Abstract

Return-to-Zero (RZ) and Non-Return-to-Zero (NRZ) Differential Phase Shift Keyed (DPSK) systems require cheap and optimal transmitters for widespread implementation. The authors report on a gain switched Discrete Mode (DM) laser that can be employed as a cost efficient transmitter in a 10.7 Gb/s RZ DPSK system and compare its performance to that of a gain switched Distributed Feed-Back (DFB) laser. Experimental results show that the gain switched DM laser readily provides error free performance and a receiver sensitivity of −33.1 dBm in the 10.7 Gbit/s RZ DPSK system. The standard DFB laser on the other hand displays an error floor at 10−1 in the same RZ DPSK system. The difference in performance, between the two types of gain switched transmitters, is analysed by investigating their linewidths. We also demonstrate, for the first time, the generation of a highly coherent gain switched pulse train which displays a spectral comb of approximately 13 sidebands spaced by the 10.7 GHz modulation frequency. The filtered side-bands are then employed as narrow linewidth Continuous Wave (CW) sources in a 10.7 Gb/s NRZ DPSK system.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Mikkelsen, C. Rasmussen, P. Mamyshev, F. Liu, S. Dey, and F. Rosca, “Deployment of 40 Gb/s Systems: Technical and Cost Issues,” in Optical Fiber Communications Conference and Exposition and The National Fiber Optic Engineers Conference on CD-ROM (Optical Society of America, Los Angeles, CA, 2004), ThE6.
  2. A. Sano and Y. Miyamoto, “Technologies for Ultrahigh Bit-Rate WDM Technologies,” in Laser and Electro-Optics Society Annual Metting, pp. 290–291 (2007).
  3. M. Saruwatari, “All-Optical Signal Processing for Terabit/second Optical Transmission,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1363–1374 (2000).
    [CrossRef]
  4. P. J. Winzer and R.-J. Essiambre, “Advanced Modulation Formats for High-Capacity Optical Transport Networks,” IEEE J. Lightwave Technol. 24(12), 4711–4728 (2006).
    [CrossRef]
  5. G. Charlet, “Progress in Optical Modulation Formats for High-Bit Rate WDM Transmissions,” IEEE J. Sel. Top. Quantum Electron. 12(4), 469–483 (2006).
    [CrossRef]
  6. P. J. Winzer, and R. Essiambre, “Advanced Modulation Formats,” in proc. ECOC 2003, Th2.6.1, pp 1002–1003.
  7. A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, and T. Li, “High-Capacity Optical Transmission Systems,” IEEE J. Lightwave Technol. 26(9), 1032–1045 (2008).
    [CrossRef]
  8. A. H. Gnauck and P. J. Winzer, “Optical Phase-Shift-Keyed Transmission,” IEEE J. Lightwave Technol. 23(1), 115–130 (2005).
    [CrossRef]
  9. C. Xu, X. Liu, and X. Wei, “Differential Phase-Shift Keying for High Spectral Efficiency Optical Transmisions,” IEEE J. Sel. Top. Quantum Electron. 10(2), 281–293 (2004).
    [CrossRef]
  10. A. H. Gnauck, “40-Gb/s RZ Differential Phase Shift Keyed Transmission,” in Optical Fiber Communications Conference and Exposition and the National Fiber Optic Engineers Conference on CD-ROM (Optical Society of America, Los Angeles, CA, 2003), ThE1.
  11. C. Schubert, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, B. Huttl, R. Kaiser and H. G. Weber, “40 GHz Semiconductor Mode Locked Laser Pulse Source for 160 Gbit/s RZ-DPSK Data Transmission,” in proc. ECOC 2005, Tu1.5.3, pp. 167–168.
  12. D. D. Marcenac, A. D. Ellis, and D. G. Moodie, “80 Gbit/s OTDM using Electroabsorption Modulators,” Electron. Lett. 34(1), 101–103 (1998).
    [CrossRef]
  13. A. D. Ellis, R. J. Manning, I. D. Phillips, and D. Nesset, “1.6 ps Pulse Generation at 40 GHz in Phaselocked Ring Laser Incorporating Highly Nonlinear Fibre for Application to 160 Gbit/s OTDM Networks,” Electron. Lett. 35(8), 645–646 (1999).
    [CrossRef]
  14. S. Arahira and Y. Ogawa, “160 Gb/s OTDM Signal Source with 3R Function Utilizing Ultrafast Mode-locked Laser Diodes and Modified NOLM,” IEEE Photon. Technol. Lett. 17(5), 992–994 (2005).
    [CrossRef]
  15. P. M. Anandarajah, C. Guignard, A. Clarke, D. Reid, M. Rensing, L. P. Barry, G. Edvell, and J. D. Harvey, “Optimised Pulse Source Employing an Externally Injected Gain-Switched Laser Diode in Conjunction with a Non-linearly Chirped Grating,” IEEE J. Sel. Top. Quantum Electron. 12(2), 255–264 (2006).
    [CrossRef]
  16. P. Anandarajah, P. J. Maguire, A. Clarke, and L. P. Barry, “Self-Seeding of a Gain-Switched Integrated Dual-Laser Source for the Generation of Highly Wavelength-Tunable Picosecond Optical Pulses,” IEEE Photon. Technol. Lett. 16(2), 629–631 (2004).
    [CrossRef]
  17. A. Clarke, P. Anandarajah, and L. P. Barry, “Generation of Widely Tunable Picosecond Pulses with Large SMSR by Externally Injecting a Gain Switched Dual Laser Source,” IEEE Photon. Technol. Lett. 16(10), 2344–2346 (2004).
    [CrossRef]
  18. C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, B. Kelly, M. Rensing, J. O’Carroll, R. Phelan, P. Anandarajah, P. Perry, L. P. Barry, and J. O’Gorman, “Discrete Mode Lasers for Communication Applications,” IET Optoelectron. 3(1), 1–17 (2009).
    [CrossRef]
  19. P. M. Anandarajah, L. P. Barry, A. M. Kaszubowska-Anandarajah, J. O’Gorman, J. O’Carroll, C. Herbert, R. Phelan, and A. F. Duke, “Highly Coherent Picosecond Pulse Generation with Sub-PS Jitter and High SMSR by Gain Switching Discrete Mode Laser Diodes at 10 GHz Line Rate,” in Optical Fiber Communications Conference and Exposition and The National Fiber Optic Engineers Conference on CD-ROM (Optical Society of America, San Diego, CA, 2009), OWj3.
  20. A. D. Ellis, F. C. Garcia-Gunning, and T. Healy, “Coherent WDM: The Achievement of High Information Spectral Density through Phase Control within the Transmitter,”in Optical Fiber Communications Conference and Exposition and The National Fiber Optic Engineers Conference on CD-ROM (Optical Society of America, Los Angeles, CA, 2005), OThR4.
  21. A. D. Ellis and F. C. Garcia-Gunning, “Spectral Denisty Enhancement Using Coherent WDM,” IEEE Photon. Technol. Lett. 17(2), 504–506 (2005).
    [CrossRef]
  22. P. Anandarajah, L. P. Barry, and A. Kaszubowska, “Performance Issues Associated with WDM Optical Systems using Self-Seeded Gain-Switched Pulse Sources due to Mode Partition Noise Effects,” IEEE Photon. Technol. Lett. 14(8), 1202–1204 (2002).
    [CrossRef]
  23. Q. Zhang, and C. R. Menyuk, “An Exact Analysis of RZ- vs. NRZ-DPSK Performance in ASE Noise Limited High Speed Optical Systems,” in proc. LEOS 2007, TuE1.3, pp. 242–243.
  24. T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
    [CrossRef]
  25. M. O. van Deventer, P. Spano, and S. K. Nielsen, “Comparison of DFB Laser Linewidth Measurement Techniques Results from COST 215 Round Robin,” Electron. Lett. 26(24), 2018–2020 (1990).
    [CrossRef]

