Abstract

We propose and investigate ultracompact aperture-coupled plasmonic ring resonators with submicron bending radii based on strongly-confined metal-insulator-metal plasmonic waveguides. Enhanced coupling can be obtained via diffraction by small apertures having typical widths between 50–100nm in the metallic sidewall between the ring and bus waveguides. Both analytical model and rigorous FDTD simulations show that 500nm-radius ring resonators can be obtained with low insertion loss, wide free spectral range and sub-diffraction cavity volume of less than 0.1(λ0/neff)3.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
    [CrossRef] [PubMed]
  2. F. Yang, J. R. Sambles, and G. W. Bradberry, "Long-range surface modes supported by thin films," Phys. Rev. B 44, 5855 (1991).
    [CrossRef]
  3. A. V. Krasavina and A. V. Zayats, "Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides," Appl. Phys. Lett. 90, 211101 (2007).
    [CrossRef]
  4. Rashid Zia, Mark D. Selker, Peter B. Catrysse, and Mark L. Brongersma, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. Am. A 21, 2442 (2004).
    [CrossRef]
  5. B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, M. Trakalo, "Very high-order microring resonator filters for WDM applications," IEEE Photon. Technol. Lett. 16, 2263 (2004).
    [CrossRef]
  6. V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover and P.-T. Ho, "Optical signal processing using nonlinear semiconductor microring resonators," IEEE J. Sel. Topics Quantum Electron. 8, 705 (2002).
    [CrossRef]
  7. S. Xiao, L. Liu and M. Qiu, "Resonator channel drop filters in a plasmon-polaritons metal," Opt. Express,  14(7), 2932(2006).
    [CrossRef]
  8. A. Hosseini and Y. Massoud, "Nanoscale surface plasmon based resonator using rectangular geometry," Appl. Phys. Lett. 90, 181102 (2007).
    [CrossRef]
  9. H. A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66, 163 (1944).
    [CrossRef]
  10. P. Johnson and R. Christy, "Optical constants of the noble metals," Phys. Rev. B. 6, 4370-4379 (1972).
    [CrossRef]

2007 (2)

A. V. Krasavina and A. V. Zayats, "Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides," Appl. Phys. Lett. 90, 211101 (2007).
[CrossRef]

A. Hosseini and Y. Massoud, "Nanoscale surface plasmon based resonator using rectangular geometry," Appl. Phys. Lett. 90, 181102 (2007).
[CrossRef]

2006 (2)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

S. Xiao, L. Liu and M. Qiu, "Resonator channel drop filters in a plasmon-polaritons metal," Opt. Express,  14(7), 2932(2006).
[CrossRef]

2004 (2)

Rashid Zia, Mark D. Selker, Peter B. Catrysse, and Mark L. Brongersma, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. Am. A 21, 2442 (2004).
[CrossRef]

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, M. Trakalo, "Very high-order microring resonator filters for WDM applications," IEEE Photon. Technol. Lett. 16, 2263 (2004).
[CrossRef]

2002 (1)

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover and P.-T. Ho, "Optical signal processing using nonlinear semiconductor microring resonators," IEEE J. Sel. Topics Quantum Electron. 8, 705 (2002).
[CrossRef]

1991 (1)

F. Yang, J. R. Sambles, and G. W. Bradberry, "Long-range surface modes supported by thin films," Phys. Rev. B 44, 5855 (1991).
[CrossRef]

1972 (1)

P. Johnson and R. Christy, "Optical constants of the noble metals," Phys. Rev. B. 6, 4370-4379 (1972).
[CrossRef]

1944 (1)

H. A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66, 163 (1944).
[CrossRef]

Absil, P. P.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, M. Trakalo, "Very high-order microring resonator filters for WDM applications," IEEE Photon. Technol. Lett. 16, 2263 (2004).
[CrossRef]

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover and P.-T. Ho, "Optical signal processing using nonlinear semiconductor microring resonators," IEEE J. Sel. Topics Quantum Electron. 8, 705 (2002).
[CrossRef]

Bethe, H. A.

H. A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66, 163 (1944).
[CrossRef]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Bradberry, G. W.

F. Yang, J. R. Sambles, and G. W. Bradberry, "Long-range surface modes supported by thin films," Phys. Rev. B 44, 5855 (1991).
[CrossRef]

Brongersma, Mark L.

Catrysse, Peter B.

Christy, R.

P. Johnson and R. Christy, "Optical constants of the noble metals," Phys. Rev. B. 6, 4370-4379 (1972).
[CrossRef]

Chu, S. T.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, M. Trakalo, "Very high-order microring resonator filters for WDM applications," IEEE Photon. Technol. Lett. 16, 2263 (2004).
[CrossRef]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Gill, D.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, M. Trakalo, "Very high-order microring resonator filters for WDM applications," IEEE Photon. Technol. Lett. 16, 2263 (2004).
[CrossRef]

Grover, R.

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover and P.-T. Ho, "Optical signal processing using nonlinear semiconductor microring resonators," IEEE J. Sel. Topics Quantum Electron. 8, 705 (2002).
[CrossRef]

Ho, P.-T.

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover and P.-T. Ho, "Optical signal processing using nonlinear semiconductor microring resonators," IEEE J. Sel. Topics Quantum Electron. 8, 705 (2002).
[CrossRef]

Hosseini, A.

A. Hosseini and Y. Massoud, "Nanoscale surface plasmon based resonator using rectangular geometry," Appl. Phys. Lett. 90, 181102 (2007).
[CrossRef]

Hryniewicz, J. V.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, M. Trakalo, "Very high-order microring resonator filters for WDM applications," IEEE Photon. Technol. Lett. 16, 2263 (2004).
[CrossRef]

Ibrahim, T. A.

