Abstract

A simple and general approach has been developed for the enhancement of random lasing based on the composite consisting of nanospheres and nanorods array. Due to the inherent nature of high refractive index, the selected nanorods act efficiently as scattering feedback centers, which can promote the formation of closed loop paths of the emission arising from nanospheres. To illustrate our working principle, the composite consisting of Tb(OH)3/SiO2 nanospheres and ZnO nanorods was chosen as an example. Quite interestingly, it is found that the random lasing behavior can be easily achieved for the composite system, while it is absent in pure Tb(OH)3/SiO2 nanospheres. The strategy demonstrated here should be very useful for the future development of coherent light emission sources and many other optoelectronic devices.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. F. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, "Single-nanowire electrically driven lasers," Nature London 421, 241-245 (2003).
    [CrossRef]
  2. S. S. Wong, E. Joselevich, A. T. Woolley, C. L. Cheung, and C. M. Lieber, "Covalently functionalized nanotubes as nanometer-sized probes in chemistry and biology," Nature London 394, 52-55 (1998).
    [CrossRef]
  3. X. F. Duan, Y. Huang, Y. Cui, J. F. Wang, and C. M. Lieber,"Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices," Nature London 409, 66-69 (2001).
    [CrossRef]
  4. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, "Random laser action in semiconductor powder," Phys. Rev. Lett. 82, 2278-2281 (1999).
    [CrossRef]
  5. M. A. Zimmler, J. Bao, F. Capasso, S. Muller, and C. Ronning, "Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation," Appl. Phys. Lett. 93, 051101-051101-3 (2008).
    [CrossRef]
  6. H. C. Hsu, C.Y. Wu, and W.F. Hsieh, "Stimulated emission and lasing of random-growth oriented ZnO nanowires," J. Appl. Phys. 97, 064315-064319 (2005).
    [CrossRef]
  7. H. Q. Yan, J. Johnson, M. Law, R. R. He, K. Knutsen, J. R. McKinney, J. Pham, R. Saykally, and P. D. Yang, "ZnO nanoribbon microcavity lasers," Adv. Mater. ‖Weinheim, Ger.| 15, 1907-1911 ‖2003|.
    [CrossRef]
  8. M. D. McGehee, M. A. Diaz-Garcia, F. Hide, R. Gupta, E. K. Miller, D. Moses, and A. J. Heeger, "Semiconducting polymer distributed feedback lasers," Appl. Phys. Lett. 72, 1536-1538 (1998).
    [CrossRef]
  9. G. Bendelli, K. Komori, S. Aria, "Gain saturation and propagation characteristics of index-guidedtapered-waveguide traveling-wave semiconductor laser amplifiers (TTW-SLAs)," IEEE J. Quantum Electron. 28, 447-457 (1992).
    [CrossRef]
  10. U. Scherf, S. Riechel, U. Lemmer, and R. F. Mahrt, "Conjugated polymers: lasing and stimulated emission," Curr. Opin. Solid State Mater. Sci. 5, 143-154 (2001)
    [CrossRef]
  11. Letokhov, V.S.  "Generation of light by a scattering medium with negative resonance absorption," Sov. Phys. JETP 26, 835-840 (1968).
  12. S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G.-C. Yi, "Random laser action in ZnO nanorod arrays embedded in ZnO epilayers," Appl. Phys. Lett. 84, 3241-3243 (2004).
    [CrossRef]
  13. C. X. Liu, J. Y. Liu, J. H. Zhang, and K. Dou, "Random lasing with scatterers of diameters 20 nm in an active medium," Opt. Commun. 244, 299-303 (2005).
    [CrossRef]
  14. M. Balachandran, D. P. Pacheco, and N. M. Lawandy, "Laser action in polymeric gain media containing scattering particles," Appl. Opt. 35, 640-743 (1996).
    [CrossRef] [PubMed]
  15. . N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, "Laser action in strongly scattering media," Nature (London) 368, 436-438 (1994).
    [CrossRef]
  16. D. Zhang, Y. Wang, and D. Ma, "Random lasing emission from a red fluorescent dye doped polystyrene film containing dispersed polystyrene nanoparticles," Appl. Phys. Lett. 91, 091115-091115-3 (2007).
    [CrossRef]
  17. H. Y. Lin, H. K. Fu, C. L. Chen, Y. F. Chen, Y. S. Lin, Y. Hung, and C. Y. Mou,"Laser action in Tb(OH)3/SiO2 photonic crystals" Opt. Express,  16, 16697-16703 (2008).
    [CrossRef] [PubMed]
  18. H. Y. Lin, C. L. Chen, Y. Y. Chou, L. L. Huang, and Y. F. Chen," Enhancement of band gap emission stimulated by defect loss," Opt. Express,  14, 2372-2379 (2006).
    [CrossRef] [PubMed]
  19. J. J. Wu and S.C. Liu," Low-Temperature Growth of Well-Aligned ZnO Nanorods by Chemical Vapor Deposition" Adv. Mater. 14, 215-218 (2002).
    [CrossRef]
  20. Y. S. Lin, Y. Hung, H. Y. Lin, Y. H. Tseng, Y. F. Chen, and C. Y. Mou, "Photonic crystals from monodisperse lanthanide-hydroxide-at-silica core/shell colloidal spheres" Adv. Mater. 19, 577-580, (2007).
    [CrossRef]
  21. R. Reisfeld and C. K. Jørgensen, Lasers and excited states of Rare Earths (Springer, Berlin, 1977).
    [CrossRef]
  22. V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, and S. R. Forrest, "Study of lasing action based on Forster energy transfer in optically pumped organic semiconductor thin films," J. Appl. Phys. 84, 4096-4108 (1998).
    [CrossRef]