2009 (1)

C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, B. Kelly, M. Rensing, J. O’Carroll, R. Phelan, P. Anandarajah, P. Perry, L. P. Barry, and J. O’Gorman, “Discrete Mode Lasers for Communication Applications,” IET Optoelectron. 3(1), 1–17 (2009).
[CrossRef]

2008 (1)

A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, and T. Li, “High-Capacity Optical Transmission Systems,” IEEE J. Lightwave Technol. 26(9), 1032–1045 (2008).
[CrossRef]

2006 (3)

P. J. Winzer and R.-J. Essiambre, “Advanced Modulation Formats for High-Capacity Optical Transport Networks,” IEEE J. Lightwave Technol. 24(12), 4711–4728 (2006).
[CrossRef]

G. Charlet, “Progress in Optical Modulation Formats for High-Bit Rate WDM Transmissions,” IEEE J. Sel. Top. Quantum Electron. 12(4), 469–483 (2006).
[CrossRef]

P. M. Anandarajah, C. Guignard, A. Clarke, D. Reid, M. Rensing, L. P. Barry, G. Edvell, and J. D. Harvey, “Optimised Pulse Source Employing an Externally Injected Gain-Switched Laser Diode in Conjunction with a Non-linearly Chirped Grating,” IEEE J. Sel. Top. Quantum Electron. 12(2), 255–264 (2006).
[CrossRef]

2005 (3)

