Abstract

Highly stable aluminum nanoparticles (NPs) are generated via ablation of bulk Al in ethanol using either femtosecond (fs) or picosecond (ps) laser sources. The colloidal NPs solutions obtained with fs pulses exhibit a yellow coloration and show an increased optical absorption between 300 and 400 nm, tentatively assigned to the plasmon resonance of nanosized Al. The corresponding solutions after ps ablation are gray colored and opalescent. The average size of the NPs formed ranges from 20 nm for the fs case to 60 nm for the ps case, while a narrower distribution is obtained using the shorter pulses. High Resolution Transmission Electron Microscopy (HRTEM) studies indicate that the NPs are mostly amorphous with single crystalline inclusions. Al NPs generated with short laser pulses slowly react with air oxygen due to the presence of a native oxide cladding, which efficiently passivates their surface against further oxidation.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Park, D. Lee, A. Rai, D. Mukherjee, and M. R. Zachariah, “Size-resolved kinetic measurements of aluminum nanoparticle oxidation with single particle mass spectrometry,” J. Phys. Chem. B 109(15), 7290–7299 (2005).
    [CrossRef]
  2. L. Galfetti, L. T. De Luca, F. Severini, L. Meda, G. Marra, M. Marchetti, M. Regi, and S. Bellucci, “Nanoparticles for solid rocket propulsion,” J. Phys. Condens. Matter 18(33), S1991–S2005 (2006).
    [CrossRef]
  3. H. Tyagi, P. E. Phelan, R. Prasher, R. Peck, T. Lee, J. R. Pacheco, and P. Arentzen, “Increased hot-plate ignition probability for nanoparticle-laden diesel fuel,” Nano Lett. 8(5), 1410–1416 (2008).
    [CrossRef] [PubMed]
  4. P. J. Roach, W. H. Woodward, A. W. Castleman, A. C. Reber, and S. N. Khanna, “Complementary active sites cause size-selective reactivity of aluminum cluster anions with water,” Science 323(5913), 492–495 (2009).
    [CrossRef] [PubMed]
  5. C. P. Balde, B. P. C. Hereijgers, J. H. Bitter, and K. P. de Jong, “Sodium alanate nanoparticles--linking size to hydrogen storage properties,” J. Am. Chem. Soc. 130(21), 6761–6765 (2008).
    [CrossRef] [PubMed]
  6. S. Y. Zheng, F. Fang, G. Y. Zhou, G. R. Chen, L. Z. Ouyang, M. Zhu, and D. L. Sun, “Hydrogen storage properties of space-confined NaAlH4 nanoparticles in ordered mesoporous silica,” Chem. Mater. 20(12), 3954–3958 (2008).
    [CrossRef]
  7. X. Zhou, Y. Fang, and P. Zhang, “A new substrate for surface enhanced Raman scattering of dye Sudan molecules,” Spectrochim. Acta [A] 67(1), 122–124 (2007).
    [CrossRef]
  8. M. H. Chowdhury, K. Ray, S. K. Gray, J. Pond, and J. R. Lakowicz, “Aluminum nanoparticles as substrates for metal-enhanced fluorescence in the ultraviolet for the label-free detection of biomolecules,” Anal. Chem. 81(4), 1397–1403 (2009).
    [CrossRef] [PubMed]
  9. J. J. Wang, F. Walters, X. M. Liu, P. Sciortino, and X. G. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
    [CrossRef]
  10. M. J. Meziani, C. E. Bunker, F. Lu, H. Li, W. Wang, E. A. Guliants, R. A. Quinn, and Y.-P. Sun, “Formation and Properties of Stabilized Aluminum Nanoparticles,” ACS Appl. Mater. Interfaces 1(3), 703–709 (2009).
    [CrossRef]
  11. M. Comet, L. Schreyeck-Reinert, C. Louis, and H. Fuzellier, “Synthesis and characterization of high surface area aluminium and alumina microtubes from carbonaceous materials,” J. Mater. Chem. 12(3), 754–757 (2002).
    [CrossRef]
  12. R. J. Jouet, A. D. Warren, D. M. Rosenberg, V. J. Bellitto, K. Park, and M. R. Zachariah, “Passivation of bare aluminum nanoparticles using perfluoroalkyl carboxylic acids,” Chem. Mater. 17(11), 2987–2996 (2005).
    [CrossRef]
  13. L. G. Guo, W. L. Song, C. S. Xie, X. T. Zhang, and M. L. Hu, “Characterization and thermal properties of carbon-coated aluminum nanopowders prepared by laser-induction complex heating in methane,” Mater. Lett. 61(14-15), 3211–3214 (2007).
    [CrossRef]
  14. T. J. Foley, C. E. Johnson, and K. T. Higa, “Inhibition of Oxide Formation on Aluminum Nanoparticles by Transition Metal Coating,” Chem. Mater. 17(16), 4086–4091 (2005).
    [CrossRef]
  15. Y. S. Kwon, A. A. Gromov, and J. I. Strokova, “Passivation of the surface of aluminum nanopowders by protective coatings of the different chemical origin,” Appl. Surf. Sci. 253(12), 5558–5564 (2007).
    [CrossRef]
  16. P. V. Kazakevich, A. V. Simakin, V. V. Voronov, and G. A. Shafeev, “Laser induced synthesis of nanoparticles in liquids,” Appl. Surf. Sci. 252(13), 4373–4380 (2006).
    [CrossRef]
  17. G. A. Shafeev, Formation of nanoparticles under laser ablation of solids in liquids, in: Nanoparticles:New Research, editor Simone Luca Lombardi, Nova Science Publishers Inc., pp. 1 −37 (2008).
  18. E. Stratakis, V. Zorba, M. Barberoglou, C. Fotakis, and G. A. Shafeev, “Laser writing of nanostructures on bulk Al via its ablation in liquids,” Nanotechnology 20(10), 105303–105311 (2009).
    [CrossRef] [PubMed]
  19. V. Dembovský, “Thermodynamics of dissolution and liberation of gases in the atomization of molten metals by plasma-induced expansion,” J. Mater. Process. Technol. 64(1-3), 65–74 (1997).
    [CrossRef]
  20. J. C. Sanchez-Lopez, A. Caballero, and A. Fernandez, “Characterisation of passivated aluminum nanopowders: An XPS and TEM/EELS study,” J. Eur. Ceram. Soc. 18(9), 1195–1200 (1998).
    [CrossRef]
  21. E. Stratakis, V. Zorba, M. Barberoglou, C. Fotakis, and G. A. Shafeev, “Femtosecond laser writing of nanostructures on bulk Al via its ablation in air and liquids,” Appl. Surf. Sci. 255(10), 5346–5350 (2009).
    [CrossRef]
  22. J. A. Creighton and D. G. Eadon, “Ultraviolet-visible absorption spectra of the colloidal metallic elements,” J. Chem. Soc., Faraday Trans. 87(24), 3881 (1991).
    [CrossRef]
  23. Y. Ekinci, H. H. Solak, and J. F. Loffler, “Fabrication and characterization of metallic nanostructures for surface-enhanced Raman spectroscopy,” J. Appl. Phys. 104, 083107 (2008).
    [CrossRef]
  24. B. S. Luk'yanchuk and M. I. Tribelsky, “Anomalous Light Scattering by Small Particles and inverse hierarchy of optical resonances” Collection of papers devoted to memory of Prof. M. N. Libenson. The St.-Petersburg Union of the Scientists, Russia, pp. 101–117 (2005).
  25. G. L. Hornyak, K. L. N. Phani, D. L. Kunked, V. P. Menon, and C. R. Martin, “Fabrication, characterization and optical theory of aluminum nanometal/nanoporous membrane thin film composites,” Nanostruct. Mater. 6(5-8), 839–842 (1995).
    [CrossRef]
  26. G. W. Yang, “Laser ablation in liquids: Applications in the synthesis of nanocrystals,” Prog. Mater. Sci. 52(4), 648–698 (2007).
    [CrossRef]
  27. C. X. Wang, P. Liu, H. Cui, and G. W. Yang, “Nucleation and growth kinetics of nanocrystals formed upon pulsed-laser ablation in liquid,” Appl. Phys. Lett. 87(20), 201913–201915 (2005).
    [CrossRef]
  28. P. Liu, Y. L. Cao, C. X. Wang, X. Y. Chen, and G. W. Yang, “Micro- and nanocubes of carbon with C8-like and blue luminescence,” Nano Lett. 8(8), 2570–2575 (2008).
    [CrossRef] [PubMed]