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover and P.-T. Ho, "Optical signal processing using nonlinear semiconductor microring resonators," IEEE J. Sel. Topics Quantum Electron. 8, 705 (2002).
[CrossRef]

Johnson, F. G.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, M. Trakalo, "Very high-order microring resonator filters for WDM applications," IEEE Photon. Technol. Lett. 16, 2263 (2004).
[CrossRef]

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover and P.-T. Ho, "Optical signal processing using nonlinear semiconductor microring resonators," IEEE J. Sel. Topics Quantum Electron. 8, 705 (2002).
[CrossRef]

Johnson, P.

P. Johnson and R. Christy, "Optical constants of the noble metals," Phys. Rev. B. 6, 4370-4379 (1972).
[CrossRef]

King, O.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, M. Trakalo, "Very high-order microring resonator filters for WDM applications," IEEE Photon. Technol. Lett. 16, 2263 (2004).
[CrossRef]

Krasavina, A. V.

A. V. Krasavina and A. V. Zayats, "Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides," Appl. Phys. Lett. 90, 211101 (2007).
[CrossRef]

Laluet, J.-Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Little, B. E.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, M. Trakalo, "Very high-order microring resonator filters for WDM applications," IEEE Photon. Technol. Lett. 16, 2263 (2004).
[CrossRef]

Liu, L.

Massoud, Y.

A. Hosseini and Y. Massoud, "Nanoscale surface plasmon based resonator using rectangular geometry," Appl. Phys. Lett. 90, 181102 (2007).
[CrossRef]

Qiu, M.

Sambles, J. R.

F. Yang, J. R. Sambles, and G. W. Bradberry, "Long-range surface modes supported by thin films," Phys. Rev. B 44, 5855 (1991).
[CrossRef]

Seiferth, F.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, M. Trakalo, "Very high-order microring resonator filters for WDM applications," IEEE Photon. Technol. Lett. 16, 2263 (2004).
[CrossRef]

Selker, Mark D.

Trakalo, M.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, M. Trakalo, "Very high-order microring resonator filters for WDM applications," IEEE Photon. Technol. Lett. 16, 2263 (2004).
[CrossRef]

Van, V.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, M. Trakalo, "Very high-order microring resonator filters for WDM applications," IEEE Photon. Technol. Lett. 16, 2263 (2004).
[CrossRef]

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover and P.-T. Ho, "Optical signal processing using nonlinear semiconductor microring resonators," IEEE J. Sel. Topics Quantum Electron. 8, 705 (2002).
[CrossRef]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Xiao, S.

Yang, F.

F. Yang, J. R. Sambles, and G. W. Bradberry, "Long-range surface modes supported by thin films," Phys. Rev. B 44, 5855 (1991).
[CrossRef]

Zayats, A. V.

A. V. Krasavina and A. V. Zayats, "Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides," Appl. Phys. Lett. 90, 211101 (2007).
[CrossRef]

Zia, Rashid

Appl. Phys. Lett. (2)

A. V. Krasavina and A. V. Zayats, "Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides," Appl. Phys. Lett. 90, 211101 (2007).
[CrossRef]

A. Hosseini and Y. Massoud, "Nanoscale surface plasmon based resonator using rectangular geometry," Appl. Phys. Lett. 90, 181102 (2007).
[CrossRef]

IEEE J. Sel. Topics Quantum Electron. (1)

V. Van, T. A. Ibrahim, P. P. Absil, F. G. Johnson, R. Grover and P.-T. Ho, "Optical signal processing using nonlinear semiconductor microring resonators," IEEE J. Sel. Topics Quantum Electron. 8, 705 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, M. Trakalo, "Very high-order microring resonator filters for WDM applications," IEEE Photon. Technol. Lett. 16, 2263 (2004).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nature (1)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Rev. (1)

H. A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66, 163 (1944).
[CrossRef]

Phys. Rev. B (1)

F. Yang, J. R. Sambles, and G. W. Bradberry, "Long-range surface modes supported by thin films," Phys. Rev. B 44, 5855 (1991).
[CrossRef]

Phys. Rev. B. (1)

P. Johnson and R. Christy, "Optical constants of the noble metals," Phys. Rev. B. 6, 4370-4379 (1972).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Schematic of an MIM plasmonic ring resonator side-coupled to a bus waveguide via a small aperture of width w and depth g. (b) Theoretical spectral response of a 500nm-radius plasmonic ring resonator with κ2=0.1 for the ideal lossless case (dashed lines) and the lossy case (solid lines) when the MIM waveguide has a propagation length of 50µm.

Fig. 2.
Fig. 2.

(a) Forward κ2 f , blue line) and backward (κ2 f , red line) power coupling coefficients as functions of the aperture width w with fixed aperture depth g=50nm. (b) 2D-FDTD simulation results of the spectral responses of a 500nm-radius plasmonic ring with w=50nm and g=50nm. (c) Time-averaged distribution of the magnetic field, |Hy|2, in the ring at the 1.51µm resonance wavelength. (d) 3D-FDTD simulation results of the spectral responses of a 500nm-radius plasmonic ring resonator with coupling aperture width w=100nm and depth g=50nm. The inset shows the cross-section of the MIM waveguide.

Fig. 3.
Fig. 3.

(a) Theoretical spectral responses of an all-pass and an add-drop plasmonic ring resonator using two-hole directional aperture couplers. (b) 2D-FDTD simulation results of the spectral responses of a 500nm-radius all-pass plasmonic ring resonator.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

[A1A2A3A4]=[tttt][A1+A2+A3+A4+],
Tt=t 2κ2αrtejϕrt1ταrtejϕrt ,
Tr=jκ 2κ2αrtejϕrt1ταrtejϕrt .

Metrics