S. Arahira and Y. Ogawa, “160 Gb/s OTDM Signal Source with 3R Function Utilizing Ultrafast Mode-locked Laser Diodes and Modified NOLM,” IEEE Photon. Technol. Lett. 17(5), 992–994 (2005).
[CrossRef]

A. D. Ellis and F. C. Garcia-Gunning, “Spectral Denisty Enhancement Using Coherent WDM,” IEEE Photon. Technol. Lett. 17(2), 504–506 (2005).
[CrossRef]

A. H. Gnauck and P. J. Winzer, “Optical Phase-Shift-Keyed Transmission,” IEEE J. Lightwave Technol. 23(1), 115–130 (2005).
[CrossRef]

2004 (3)

C. Xu, X. Liu, and X. Wei, “Differential Phase-Shift Keying for High Spectral Efficiency Optical Transmisions,” IEEE J. Sel. Top. Quantum Electron. 10(2), 281–293 (2004).
[CrossRef]

P. Anandarajah, P. J. Maguire, A. Clarke, and L. P. Barry, “Self-Seeding of a Gain-Switched Integrated Dual-Laser Source for the Generation of Highly Wavelength-Tunable Picosecond Optical Pulses,” IEEE Photon. Technol. Lett. 16(2), 629–631 (2004).
[CrossRef]

A. Clarke, P. Anandarajah, and L. P. Barry, “Generation of Widely Tunable Picosecond Pulses with Large SMSR by Externally Injecting a Gain Switched Dual Laser Source,” IEEE Photon. Technol. Lett. 16(10), 2344–2346 (2004).
[CrossRef]

2002 (1)

P. Anandarajah, L. P. Barry, and A. Kaszubowska, “Performance Issues Associated with WDM Optical Systems using Self-Seeded Gain-Switched Pulse Sources due to Mode Partition Noise Effects,” IEEE Photon. Technol. Lett. 14(8), 1202–1204 (2002).
[CrossRef]

2000 (1)

M. Saruwatari, “All-Optical Signal Processing for Terabit/second Optical Transmission,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1363–1374 (2000).
[CrossRef]

1999 (1)

A. D. Ellis, R. J. Manning, I. D. Phillips, and D. Nesset, “1.6 ps Pulse Generation at 40 GHz in Phaselocked Ring Laser Incorporating Highly Nonlinear Fibre for Application to 160 Gbit/s OTDM Networks,” Electron. Lett. 35(8), 645–646 (1999).
[CrossRef]

1998 (1)

D. D. Marcenac, A. D. Ellis, and D. G. Moodie, “80 Gbit/s OTDM using Electroabsorption Modulators,” Electron. Lett. 34(1), 101–103 (1998).
[CrossRef]

1990 (1)

M. O. van Deventer, P. Spano, and S. K. Nielsen, “Comparison of DFB Laser Linewidth Measurement Techniques Results from COST 215 Round Robin,” Electron. Lett. 26(24), 2018–2020 (1990).
[CrossRef]

1980 (1)

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
[CrossRef]

Anandarajah, P.

C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, B. Kelly, M. Rensing, J. O’Carroll, R. Phelan, P. Anandarajah, P. Perry, L. P. Barry, and J. O’Gorman, “Discrete Mode Lasers for Communication Applications,” IET Optoelectron. 3(1), 1–17 (2009).
[CrossRef]

P. Anandarajah, P. J. Maguire, A. Clarke, and L. P. Barry, “Self-Seeding of a Gain-Switched Integrated Dual-Laser Source for the Generation of Highly Wavelength-Tunable Picosecond Optical Pulses,” IEEE Photon. Technol. Lett. 16(2), 629–631 (2004).
[CrossRef]

A. Clarke, P. Anandarajah, and L. P. Barry, “Generation of Widely Tunable Picosecond Pulses with Large SMSR by Externally Injecting a Gain Switched Dual Laser Source,” IEEE Photon. Technol. Lett. 16(10), 2344–2346 (2004).
[CrossRef]

P. Anandarajah, L. P. Barry, and A. Kaszubowska, “Performance Issues Associated with WDM Optical Systems using Self-Seeded Gain-Switched Pulse Sources due to Mode Partition Noise Effects,” IEEE Photon. Technol. Lett. 14(8), 1202–1204 (2002).
[CrossRef]

Anandarajah, P. M.

P. M. Anandarajah, C. Guignard, A. Clarke, D. Reid, M. Rensing, L. P. Barry, G. Edvell, and J. D. Harvey, “Optimised Pulse Source Employing an Externally Injected Gain-Switched Laser Diode in Conjunction with a Non-linearly Chirped Grating,” IEEE J. Sel. Top. Quantum Electron. 12(2), 255–264 (2006).
[CrossRef]

Arahira, S.

