Abstract

We report on the generation of multi-wavelength dissipative soliton (DS) in an all normal dispersion fiber laser passively mode-locked with a semiconductor saturable absorber mirror (SESAM). We show that depending on the strength of the cavity birefringence, stable single-, dual- and triple-wavelength DSs can be formed in the laser. The multi-wavelength soliton operation of the laser was experimentally investigated, and the formation mechanisms of the multi-wavelength DSs are discussed.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Li, K. T. Chan, Y. Liu, L. Zhang, and I. Bennion, “Multiwavelength picosecond pulses generated from a self-seeded Fabry-Perot laser diode with a fiber external cavity using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 10(12), 1712–1714 (1998).
    [CrossRef]
  2. J. Yao, J. P. Yao, Y. Wang, S. C. Tjin, Y. Zhou, Y. L. Lam, J. Liu, and C. Lu, “Active mode locking of tunable multi-wavelength fiber ring laser,” Opt. Commun. 191(3-6), 341–345 (2001).
    [CrossRef]
  3. S. Pan and C. Lou, “Stable multiwavelength dispersion-tuned actively mode-locked erbium-doped fiber ringlaser using nonlinear polarization rotation,” IEEE Photon. Technol. Lett. 18(13), 1451–1453 (2006).
    [CrossRef]
  4. V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarization rotation,” Electron. Lett. 28(15), 1391–1393 (1992).
    [CrossRef]
  5. L. M. Zhao, D. Y. Tang, H. Zhang, T. H. Cheng, H. Y. Tam, and C. Lu, “Dynamics of gain-guided solitons in an all-normal-dispersion fiber laser,” Opt. Lett. 32(13), 1806–1808 (2007).
    [CrossRef] [PubMed]
  6. H. Zhang, D. Y. Tang, L. M. Zhao, X. Wu, and H. Y. Tam, “Dissipative vector solitons in a dispersionmanaged cavity fiber laser with net positive cavity dispersion,” Opt. Express 17(2), 455–460 (2009).
    [CrossRef] [PubMed]
  7. A. Cabasse, B. Ortaç, G. Martel, A. Hideur, and J. Limpert, “Dissipative solitons in a passively mode-locked Er-doped fiber with strong normal dispersion,” Opt. Express 16(23), 19322–19329 (2008).
    [CrossRef]
  8. C. Lecaplain, C. Chédot, A. Hideur, B. Ortaç, and J. Limpert, “High-power all-normal-dispersion femtosecond pulse generation from a Yb-doped large-mode-area microstructure fiber laser,” Opt. Lett. 32(18), 2738–2740 (2007).
    [CrossRef] [PubMed]
  9. W. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
    [CrossRef]
  10. A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25(2), 140–148 (2008).
    [CrossRef]
  11. A. Chong, J. Buckley, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14(21), 10095–10100 (2006).
    [CrossRef] [PubMed]
  12. W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances in laser models with parameter management,” J. Opt. Soc. Am. B 25(12), 1972–1977 (2008).
    [CrossRef]
  13. W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2008).
    [CrossRef]
  14. Dissipative Solitons, From Optics to Biology and Medicine, N. Akhmediev; A. Ankievicz Eds, Springer (2008).
  15. G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press, 1995).

2009 (1)

2008 (5)

2007 (2)

2006 (2)

A. Chong, J. Buckley, W. H. Renninger, and F. W. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14(21), 10095–10100 (2006).
[CrossRef] [PubMed]

S. Pan and C. Lou, “Stable multiwavelength dispersion-tuned actively mode-locked erbium-doped fiber ringlaser using nonlinear polarization rotation,” IEEE Photon. Technol. Lett. 18(13), 1451–1453 (2006).
[CrossRef]

2001 (1)

J. Yao, J. P. Yao, Y. Wang, S. C. Tjin, Y. Zhou, Y. L. Lam, J. Liu, and C. Lu, “Active mode locking of tunable multi-wavelength fiber ring laser,” Opt. Commun. 191(3-6), 341–345 (2001).
[CrossRef]

1998 (1)

S. Li, K. T. Chan, Y. Liu, L. Zhang, and I. Bennion, “Multiwavelength picosecond pulses generated from a self-seeded Fabry-Perot laser diode with a fiber external cavity using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 10(12), 1712–1714 (1998).
[CrossRef]

1992 (1)

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarization rotation,” Electron. Lett. 28(15), 1391–1393 (1992).
[CrossRef]

Akhmediev, N.