2008 (1)

2007 (1)

Y. S. Lin, Y. Hung, H. Y. Lin, Y. H. Tseng, Y. F. Chen, and C. Y. Mou, "Photonic crystals from monodisperse lanthanide-hydroxide-at-silica core/shell colloidal spheres" Adv. Mater. 19, 577-580, (2007).
[CrossRef]

2006 (1)

2005 (1)

H. C. Hsu, C.Y. Wu, and W.F. Hsieh, "Stimulated emission and lasing of random-growth oriented ZnO nanowires," J. Appl. Phys. 97, 064315-064319 (2005).
[CrossRef]

2002 (1)

J. J. Wu and S.C. Liu," Low-Temperature Growth of Well-Aligned ZnO Nanorods by Chemical Vapor Deposition" Adv. Mater. 14, 215-218 (2002).
[CrossRef]

1999 (1)

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, "Random laser action in semiconductor powder," Phys. Rev. Lett. 82, 2278-2281 (1999).
[CrossRef]

1996 (1)

1994 (1)

. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, "Laser action in strongly scattering media," Nature (London) 368, 436-438 (1994).
[CrossRef]

1992 (1)

G. Bendelli, K. Komori, S. Aria, "Gain saturation and propagation characteristics of index-guidedtapered-waveguide traveling-wave semiconductor laser amplifiers (TTW-SLAs)," IEEE J. Quantum Electron. 28, 447-457 (1992).
[CrossRef]

1968 (1)

Letokhov, V.S.  "Generation of light by a scattering medium with negative resonance absorption," Sov. Phys. JETP 26, 835-840 (1968).

Agarwal, R.

X. F. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, "Single-nanowire electrically driven lasers," Nature London 421, 241-245 (2003).
[CrossRef]

Aria, S.

G. Bendelli, K. Komori, S. Aria, "Gain saturation and propagation characteristics of index-guidedtapered-waveguide traveling-wave semiconductor laser amplifiers (TTW-SLAs)," IEEE J. Quantum Electron. 28, 447-457 (1992).
[CrossRef]

Balachandran, M.

Balachandran, R. M.

. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, "Laser action in strongly scattering media," Nature (London) 368, 436-438 (1994).
[CrossRef]

Baldo, M.

V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, and S. R. Forrest, "Study of lasing action based on Forster energy transfer in optically pumped organic semiconductor thin films," J. Appl. Phys. 84, 4096-4108 (1998).
[CrossRef]

Bao, J.

M. A. Zimmler, J. Bao, F. Capasso, S. Muller, and C. Ronning, "Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation," Appl. Phys. Lett. 93, 051101-051101-3 (2008).
[CrossRef]

Bendelli, G.

G. Bendelli, K. Komori, S. Aria, "Gain saturation and propagation characteristics of index-guidedtapered-waveguide traveling-wave semiconductor laser amplifiers (TTW-SLAs)," IEEE J. Quantum Electron. 28, 447-457 (1992).
[CrossRef]

Bulovic, V.