S. Arahira and Y. Ogawa, “160 Gb/s OTDM Signal Source with 3R Function Utilizing Ultrafast Mode-locked Laser Diodes and Modified NOLM,” IEEE Photon. Technol. Lett. 17(5), 992–994 (2005).
[CrossRef]

Barry, L. P.

C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, B. Kelly, M. Rensing, J. O’Carroll, R. Phelan, P. Anandarajah, P. Perry, L. P. Barry, and J. O’Gorman, “Discrete Mode Lasers for Communication Applications,” IET Optoelectron. 3(1), 1–17 (2009).
[CrossRef]

P. M. Anandarajah, C. Guignard, A. Clarke, D. Reid, M. Rensing, L. P. Barry, G. Edvell, and J. D. Harvey, “Optimised Pulse Source Employing an Externally Injected Gain-Switched Laser Diode in Conjunction with a Non-linearly Chirped Grating,” IEEE J. Sel. Top. Quantum Electron. 12(2), 255–264 (2006).
[CrossRef]

A. Clarke, P. Anandarajah, and L. P. Barry, “Generation of Widely Tunable Picosecond Pulses with Large SMSR by Externally Injecting a Gain Switched Dual Laser Source,” IEEE Photon. Technol. Lett. 16(10), 2344–2346 (2004).
[CrossRef]

P. Anandarajah, P. J. Maguire, A. Clarke, and L. P. Barry, “Self-Seeding of a Gain-Switched Integrated Dual-Laser Source for the Generation of Highly Wavelength-Tunable Picosecond Optical Pulses,” IEEE Photon. Technol. Lett. 16(2), 629–631 (2004).
[CrossRef]

P. Anandarajah, L. P. Barry, and A. Kaszubowska, “Performance Issues Associated with WDM Optical Systems using Self-Seeded Gain-Switched Pulse Sources due to Mode Partition Noise Effects,” IEEE Photon. Technol. Lett. 14(8), 1202–1204 (2002).
[CrossRef]

Charlet, G.

G. Charlet, “Progress in Optical Modulation Formats for High-Bit Rate WDM Transmissions,” IEEE J. Sel. Top. Quantum Electron. 12(4), 469–483 (2006).
[CrossRef]

Chraplyvy, A. R.

A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, and T. Li, “High-Capacity Optical Transmission Systems,” IEEE J. Lightwave Technol. 26(9), 1032–1045 (2008).
[CrossRef]

Clarke, A.

P. M. Anandarajah, C. Guignard, A. Clarke, D. Reid, M. Rensing, L. P. Barry, G. Edvell, and J. D. Harvey, “Optimised Pulse Source Employing an Externally Injected Gain-Switched Laser Diode in Conjunction with a Non-linearly Chirped Grating,” IEEE J. Sel. Top. Quantum Electron. 12(2), 255–264 (2006).
[CrossRef]

P. Anandarajah, P. J. Maguire, A. Clarke, and L. P. Barry, “Self-Seeding of a Gain-Switched Integrated Dual-Laser Source for the Generation of Highly Wavelength-Tunable Picosecond Optical Pulses,” IEEE Photon. Technol. Lett. 16(2), 629–631 (2004).
[CrossRef]

A. Clarke, P. Anandarajah, and L. P. Barry, “Generation of Widely Tunable Picosecond Pulses with Large SMSR by Externally Injecting a Gain Switched Dual Laser Source,” IEEE Photon. Technol. Lett. 16(10), 2344–2346 (2004).
[CrossRef]

Edvell, G.

P. M. Anandarajah, C. Guignard, A. Clarke, D. Reid, M. Rensing, L. P. Barry, G. Edvell, and J. D. Harvey, “Optimised Pulse Source Employing an Externally Injected Gain-Switched Laser Diode in Conjunction with a Non-linearly Chirped Grating,” IEEE J. Sel. Top. Quantum Electron. 12(2), 255–264 (2006).
[CrossRef]

Ellis, A. D.

A. D. Ellis and F. C. Garcia-Gunning, “Spectral Denisty Enhancement Using Coherent WDM,” IEEE Photon. Technol. Lett. 17(2), 504–506 (2005).
[CrossRef]

A. D. Ellis, R. J. Manning, I. D. Phillips, and D. Nesset, “1.6 ps Pulse Generation at 40 GHz in Phaselocked Ring Laser Incorporating Highly Nonlinear Fibre for Application to 160 Gbit/s OTDM Networks,” Electron. Lett. 35(8), 645–646 (1999).
[CrossRef]

D. D. Marcenac, A. D. Ellis, and D. G. Moodie, “80 Gbit/s OTDM using Electroabsorption Modulators,” Electron. Lett. 34(1), 101–103 (1998).
[CrossRef]

Essiambre, R.-J.