Ankiewicz, A.

Bennion, I.

S. Li, K. T. Chan, Y. Liu, L. Zhang, and I. Bennion, “Multiwavelength picosecond pulses generated from a self-seeded Fabry-Perot laser diode with a fiber external cavity using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 10(12), 1712–1714 (1998).
[CrossRef]

Buckley, J.

Cabasse, A.

Chan, K. T.

S. Li, K. T. Chan, Y. Liu, L. Zhang, and I. Bennion, “Multiwavelength picosecond pulses generated from a self-seeded Fabry-Perot laser diode with a fiber external cavity using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 10(12), 1712–1714 (1998).
[CrossRef]

Chang, W.

Chédot, C.

Cheng, T. H.

Chong, A.

Hideur, A.

Lam, Y. L.

J. Yao, J. P. Yao, Y. Wang, S. C. Tjin, Y. Zhou, Y. L. Lam, J. Liu, and C. Lu, “Active mode locking of tunable multi-wavelength fiber ring laser,” Opt. Commun. 191(3-6), 341–345 (2001).
[CrossRef]

Lecaplain, C.

Li, S.

S. Li, K. T. Chan, Y. Liu, L. Zhang, and I. Bennion, “Multiwavelength picosecond pulses generated from a self-seeded Fabry-Perot laser diode with a fiber external cavity using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 10(12), 1712–1714 (1998).
[CrossRef]

Limpert, J.

Liu, J.

J. Yao, J. P. Yao, Y. Wang, S. C. Tjin, Y. Zhou, Y. L. Lam, J. Liu, and C. Lu, “Active mode locking of tunable multi-wavelength fiber ring laser,” Opt. Commun. 191(3-6), 341–345 (2001).
[CrossRef]

Liu, Y.

S. Li, K. T. Chan, Y. Liu, L. Zhang, and I. Bennion, “Multiwavelength picosecond pulses generated from a self-seeded Fabry-Perot laser diode with a fiber external cavity using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 10(12), 1712–1714 (1998).
[CrossRef]

Lou, C.

S. Pan and C. Lou, “Stable multiwavelength dispersion-tuned actively mode-locked erbium-doped fiber ringlaser using nonlinear polarization rotation,” IEEE Photon. Technol. Lett. 18(13), 1451–1453 (2006).
[CrossRef]

Lu, C.

L. M. Zhao, D. Y. Tang, H. Zhang, T. H. Cheng, H. Y. Tam, and C. Lu, “Dynamics of gain-guided solitons in an all-normal-dispersion fiber laser,” Opt. Lett. 32(13), 1806–1808 (2007).
[CrossRef] [PubMed]

J. Yao, J. P. Yao, Y. Wang, S. C. Tjin, Y. Zhou, Y. L. Lam, J. Liu, and C. Lu, “Active mode locking of tunable multi-wavelength fiber ring laser,” Opt. Commun. 191(3-6), 341–345 (2001).
[CrossRef]

Martel, G.

Matsas, V. J.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarization rotation,” Electron. Lett. 28(15), 1391–1393 (1992).
[CrossRef]

Newson, T. P.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarization rotation,” Electron. Lett. 28(15), 1391–1393 (1992).
[CrossRef]

Ortaç, B.

Pan, S.

S. Pan and C. Lou, “Stable multiwavelength dispersion-tuned actively mode-locked erbium-doped fiber ringlaser using nonlinear polarization rotation,” IEEE Photon. Technol. Lett. 18(13), 1451–1453 (2006).
[CrossRef]

Payne, D. N.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarization rotation,” Electron. Lett. 28(15), 1391–1393 (1992).
[CrossRef]

Renninger, W.

W. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
[CrossRef]

Renninger, W. H.

Richardson, D. J.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarization rotation,” Electron. Lett. 28(15), 1391–1393 (1992).
[CrossRef]

Soto-Crespo, J. M.

Tam, H. Y.

Tang, D. Y.