V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, and S. R. Forrest, "Study of lasing action based on Forster energy transfer in optically pumped organic semiconductor thin films," J. Appl. Phys. 84, 4096-4108 (1998).
[CrossRef]

Burrows, P. E.

V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, and S. R. Forrest, "Study of lasing action based on Forster energy transfer in optically pumped organic semiconductor thin films," J. Appl. Phys. 84, 4096-4108 (1998).
[CrossRef]

Cao, H.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, "Random laser action in semiconductor powder," Phys. Rev. Lett. 82, 2278-2281 (1999).
[CrossRef]

Capasso, F.

M. A. Zimmler, J. Bao, F. Capasso, S. Muller, and C. Ronning, "Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation," Appl. Phys. Lett. 93, 051101-051101-3 (2008).
[CrossRef]

Chang, R. P. H.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, "Random laser action in semiconductor powder," Phys. Rev. Lett. 82, 2278-2281 (1999).
[CrossRef]

Chen, C. L.

Chen, Y. F.

Cheung, C. L.

S. S. Wong, E. Joselevich, A. T. Woolley, C. L. Cheung, and C. M. Lieber, "Covalently functionalized nanotubes as nanometer-sized probes in chemistry and biology," Nature London 394, 52-55 (1998).
[CrossRef]

Chou, Y. Y.

Cui, Y.

X. F. Duan, Y. Huang, Y. Cui, J. F. Wang, and C. M. Lieber,"Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices," Nature London 409, 66-69 (2001).
[CrossRef]

Diaz-Garcia, M. A.

M. D. McGehee, M. A. Diaz-Garcia, F. Hide, R. Gupta, E. K. Miller, D. Moses, and A. J. Heeger, "Semiconducting polymer distributed feedback lasers," Appl. Phys. Lett. 72, 1536-1538 (1998).
[CrossRef]

Dou, K.

C. X. Liu, J. Y. Liu, J. H. Zhang, and K. Dou, "Random lasing with scatterers of diameters 20 nm in an active medium," Opt. Commun. 244, 299-303 (2005).
[CrossRef]

Duan, X. F.

X. F. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, "Single-nanowire electrically driven lasers," Nature London 421, 241-245 (2003).
[CrossRef]

X. F. Duan, Y. Huang, Y. Cui, J. F. Wang, and C. M. Lieber,"Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices," Nature London 409, 66-69 (2001).
[CrossRef]

Forrest, S. R.

V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, and S. R. Forrest, "Study of lasing action based on Forster energy transfer in optically pumped organic semiconductor thin films," J. Appl. Phys. 84, 4096-4108 (1998).
[CrossRef]

Fu, H. K.

Gomes, A. S. L.

. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, "Laser action in strongly scattering media," Nature (London) 368, 436-438 (1994).
[CrossRef]

Gupta, R.

M. D. McGehee, M. A. Diaz-Garcia, F. Hide, R. Gupta, E. K. Miller, D. Moses, and A. J. Heeger, "Semiconducting polymer distributed feedback lasers," Appl. Phys. Lett. 72, 1536-1538 (1998).
[CrossRef]

He, R. R.

H. Q. Yan, J. Johnson, M. Law, R. R. He, K. Knutsen, J. R. McKinney, J. Pham, R. Saykally, and P. D. Yang, "ZnO nanoribbon microcavity lasers," Adv. Mater. ‖Weinheim, Ger.| 15, 1907-1911 ‖2003|.
[CrossRef]

Heeger, A. J.

M. D. McGehee, M. A. Diaz-Garcia, F. Hide, R. Gupta, E. K. Miller, D. Moses, and A. J. Heeger, "Semiconducting polymer distributed feedback lasers," Appl. Phys. Lett. 72, 1536-1538 (1998).
[CrossRef]

Hide, F.

M. D. McGehee, M. A. Diaz-Garcia, F. Hide, R. Gupta, E. K. Miller, D. Moses, and A. J. Heeger, "Semiconducting polymer distributed feedback lasers," Appl. Phys. Lett. 72, 1536-1538 (1998).
[CrossRef]

Ho, S. T.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, "Random laser action in semiconductor powder," Phys. Rev. Lett. 82, 2278-2281 (1999).
[CrossRef]

Hsieh, W.F.