P. J. Winzer and R.-J. Essiambre, “Advanced Modulation Formats for High-Capacity Optical Transport Networks,” IEEE J. Lightwave Technol. 24(12), 4711–4728 (2006).
[CrossRef]

Garcia-Gunning, F. C.

A. D. Ellis and F. C. Garcia-Gunning, “Spectral Denisty Enhancement Using Coherent WDM,” IEEE Photon. Technol. Lett. 17(2), 504–506 (2005).
[CrossRef]

Gnauck, A. H.

A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, and T. Li, “High-Capacity Optical Transmission Systems,” IEEE J. Lightwave Technol. 26(9), 1032–1045 (2008).
[CrossRef]

A. H. Gnauck and P. J. Winzer, “Optical Phase-Shift-Keyed Transmission,” IEEE J. Lightwave Technol. 23(1), 115–130 (2005).
[CrossRef]

Guignard, C.

P. M. Anandarajah, C. Guignard, A. Clarke, D. Reid, M. Rensing, L. P. Barry, G. Edvell, and J. D. Harvey, “Optimised Pulse Source Employing an Externally Injected Gain-Switched Laser Diode in Conjunction with a Non-linearly Chirped Grating,” IEEE J. Sel. Top. Quantum Electron. 12(2), 255–264 (2006).
[CrossRef]

Harvey, J. D.

P. M. Anandarajah, C. Guignard, A. Clarke, D. Reid, M. Rensing, L. P. Barry, G. Edvell, and J. D. Harvey, “Optimised Pulse Source Employing an Externally Injected Gain-Switched Laser Diode in Conjunction with a Non-linearly Chirped Grating,” IEEE J. Sel. Top. Quantum Electron. 12(2), 255–264 (2006).
[CrossRef]

Herbert, C.

C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, B. Kelly, M. Rensing, J. O’Carroll, R. Phelan, P. Anandarajah, P. Perry, L. P. Barry, and J. O’Gorman, “Discrete Mode Lasers for Communication Applications,” IET Optoelectron. 3(1), 1–17 (2009).
[CrossRef]

Jones, D.

C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, B. Kelly, M. Rensing, J. O’Carroll, R. Phelan, P. Anandarajah, P. Perry, L. P. Barry, and J. O’Gorman, “Discrete Mode Lasers for Communication Applications,” IET Optoelectron. 3(1), 1–17 (2009).
[CrossRef]

Kaszubowska, A.

P. Anandarajah, L. P. Barry, and A. Kaszubowska, “Performance Issues Associated with WDM Optical Systems using Self-Seeded Gain-Switched Pulse Sources due to Mode Partition Noise Effects,” IEEE Photon. Technol. Lett. 14(8), 1202–1204 (2002).
[CrossRef]

Kaszubowska-Anandarajah, A.

C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, B. Kelly, M. Rensing, J. O’Carroll, R. Phelan, P. Anandarajah, P. Perry, L. P. Barry, and J. O’Gorman, “Discrete Mode Lasers for Communication Applications,” IET Optoelectron. 3(1), 1–17 (2009).
[CrossRef]

Kelly, B.

C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, B. Kelly, M. Rensing, J. O’Carroll, R. Phelan, P. Anandarajah, P. Perry, L. P. Barry, and J. O’Gorman, “Discrete Mode Lasers for Communication Applications,” IET Optoelectron. 3(1), 1–17 (2009).
[CrossRef]

Kikuchi, K.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
[CrossRef]

Li, T.

A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, and T. Li, “High-Capacity Optical Transmission Systems,” IEEE J. Lightwave Technol. 26(9), 1032–1045 (2008).
[CrossRef]

Liu, X.

C. Xu, X. Liu, and X. Wei, “Differential Phase-Shift Keying for High Spectral Efficiency Optical Transmisions,” IEEE J. Sel. Top. Quantum Electron. 10(2), 281–293 (2004).
[CrossRef]

Maguire, P. J.

P. Anandarajah, P. J. Maguire, A. Clarke, and L. P. Barry, “Self-Seeding of a Gain-Switched Integrated Dual-Laser Source for the Generation of Highly Wavelength-Tunable Picosecond Optical Pulses,” IEEE Photon. Technol. Lett. 16(2), 629–631 (2004).
[CrossRef]

Manning, R. J.

A. D. Ellis, R. J. Manning, I. D. Phillips, and D. Nesset, “1.6 ps Pulse Generation at 40 GHz in Phaselocked Ring Laser Incorporating Highly Nonlinear Fibre for Application to 160 Gbit/s OTDM Networks,” Electron. Lett. 35(8), 645–646 (1999).
[CrossRef]

Marcenac, D. D.

D. D. Marcenac, A. D. Ellis, and D. G. Moodie, “80 Gbit/s OTDM using Electroabsorption Modulators,” Electron. Lett. 34(1), 101–103 (1998).
[CrossRef]

Moodie, D. G.