Tjin, S. C.

J. Yao, J. P. Yao, Y. Wang, S. C. Tjin, Y. Zhou, Y. L. Lam, J. Liu, and C. Lu, “Active mode locking of tunable multi-wavelength fiber ring laser,” Opt. Commun. 191(3-6), 341–345 (2001).
[CrossRef]

Wang, Y.

J. Yao, J. P. Yao, Y. Wang, S. C. Tjin, Y. Zhou, Y. L. Lam, J. Liu, and C. Lu, “Active mode locking of tunable multi-wavelength fiber ring laser,” Opt. Commun. 191(3-6), 341–345 (2001).
[CrossRef]

Wise, F. W.

Wu, X.

Yao, J.

J. Yao, J. P. Yao, Y. Wang, S. C. Tjin, Y. Zhou, Y. L. Lam, J. Liu, and C. Lu, “Active mode locking of tunable multi-wavelength fiber ring laser,” Opt. Commun. 191(3-6), 341–345 (2001).
[CrossRef]

Yao, J. P.

J. Yao, J. P. Yao, Y. Wang, S. C. Tjin, Y. Zhou, Y. L. Lam, J. Liu, and C. Lu, “Active mode locking of tunable multi-wavelength fiber ring laser,” Opt. Commun. 191(3-6), 341–345 (2001).
[CrossRef]

Zhang, H.

Zhang, L.

S. Li, K. T. Chan, Y. Liu, L. Zhang, and I. Bennion, “Multiwavelength picosecond pulses generated from a self-seeded Fabry-Perot laser diode with a fiber external cavity using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 10(12), 1712–1714 (1998).
[CrossRef]

Zhao, L. M.

Zhou, Y.

J. Yao, J. P. Yao, Y. Wang, S. C. Tjin, Y. Zhou, Y. L. Lam, J. Liu, and C. Lu, “Active mode locking of tunable multi-wavelength fiber ring laser,” Opt. Commun. 191(3-6), 341–345 (2001).
[CrossRef]

Electron. Lett. (1)

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarization rotation,” Electron. Lett. 28(15), 1391–1393 (1992).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

S. Li, K. T. Chan, Y. Liu, L. Zhang, and I. Bennion, “Multiwavelength picosecond pulses generated from a self-seeded Fabry-Perot laser diode with a fiber external cavity using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 10(12), 1712–1714 (1998).
[CrossRef]

S. Pan and C. Lou, “Stable multiwavelength dispersion-tuned actively mode-locked erbium-doped fiber ringlaser using nonlinear polarization rotation,” IEEE Photon. Technol. Lett. 18(13), 1451–1453 (2006).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

J. Yao, J. P. Yao, Y. Wang, S. C. Tjin, Y. Zhou, Y. L. Lam, J. Liu, and C. Lu, “Active mode locking of tunable multi-wavelength fiber ring laser,” Opt. Commun. 191(3-6), 341–345 (2001).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. A (2)

W. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
[CrossRef]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2008).
[CrossRef]

Other (2)

Dissipative Solitons, From Optics to Biology and Medicine, N. Akhmediev; A. Ankievicz Eds, Springer (2008).

G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the experimental setup. EDF: Erbium doped fiber. WDM: wavelength division multiplexer. DCF: dispersion compensation fiber. PC: polarization controllers.

Fig. 2
Fig. 2

(a) Optical spectra of single wavelength GGS. Insert: the oscilloscope trace. (b) The corresponding autocorrelation trace

Fig. 3
Fig. 3

(a) Optical spectrum of dual wavelength GGSs. Insert: the normalized optical spectrum; (b) Oscilloscope trace of dual wavelength GGSs.

Fig. 4
Fig. 4

Oscilloscope trace of synchronized dual wavelength GGS.

Fig. 5
Fig. 5

(a) Optical spectra of polarization locked gain guided vector soliton and dual wavelength spectrum obtained through rotating PCs but kept the pump strength fixed: normalized unit. (b) Oscilloscope trace of polarization locked gain guided vector soliton after passing through a polarizer.

Fig. 6
Fig. 6

Single/dual/triple wavelength spectra obtained through rotating PCs but kept the pump strength fixed.

Metrics