H. C. Hsu, C.Y. Wu, and W.F. Hsieh, "Stimulated emission and lasing of random-growth oriented ZnO nanowires," J. Appl. Phys. 97, 064315-064319 (2005).
[CrossRef]

Hsu, H. C.

H. C. Hsu, C.Y. Wu, and W.F. Hsieh, "Stimulated emission and lasing of random-growth oriented ZnO nanowires," J. Appl. Phys. 97, 064315-064319 (2005).
[CrossRef]

Huang, L. L.

Huang, Y.

X. F. Duan, Y. Huang, Y. Cui, J. F. Wang, and C. M. Lieber,"Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices," Nature London 409, 66-69 (2001).
[CrossRef]

X. F. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, "Single-nanowire electrically driven lasers," Nature London 421, 241-245 (2003).
[CrossRef]

Hung, Y.

H. Y. Lin, H. K. Fu, C. L. Chen, Y. F. Chen, Y. S. Lin, Y. Hung, and C. Y. Mou,"Laser action in Tb(OH)3/SiO2 photonic crystals" Opt. Express,  16, 16697-16703 (2008).
[CrossRef] [PubMed]

Y. S. Lin, Y. Hung, H. Y. Lin, Y. H. Tseng, Y. F. Chen, and C. Y. Mou, "Photonic crystals from monodisperse lanthanide-hydroxide-at-silica core/shell colloidal spheres" Adv. Mater. 19, 577-580, (2007).
[CrossRef]

Johnson, J.

H. Q. Yan, J. Johnson, M. Law, R. R. He, K. Knutsen, J. R. McKinney, J. Pham, R. Saykally, and P. D. Yang, "ZnO nanoribbon microcavity lasers," Adv. Mater. ‖Weinheim, Ger.| 15, 1907-1911 ‖2003|.
[CrossRef]

Joselevich, E.

S. S. Wong, E. Joselevich, A. T. Woolley, C. L. Cheung, and C. M. Lieber, "Covalently functionalized nanotubes as nanometer-sized probes in chemistry and biology," Nature London 394, 52-55 (1998).
[CrossRef]

Khalfin, V. B.

V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, and S. R. Forrest, "Study of lasing action based on Forster energy transfer in optically pumped organic semiconductor thin films," J. Appl. Phys. 84, 4096-4108 (1998).
[CrossRef]

Knutsen, K.

H. Q. Yan, J. Johnson, M. Law, R. R. He, K. Knutsen, J. R. McKinney, J. Pham, R. Saykally, and P. D. Yang, "ZnO nanoribbon microcavity lasers," Adv. Mater. ‖Weinheim, Ger.| 15, 1907-1911 ‖2003|.
[CrossRef]

Komori, K.

G. Bendelli, K. Komori, S. Aria, "Gain saturation and propagation characteristics of index-guidedtapered-waveguide traveling-wave semiconductor laser amplifiers (TTW-SLAs)," IEEE J. Quantum Electron. 28, 447-457 (1992).
[CrossRef]

Kozlov, V. G.

V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, and S. R. Forrest, "Study of lasing action based on Forster energy transfer in optically pumped organic semiconductor thin films," J. Appl. Phys. 84, 4096-4108 (1998).
[CrossRef]

Lau, S. P.

S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G.-C. Yi, "Random laser action in ZnO nanorod arrays embedded in ZnO epilayers," Appl. Phys. Lett. 84, 3241-3243 (2004).
[CrossRef]

Law, M.

H. Q. Yan, J. Johnson, M. Law, R. R. He, K. Knutsen, J. R. McKinney, J. Pham, R. Saykally, and P. D. Yang, "ZnO nanoribbon microcavity lasers," Adv. Mater. ‖Weinheim, Ger.| 15, 1907-1911 ‖2003|.
[CrossRef]

Lawandy, N. M.

M. Balachandran, D. P. Pacheco, and N. M. Lawandy, "Laser action in polymeric gain media containing scattering particles," Appl. Opt. 35, 640-743 (1996).
[CrossRef] [PubMed]

. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, "Laser action in strongly scattering media," Nature (London) 368, 436-438 (1994).
[CrossRef]

Lemmer, U.

