ac conversion,” Nano Lett. 7(8), 2252–2257 (2007).
[CrossRef] [PubMed]

Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6(4), 583–586 (2006).
[CrossRef] [PubMed]

Nat. Photonics (1)

I. Favero and K. Karrai, “Optomechanics of deformable optical cavities,” Nat. Photonics 3(4), 201–205 (2009).
[CrossRef]

Nat. Phys. (1)

C. A. Regal, J. D. Teufel, and K. W. Lehnert, “Measuring nanomechanical motion with a microwave cavity interferometer,” Nat. Phys. 4(7), 555–560 (2008).
[CrossRef]

Nature (9)

M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008).
[CrossRef] [PubMed]

M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, “Exceptionally high Young's modulus observed for individual carbon nanotubes,” Nature 381(6584), 678–680 (1996).
[CrossRef]

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450(7167), 272–276 (2007).
[CrossRef] [PubMed]

P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G. Rempe, “Cavity cooling of a single atom,” Nature 428(6978), 50–52 (2004).
[CrossRef] [PubMed]

D. Kleckner and D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature 444(7115), 75–78 (2006).
[CrossRef] [PubMed]

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008).
[CrossRef] [PubMed]

C. H. Metzger and K. Karrai, “Cavity cooling of a microlever,” Nature 432(7020), 1002–1005 (2004).
[CrossRef] [PubMed]

O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444(7115), 71–74 (2006).
[CrossRef] [PubMed]

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444(7115), 67–70 (2006).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. Lett. (5)

A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97(24), 243905 (2006).
[CrossRef]

T. Corbitt, Y. Chen, E. Innerhofer, H. Müller-Ebhardt, D. Ottaway, H. Rehbein, D. Sigg, S. Whitcomb, C. Wipf, and N. Mavalvala, “An all-optical trap for a gram-scale mirror,” Phys. Rev. Lett. 98(15), 150802 (2007).
[CrossRef] [PubMed]

V. Vuletic and S. Chu, “Laser cooling of atoms, ions, or molecules by coherent scattering,” Phys. Rev. Lett. 84(17), 3787–3790 (2000).
[CrossRef] [PubMed]

O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, O. Français, and L. Rousseau, “High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor,” Phys. Rev. Lett. 97(13), 133601 (2006).
[CrossRef] [PubMed]

F. Marquardt, J. G. E. Harris, and S. M. Girvin, “Dynamical multistability induced by radiation pressure in high-finesse micromechanical optical cavities,” Phys. Rev. Lett. 96(10), 103901 (2006).
[CrossRef] [PubMed]

Phys. Scr. (1)

H. J. Kimble, “Strong interactions of Single Atoms and Photons in Cavity QED,” Phys. Scr. T76(1), 127–137 (1998).
[CrossRef]

Science (2)

M. D. LaHaye, O. Buu, B. Camarota, and K. C. Schwab, “Approaching the quantum limit of a nanomechanical resonator,” Science 304(5667), 74–77 (2004).
[CrossRef] [PubMed]

H. G. Craighead, “Nanoelectromechanical systems,” Science 290(5496), 1532–1535 (2000).
[CrossRef] [PubMed]

Other (4)

L. D. Landau, and E. M. Lifschitz, Mechanics (Pergamon, New York, 1976).

see a similar discussion in the case of a Fabry-Pérot interferometer measuring the displacement of one of its two mirrors in V. B. Braginsky, and F. Khalili, Quantum Measurement p 137 (Cambridge University Press, Cambridge, 1995).

V. B. Braginsky, and A. B. Manukin, Measurement of weak forces in physics experiments (Chicago University Press, Chicago, 1977).

S. Haroche, and J. M. Raymond, Exploring the Quantum (Oxford University Press, Oxford, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Ultrasonic actuation of the nanorod flexural resonance. a) Micrograph of the AFM cantilever with a nanorod at its extremity. b) Main panel: SEM picture of an EBD nanorod grown at the end of an AFM lever. Inset: Piezo-actuated vibrational resonance of nanorod 1 flexural ground mode at 1.9 MHz imaged in the SEM.

Fig. 2
Fig. 2

Nanorod vibrating in the microcavity resonantly probed by a laser. a) Schematics of nanorod at position z0 in the microcavity and vibrating with an amplitude z. b) Optical micrograph of the host silicon lever plunged between the two fibre end-facets in order to position the nanorod in the cavity mode. c) Set-up schematics (PBS: polarizing beam splitter, FC: fibre coupler, PD: photodiode).

Fig. 3
Fig. 3

In situ positioning of the nanorod in the cavity mode. a) Imaging of the nanorod in the cavity mode trough the cavity transmission T(x,y). The arrow indicates the operating point where the resonant transmission is reduced by a factor 2. b) Simulated cavity transmission T(x,y) (the pixels show the grid taken for computation). Arrow at the same position as in a). c) Cross-section of a Gaussian mode intensity distribution representing the cavity mode. d) Planar section of the nanorod placed at the end of the AFM lever. e) Nanorod position in the cavity mode, corresponding to the arrow in a) and b).

Fig. 4
Fig. 4

Perturbation of the cavity transmission by the nanorod. a) Optical power transmitted and reflected by the cavity at resonance as a function of the nanorod base position z0 normalized to the laser wavelength λ (zs being the average position of the lever, roughly in the middle of the cavity). The arrow indicates the operating point of maximum gradient dT/dz0. b) Brownian motion amplitude spectrum and fit of the AFM lever extremity z0 holding the nanorod, from noise measurement taken at maximum gradient dT/dz0. c) Brownian motion amplitude spectrum z for the first flexural resonance of nanorod 6. Inset: Transmission noise power spectrum around the frequency of the second flexural resonance of nanorod 6, for a resolution bandwidth of 300 Hz of the spectrum analyser.

Tables (1)

Tables Icon

Table 1 Mechanical resonances of the nanorods

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

|z0,ω|2δf=kBTKΓω02(ω02ω2)2+(ωΓ)2

Metrics