D. D. Marcenac, A. D. Ellis, and D. G. Moodie, “80 Gbit/s OTDM using Electroabsorption Modulators,” Electron. Lett. 34(1), 101–103 (1998).
[CrossRef]

Nakayama, A.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
[CrossRef]

Nesset, D.

A. D. Ellis, R. J. Manning, I. D. Phillips, and D. Nesset, “1.6 ps Pulse Generation at 40 GHz in Phaselocked Ring Laser Incorporating Highly Nonlinear Fibre for Application to 160 Gbit/s OTDM Networks,” Electron. Lett. 35(8), 645–646 (1999).
[CrossRef]

Nielsen, S. K.

M. O. van Deventer, P. Spano, and S. K. Nielsen, “Comparison of DFB Laser Linewidth Measurement Techniques Results from COST 215 Round Robin,” Electron. Lett. 26(24), 2018–2020 (1990).
[CrossRef]

O’Carroll, J.

C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, B. Kelly, M. Rensing, J. O’Carroll, R. Phelan, P. Anandarajah, P. Perry, L. P. Barry, and J. O’Gorman, “Discrete Mode Lasers for Communication Applications,” IET Optoelectron. 3(1), 1–17 (2009).
[CrossRef]

O’Gorman, J.

C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, B. Kelly, M. Rensing, J. O’Carroll, R. Phelan, P. Anandarajah, P. Perry, L. P. Barry, and J. O’Gorman, “Discrete Mode Lasers for Communication Applications,” IET Optoelectron. 3(1), 1–17 (2009).
[CrossRef]

Ogawa, Y.

S. Arahira and Y. Ogawa, “160 Gb/s OTDM Signal Source with 3R Function Utilizing Ultrafast Mode-locked Laser Diodes and Modified NOLM,” IEEE Photon. Technol. Lett. 17(5), 992–994 (2005).
[CrossRef]

Okoshi, T.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
[CrossRef]

Perry, P.

C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, B. Kelly, M. Rensing, J. O’Carroll, R. Phelan, P. Anandarajah, P. Perry, L. P. Barry, and J. O’Gorman, “Discrete Mode Lasers for Communication Applications,” IET Optoelectron. 3(1), 1–17 (2009).
[CrossRef]

Phelan, R.

C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, B. Kelly, M. Rensing, J. O’Carroll, R. Phelan, P. Anandarajah, P. Perry, L. P. Barry, and J. O’Gorman, “Discrete Mode Lasers for Communication Applications,” IET Optoelectron. 3(1), 1–17 (2009).
[CrossRef]

Phillips, I. D.

A. D. Ellis, R. J. Manning, I. D. Phillips, and D. Nesset, “1.6 ps Pulse Generation at 40 GHz in Phaselocked Ring Laser Incorporating Highly Nonlinear Fibre for Application to 160 Gbit/s OTDM Networks,” Electron. Lett. 35(8), 645–646 (1999).
[CrossRef]

Reid, D.

P. M. Anandarajah, C. Guignard, A. Clarke, D. Reid, M. Rensing, L. P. Barry, G. Edvell, and J. D. Harvey, “Optimised Pulse Source Employing an Externally Injected Gain-Switched Laser Diode in Conjunction with a Non-linearly Chirped Grating,” IEEE J. Sel. Top. Quantum Electron. 12(2), 255–264 (2006).
[CrossRef]

Rensing, M.

C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, B. Kelly, M. Rensing, J. O’Carroll, R. Phelan, P. Anandarajah, P. Perry, L. P. Barry, and J. O’Gorman, “Discrete Mode Lasers for Communication Applications,” IET Optoelectron. 3(1), 1–17 (2009).
[CrossRef]

P. M. Anandarajah, C. Guignard, A. Clarke, D. Reid, M. Rensing, L. P. Barry, G. Edvell, and J. D. Harvey, “Optimised Pulse Source Employing an Externally Injected Gain-Switched Laser Diode in Conjunction with a Non-linearly Chirped Grating,” IEEE J. Sel. Top. Quantum Electron. 12(2), 255–264 (2006).
[CrossRef]

Saruwatari, M.

M. Saruwatari, “All-Optical Signal Processing for Terabit/second Optical Transmission,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1363–1374 (2000).
[CrossRef]

Spano, P.

M. O. van Deventer, P. Spano, and S. K. Nielsen, “Comparison of DFB Laser Linewidth Measurement Techniques Results from COST 215 Round Robin,” Electron. Lett. 26(24), 2018–2020 (1990).
[CrossRef]

Tkach, R. W.

A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, and T. Li, “High-Capacity Optical Transmission Systems,” IEEE J. Lightwave Technol. 26(9), 1032–1045 (2008).
[CrossRef]

van Deventer, M. O.