U. Scherf, S. Riechel, U. Lemmer, and R. F. Mahrt, "Conjugated polymers: lasing and stimulated emission," Curr. Opin. Solid State Mater. Sci. 5, 143-154 (2001)
[CrossRef]

Letokhov,

Letokhov, V.S.  "Generation of light by a scattering medium with negative resonance absorption," Sov. Phys. JETP 26, 835-840 (1968).

Lieber, C. M.

X. F. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, "Single-nanowire electrically driven lasers," Nature London 421, 241-245 (2003).
[CrossRef]

X. F. Duan, Y. Huang, Y. Cui, J. F. Wang, and C. M. Lieber,"Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices," Nature London 409, 66-69 (2001).
[CrossRef]

S. S. Wong, E. Joselevich, A. T. Woolley, C. L. Cheung, and C. M. Lieber, "Covalently functionalized nanotubes as nanometer-sized probes in chemistry and biology," Nature London 394, 52-55 (1998).
[CrossRef]

Lin, H. Y.

Lin, Y. S.

H. Y. Lin, H. K. Fu, C. L. Chen, Y. F. Chen, Y. S. Lin, Y. Hung, and C. Y. Mou,"Laser action in Tb(OH)3/SiO2 photonic crystals" Opt. Express,  16, 16697-16703 (2008).
[CrossRef] [PubMed]

Y. S. Lin, Y. Hung, H. Y. Lin, Y. H. Tseng, Y. F. Chen, and C. Y. Mou, "Photonic crystals from monodisperse lanthanide-hydroxide-at-silica core/shell colloidal spheres" Adv. Mater. 19, 577-580, (2007).
[CrossRef]

Liu, C. X.

C. X. Liu, J. Y. Liu, J. H. Zhang, and K. Dou, "Random lasing with scatterers of diameters 20 nm in an active medium," Opt. Commun. 244, 299-303 (2005).
[CrossRef]

Liu, J. Y.

C. X. Liu, J. Y. Liu, J. H. Zhang, and K. Dou, "Random lasing with scatterers of diameters 20 nm in an active medium," Opt. Commun. 244, 299-303 (2005).
[CrossRef]

Liu, S.C.

J. J. Wu and S.C. Liu," Low-Temperature Growth of Well-Aligned ZnO Nanorods by Chemical Vapor Deposition" Adv. Mater. 14, 215-218 (2002).
[CrossRef]

Ma, D.

D. Zhang, Y. Wang, and D. Ma, "Random lasing emission from a red fluorescent dye doped polystyrene film containing dispersed polystyrene nanoparticles," Appl. Phys. Lett. 91, 091115-091115-3 (2007).
[CrossRef]

Mahrt, R. F.

U. Scherf, S. Riechel, U. Lemmer, and R. F. Mahrt, "Conjugated polymers: lasing and stimulated emission," Curr. Opin. Solid State Mater. Sci. 5, 143-154 (2001)
[CrossRef]

McGehee, M. D.

M. D. McGehee, M. A. Diaz-Garcia, F. Hide, R. Gupta, E. K. Miller, D. Moses, and A. J. Heeger, "Semiconducting polymer distributed feedback lasers," Appl. Phys. Lett. 72, 1536-1538 (1998).
[CrossRef]

McKinney, J. R.

H. Q. Yan, J. Johnson, M. Law, R. R. He, K. Knutsen, J. R. McKinney, J. Pham, R. Saykally, and P. D. Yang, "ZnO nanoribbon microcavity lasers," Adv. Mater. ‖Weinheim, Ger.| 15, 1907-1911 ‖2003|.
[CrossRef]

Miller, E. K.

M. D. McGehee, M. A. Diaz-Garcia, F. Hide, R. Gupta, E. K. Miller, D. Moses, and A. J. Heeger, "Semiconducting polymer distributed feedback lasers," Appl. Phys. Lett. 72, 1536-1538 (1998).
[CrossRef]

Moses, D.

M. D. McGehee, M. A. Diaz-Garcia, F. Hide, R. Gupta, E. K. Miller, D. Moses, and A. J. Heeger, "Semiconducting polymer distributed feedback lasers," Appl. Phys. Lett. 72, 1536-1538 (1998).
[CrossRef]

Mou, C. Y.

H. Y. Lin, H. K. Fu, C. L. Chen, Y. F. Chen, Y. S. Lin, Y. Hung, and C. Y. Mou,"Laser action in Tb(OH)3/SiO2 photonic crystals" Opt. Express,  16, 16697-16703 (2008).
[CrossRef] [PubMed]

Y. S. Lin, Y. Hung, H. Y. Lin, Y. H. Tseng, Y. F. Chen, and C. Y. Mou, "Photonic crystals from monodisperse lanthanide-hydroxide-at-silica core/shell colloidal spheres" Adv. Mater. 19, 577-580, (2007).
[CrossRef]

Muller, S.

M. A. Zimmler, J. Bao, F. Capasso, S. Muller, and C. Ronning, "Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation," Appl. Phys. Lett. 93, 051101-051101-3 (2008).
[CrossRef]

Pacheco, D. P.

Park, W. I.

S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G.-C. Yi, "Random laser action in ZnO nanorod arrays embedded in ZnO epilayers," Appl. Phys. Lett. 84, 3241-3243 (2004).
[CrossRef]

Parthasarathy, G.

V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, and S. R. Forrest, "Study of lasing action based on Forster energy transfer in optically pumped organic semiconductor thin films," J. Appl. Phys. 84, 4096-4108 (1998).
[CrossRef]

Pham, J.

H. Q. Yan, J. Johnson, M. Law, R. R. He, K. Knutsen, J. R. McKinney, J. Pham, R. Saykally, and P. D. Yang, "ZnO nanoribbon microcavity lasers," Adv. Mater. ‖Weinheim, Ger.| 15, 1907-1911 ‖2003|.
[CrossRef]

Riechel, S.

U. Scherf, S. Riechel, U. Lemmer, and R. F. Mahrt, "Conjugated polymers: lasing and stimulated emission," Curr. Opin. Solid State Mater. Sci. 5, 143-154 (2001)
[CrossRef]

Ronning, C.

M. A. Zimmler, J. Bao, F. Capasso, S. Muller, and C. Ronning, "Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation," Appl. Phys. Lett. 93, 051101-051101-3 (2008).
[CrossRef]

Sauvain, E.

. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, "Laser action in strongly scattering media," Nature (London) 368, 436-438 (1994).
[CrossRef]

Saykally, R.

H. Q. Yan, J. Johnson, M. Law, R. R. He, K. Knutsen, J. R. McKinney, J. Pham, R. Saykally, and P. D. Yang, "ZnO nanoribbon microcavity lasers," Adv. Mater. ‖Weinheim, Ger.| 15, 1907-1911 ‖2003|.
[CrossRef]

Scherf, U.

U. Scherf, S. Riechel, U. Lemmer, and R. F. Mahrt, "Conjugated polymers: lasing and stimulated emission," Curr. Opin. Solid State Mater. Sci. 5, 143-154 (2001)
[CrossRef]

Seelig, E. W.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, "Random laser action in semiconductor powder," Phys. Rev. Lett. 82, 2278-2281 (1999).
[CrossRef]

Tseng, Y. H.

Y. S. Lin, Y. Hung, H. Y. Lin, Y. H. Tseng, Y. F. Chen, and C. Y. Mou, "Photonic crystals from monodisperse lanthanide-hydroxide-at-silica core/shell colloidal spheres" Adv. Mater. 19, 577-580, (2007).
[CrossRef]

Wang, J. F.

X. F. Duan, Y. Huang, Y. Cui, J. F. Wang, and C. M. Lieber,"Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices," Nature London 409, 66-69 (2001).
[CrossRef]

Wang, Q. H.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, "Random laser action in semiconductor powder," Phys. Rev. Lett. 82, 2278-2281 (1999).
[CrossRef]

Wang, Y.

D. Zhang, Y. Wang, and D. Ma, "Random lasing emission from a red fluorescent dye doped polystyrene film containing dispersed polystyrene nanoparticles," Appl. Phys. Lett. 91, 091115-091115-3 (2007).
[CrossRef]

Wong, S. S.

S. S. Wong, E. Joselevich, A. T. Woolley, C. L. Cheung, and C. M. Lieber, "Covalently functionalized nanotubes as nanometer-sized probes in chemistry and biology," Nature London 394, 52-55 (1998).
[CrossRef]

Woolley, A. T.

S. S. Wong, E. Joselevich, A. T. Woolley, C. L. Cheung, and C. M. Lieber, "Covalently functionalized nanotubes as nanometer-sized probes in chemistry and biology," Nature London 394, 52-55 (1998).
[CrossRef]

Wu, C.Y.