M. O. van Deventer, P. Spano, and S. K. Nielsen, “Comparison of DFB Laser Linewidth Measurement Techniques Results from COST 215 Round Robin,” Electron. Lett. 26(24), 2018–2020 (1990).
[CrossRef]

Wei, X.

C. Xu, X. Liu, and X. Wei, “Differential Phase-Shift Keying for High Spectral Efficiency Optical Transmisions,” IEEE J. Sel. Top. Quantum Electron. 10(2), 281–293 (2004).
[CrossRef]

Winzer, P. J.

P. J. Winzer and R.-J. Essiambre, “Advanced Modulation Formats for High-Capacity Optical Transport Networks,” IEEE J. Lightwave Technol. 24(12), 4711–4728 (2006).
[CrossRef]

A. H. Gnauck and P. J. Winzer, “Optical Phase-Shift-Keyed Transmission,” IEEE J. Lightwave Technol. 23(1), 115–130 (2005).
[CrossRef]

Xu, C.

C. Xu, X. Liu, and X. Wei, “Differential Phase-Shift Keying for High Spectral Efficiency Optical Transmisions,” IEEE J. Sel. Top. Quantum Electron. 10(2), 281–293 (2004).
[CrossRef]

Electron. Lett. (4)

D. D. Marcenac, A. D. Ellis, and D. G. Moodie, “80 Gbit/s OTDM using Electroabsorption Modulators,” Electron. Lett. 34(1), 101–103 (1998).
[CrossRef]

A. D. Ellis, R. J. Manning, I. D. Phillips, and D. Nesset, “1.6 ps Pulse Generation at 40 GHz in Phaselocked Ring Laser Incorporating Highly Nonlinear Fibre for Application to 160 Gbit/s OTDM Networks,” Electron. Lett. 35(8), 645–646 (1999).
[CrossRef]

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16(16), 630–631 (1980).
[CrossRef]

M. O. van Deventer, P. Spano, and S. K. Nielsen, “Comparison of DFB Laser Linewidth Measurement Techniques Results from COST 215 Round Robin,” Electron. Lett. 26(24), 2018–2020 (1990).
[CrossRef]

IEEE J. Lightwave Technol. (3)

P. J. Winzer and R.-J. Essiambre, “Advanced Modulation Formats for High-Capacity Optical Transport Networks,” IEEE J. Lightwave Technol. 24(12), 4711–4728 (2006).
[CrossRef]

A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, and T. Li, “High-Capacity Optical Transmission Systems,” IEEE J. Lightwave Technol. 26(9), 1032–1045 (2008).
[CrossRef]

A. H. Gnauck and P. J. Winzer, “Optical Phase-Shift-Keyed Transmission,” IEEE J. Lightwave Technol. 23(1), 115–130 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (4)

C. Xu, X. Liu, and X. Wei, “Differential Phase-Shift Keying for High Spectral Efficiency Optical Transmisions,” IEEE J. Sel. Top. Quantum Electron. 10(2), 281–293 (2004).
[CrossRef]

G. Charlet, “Progress in Optical Modulation Formats for High-Bit Rate WDM Transmissions,” IEEE J. Sel. Top. Quantum Electron. 12(4), 469–483 (2006).
[CrossRef]

P. M. Anandarajah, C. Guignard, A. Clarke, D. Reid, M. Rensing, L. P. Barry, G. Edvell, and J. D. Harvey, “Optimised Pulse Source Employing an Externally Injected Gain-Switched Laser Diode in Conjunction with a Non-linearly Chirped Grating,” IEEE J. Sel. Top. Quantum Electron. 12(2), 255–264 (2006).
[CrossRef]

M. Saruwatari, “All-Optical Signal Processing for Terabit/second Optical Transmission,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1363–1374 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

P. Anandarajah, P. J. Maguire, A. Clarke, and L. P. Barry, “Self-Seeding of a Gain-Switched Integrated Dual-Laser Source for the Generation of Highly Wavelength-Tunable Picosecond Optical Pulses,” IEEE Photon. Technol. Lett. 16(2), 629–631 (2004).
[CrossRef]

A. Clarke, P. Anandarajah, and L. P. Barry, “Generation of Widely Tunable Picosecond Pulses with Large SMSR by Externally Injecting a Gain Switched Dual Laser Source,” IEEE Photon. Technol. Lett. 16(10), 2344–2346 (2004).
[CrossRef]

S. Arahira and Y. Ogawa, “160 Gb/s OTDM Signal Source with 3R Function Utilizing Ultrafast Mode-locked Laser Diodes and Modified NOLM,” IEEE Photon. Technol. Lett. 17(5), 992–994 (2005).
[CrossRef]