H. C. Hsu, C.Y. Wu, and W.F. Hsieh, "Stimulated emission and lasing of random-growth oriented ZnO nanowires," J. Appl. Phys. 97, 064315-064319 (2005).
[CrossRef]

Wu, J. J.

J. J. Wu and S.C. Liu," Low-Temperature Growth of Well-Aligned ZnO Nanorods by Chemical Vapor Deposition" Adv. Mater. 14, 215-218 (2002).
[CrossRef]

Yan, H. Q.

H. Q. Yan, J. Johnson, M. Law, R. R. He, K. Knutsen, J. R. McKinney, J. Pham, R. Saykally, and P. D. Yang, "ZnO nanoribbon microcavity lasers," Adv. Mater. ‖Weinheim, Ger.| 15, 1907-1911 ‖2003|.
[CrossRef]

Yang, P. D.

H. Q. Yan, J. Johnson, M. Law, R. R. He, K. Knutsen, J. R. McKinney, J. Pham, R. Saykally, and P. D. Yang, "ZnO nanoribbon microcavity lasers," Adv. Mater. ‖Weinheim, Ger.| 15, 1907-1911 ‖2003|.
[CrossRef]

Yi, G.-C.

S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G.-C. Yi, "Random laser action in ZnO nanorod arrays embedded in ZnO epilayers," Appl. Phys. Lett. 84, 3241-3243 (2004).
[CrossRef]

Yu, S. F.

S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G.-C. Yi, "Random laser action in ZnO nanorod arrays embedded in ZnO epilayers," Appl. Phys. Lett. 84, 3241-3243 (2004).
[CrossRef]

Yuen, C.

S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G.-C. Yi, "Random laser action in ZnO nanorod arrays embedded in ZnO epilayers," Appl. Phys. Lett. 84, 3241-3243 (2004).
[CrossRef]

Zhang, D.

D. Zhang, Y. Wang, and D. Ma, "Random lasing emission from a red fluorescent dye doped polystyrene film containing dispersed polystyrene nanoparticles," Appl. Phys. Lett. 91, 091115-091115-3 (2007).
[CrossRef]

Zhang, J. H.

C. X. Liu, J. Y. Liu, J. H. Zhang, and K. Dou, "Random lasing with scatterers of diameters 20 nm in an active medium," Opt. Commun. 244, 299-303 (2005).
[CrossRef]

Zhao, Y. G.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, "Random laser action in semiconductor powder," Phys. Rev. Lett. 82, 2278-2281 (1999).
[CrossRef]

Zimmler, M. A.

M. A. Zimmler, J. Bao, F. Capasso, S. Muller, and C. Ronning, "Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation," Appl. Phys. Lett. 93, 051101-051101-3 (2008).
[CrossRef]

Adv. Mater. (2)

J. J. Wu and S.C. Liu," Low-Temperature Growth of Well-Aligned ZnO Nanorods by Chemical Vapor Deposition" Adv. Mater. 14, 215-218 (2002).
[CrossRef]

Y. S. Lin, Y. Hung, H. Y. Lin, Y. H. Tseng, Y. F. Chen, and C. Y. Mou, "Photonic crystals from monodisperse lanthanide-hydroxide-at-silica core/shell colloidal spheres" Adv. Mater. 19, 577-580, (2007).
[CrossRef]

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

G. Bendelli, K. Komori, S. Aria, "Gain saturation and propagation characteristics of index-guidedtapered-waveguide traveling-wave semiconductor laser amplifiers (TTW-SLAs)," IEEE J. Quantum Electron. 28, 447-457 (1992).
[CrossRef]

J. Appl. Phys. (1)

H. C. Hsu, C.Y. Wu, and W.F. Hsieh, "Stimulated emission and lasing of random-growth oriented ZnO nanowires," J. Appl. Phys. 97, 064315-064319 (2005).
[CrossRef]

Nature (London) (1)

. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, "Laser action in strongly scattering media," Nature (London) 368, 436-438 (1994).
[CrossRef]

Opt. Express (2)

Phys. Rev. Lett. (1)

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, "Random laser action in semiconductor powder," Phys. Rev. Lett. 82, 2278-2281 (1999).
[CrossRef]

Sov. Phys. JETP (1)

Letokhov, V.S.  "Generation of light by a scattering medium with negative resonance absorption," Sov. Phys. JETP 26, 835-840 (1968).

Other (12)

S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G.-C. Yi, "Random laser action in ZnO nanorod arrays embedded in ZnO epilayers," Appl. Phys. Lett. 84, 3241-3243 (2004).
[CrossRef]

C. X. Liu, J. Y. Liu, J. H. Zhang, and K. Dou, "Random lasing with scatterers of diameters 20 nm in an active medium," Opt. Commun. 244, 299-303 (2005).
[CrossRef]

D. Zhang, Y. Wang, and D. Ma, "Random lasing emission from a red fluorescent dye doped polystyrene film containing dispersed polystyrene nanoparticles," Appl. Phys. Lett. 91, 091115-091115-3 (2007).
[CrossRef]

R. Reisfeld and C. K. Jørgensen, Lasers and excited states of Rare Earths (Springer, Berlin, 1977).
[CrossRef]

V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, and S. R. Forrest, "Study of lasing action based on Forster energy transfer in optically pumped organic semiconductor thin films," J. Appl. Phys. 84, 4096-4108 (1998).
[CrossRef]

M. A. Zimmler, J. Bao, F. Capasso, S. Muller, and C. Ronning, "Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation," Appl. Phys. Lett. 93, 051101-051101-3 (2008).
[CrossRef]

X. F. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, "Single-nanowire electrically driven lasers," Nature London 421, 241-245 (2003).
[CrossRef]

S. S. Wong, E. Joselevich, A. T. Woolley, C. L. Cheung, and C. M. Lieber, "Covalently functionalized nanotubes as nanometer-sized probes in chemistry and biology," Nature London 394, 52-55 (1998).
[CrossRef]

X. F. Duan, Y. Huang, Y. Cui, J. F. Wang, and C. M. Lieber,"Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices," Nature London 409, 66-69 (2001).
[CrossRef]

H. Q. Yan, J. Johnson, M. Law, R. R. He, K. Knutsen, J. R. McKinney, J. Pham, R. Saykally, and P. D. Yang, "ZnO nanoribbon microcavity lasers," Adv. Mater. ‖Weinheim, Ger.| 15, 1907-1911 ‖2003|.
[CrossRef]

M. D. McGehee, M. A. Diaz-Garcia, F. Hide, R. Gupta, E. K. Miller, D. Moses, and A. J. Heeger, "Semiconducting polymer distributed feedback lasers," Appl. Phys. Lett. 72, 1536-1538 (1998).
[CrossRef]

U. Scherf, S. Riechel, U. Lemmer, and R. F. Mahrt, "Conjugated polymers: lasing and stimulated emission," Curr. Opin. Solid State Mater. Sci. 5, 143-154 (2001)
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Scanning electron microscopy of Tb(OH)3/SiO2 core/shell nanospheres. (b) Photoluminescence spectra of Tb(OH)3/SiO2 core/shell nanospheres with different pumping pulse energy.

Fig. 2.
Fig. 2.

(a) Scanning electron microscopy of random-growth ZnO naorods. (b) Photoluminescence spectra of ZnO nanorods with different pumping pulse energy.

Fig. 3.
Fig. 3.

(a) Scanning electron microscopy of Tb(OH)3/SiO2 core/shell nanospheres embedded in ZnO nanorods. (b) Photoluminescence spectra of Tb(OH)3/SiO2 core/shell nanospheres embedded in ZnO nanorods with different pumping pulse energy.

Fig. 4.
Fig. 4.

Comparison of photoluminescence spectra of Tb(OH)3/SiO2 core/shell nanospheres without ZnO nanorods (a) and with ZnO nanorods (b), under the same pumping energy of 110 µJ/pulse.

Fig. 5.
Fig. 5.

Plot of emission peak intensity of Tb(OH)3/SiO2 core/shell nanospheres vs pumping energy. (▪ denoted nanospheres with ZnO nanorods, oe-17-15-12706-i001 denoted nanospheres without ZnO nanorods)

Fig. 6.
Fig. 6.

The polarization curve of light emission from Tb(OH)3/SiO2 nanospheres embedded in ZnO nanorods, the measured photon intensity (square point) was fit to polarizer rotated angle cos2(θ) (solid line).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

L = λ 2 2 n Δ λ ,

Metrics