A. D. Ellis and F. C. Garcia-Gunning, “Spectral Denisty Enhancement Using Coherent WDM,” IEEE Photon. Technol. Lett. 17(2), 504–506 (2005).
[CrossRef]

P. Anandarajah, L. P. Barry, and A. Kaszubowska, “Performance Issues Associated with WDM Optical Systems using Self-Seeded Gain-Switched Pulse Sources due to Mode Partition Noise Effects,” IEEE Photon. Technol. Lett. 14(8), 1202–1204 (2002).
[CrossRef]

IET Optoelectron. (1)

C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, B. Kelly, M. Rensing, J. O’Carroll, R. Phelan, P. Anandarajah, P. Perry, L. P. Barry, and J. O’Gorman, “Discrete Mode Lasers for Communication Applications,” IET Optoelectron. 3(1), 1–17 (2009).
[CrossRef]

Other (8)

P. M. Anandarajah, L. P. Barry, A. M. Kaszubowska-Anandarajah, J. O’Gorman, J. O’Carroll, C. Herbert, R. Phelan, and A. F. Duke, “Highly Coherent Picosecond Pulse Generation with Sub-PS Jitter and High SMSR by Gain Switching Discrete Mode Laser Diodes at 10 GHz Line Rate,” in Optical Fiber Communications Conference and Exposition and The National Fiber Optic Engineers Conference on CD-ROM (Optical Society of America, San Diego, CA, 2009), OWj3.

A. D. Ellis, F. C. Garcia-Gunning, and T. Healy, “Coherent WDM: The Achievement of High Information Spectral Density through Phase Control within the Transmitter,”in Optical Fiber Communications Conference and Exposition and The National Fiber Optic Engineers Conference on CD-ROM (Optical Society of America, Los Angeles, CA, 2005), OThR4.

Q. Zhang, and C. R. Menyuk, “An Exact Analysis of RZ- vs. NRZ-DPSK Performance in ASE Noise Limited High Speed Optical Systems,” in proc. LEOS 2007, TuE1.3, pp. 242–243.

P. J. Winzer, and R. Essiambre, “Advanced Modulation Formats,” in proc. ECOC 2003, Th2.6.1, pp 1002–1003.

B. Mikkelsen, C. Rasmussen, P. Mamyshev, F. Liu, S. Dey, and F. Rosca, “Deployment of 40 Gb/s Systems: Technical and Cost Issues,” in Optical Fiber Communications Conference and Exposition and The National Fiber Optic Engineers Conference on CD-ROM (Optical Society of America, Los Angeles, CA, 2004), ThE6.

A. Sano and Y. Miyamoto, “Technologies for Ultrahigh Bit-Rate WDM Technologies,” in Laser and Electro-Optics Society Annual Metting, pp. 290–291 (2007).

A. H. Gnauck, “40-Gb/s RZ Differential Phase Shift Keyed Transmission,” in Optical Fiber Communications Conference and Exposition and the National Fiber Optic Engineers Conference on CD-ROM (Optical Society of America, Los Angeles, CA, 2003), ThE1.

C. Schubert, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, B. Huttl, R. Kaiser and H. G. Weber, “40 GHz Semiconductor Mode Locked Laser Pulse Source for 160 Gbit/s RZ-DPSK Data Transmission,” in proc. ECOC 2005, Tu1.5.3, pp. 167–168.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Optical pulse source based on gain switched DM and DFB lasers.

Fig. 2
Fig. 2

Experimental set-up for (C) 10.7 Gb/s DPSK system (A) with RZ transmitter and (B) filtered line transmitter.

Fig. 3
Fig. 3

Gain switched pulses (a) DM (b) DFB.

Fig. 4
Fig. 4

Spectra (a) DM gain switched, inset (CW) (b) DFB gain switched, inset (CW).

Fig. 5
Fig. 5

BER versus received power for 10.7 Gb/s DPSK system. Open symbols: RZ DPSK format (open triangle – DM laser, open circle – DFB laser) and filled symbols: Single sideband filtered/NRZ DPSK (black triangle – lower sideband from DM laser, green triangle – upper sideband from DM laser and black circle – filtered DFB laser)

Fig. 6
Fig. 6

Eye diagram for B2B RZ DPSK system employing gain switched DM laser @ −33.1 dBm

Fig. 7
Fig. 7

(a) Eye diagram for B2B DPSK system employing filtered sideband from gain switched DM laser @ −29.4 dBm (b) optical spectrum of filtered sideband from gain switched DM laser

Fig. 8
Fig. 8

Experimental set-up for linewidth characterization

Fig. 9
Fig. 9

Linewidths measured using the DS-H method, Blue line – CW DFB, green line – gain switched DM filtered lower sideband, red line – gain switched DM filtered upper sideband, black line – CW DM

Metrics