2009

P. J. Roach, W. H. Woodward, A. W. Castleman, A. C. Reber, and S. N. Khanna, “Complementary active sites cause size-selective reactivity of aluminum cluster anions with water,” Science 323(5913), 492–495 (2009).
[CrossRef] [PubMed]

M. H. Chowdhury, K. Ray, S. K. Gray, J. Pond, and J. R. Lakowicz, “Aluminum nanoparticles as substrates for metal-enhanced fluorescence in the ultraviolet for the label-free detection of biomolecules,” Anal. Chem. 81(4), 1397–1403 (2009).
[CrossRef] [PubMed]

M. J. Meziani, C. E. Bunker, F. Lu, H. Li, W. Wang, E. A. Guliants, R. A. Quinn, and Y.-P. Sun, “Formation and Properties of Stabilized Aluminum Nanoparticles,” ACS Appl. Mater. Interfaces 1(3), 703–709 (2009).
[CrossRef]

E. Stratakis, V. Zorba, M. Barberoglou, C. Fotakis, and G. A. Shafeev, “Laser writing of nanostructures on bulk Al via its ablation in liquids,” Nanotechnology 20(10), 105303–105311 (2009).
[CrossRef] [PubMed]

E. Stratakis, V. Zorba, M. Barberoglou, C. Fotakis, and G. A. Shafeev, “Femtosecond laser writing of nanostructures on bulk Al via its ablation in air and liquids,” Appl. Surf. Sci. 255(10), 5346–5350 (2009).
[CrossRef]

2008

Y. Ekinci, H. H. Solak, and J. F. Loffler, “Fabrication and characterization of metallic nanostructures for surface-enhanced Raman spectroscopy,” J. Appl. Phys. 104, 083107 (2008).
[CrossRef]

P. Liu, Y. L. Cao, C. X. Wang, X. Y. Chen, and G. W. Yang, “Micro- and nanocubes of carbon with C8-like and blue luminescence,” Nano Lett. 8(8), 2570–2575 (2008).
[CrossRef] [PubMed]

H. Tyagi, P. E. Phelan, R. Prasher, R. Peck, T. Lee, J. R. Pacheco, and P. Arentzen, “Increased hot-plate ignition probability for nanoparticle-laden diesel fuel,” Nano Lett. 8(5), 1410–1416 (2008).
[CrossRef] [PubMed]

C. P. Balde, B. P. C. Hereijgers, J. H. Bitter, and K. P. de Jong, “Sodium alanate nanoparticles--linking size to hydrogen storage properties,” J. Am. Chem. Soc. 130(21), 6761–6765 (2008).
[CrossRef] [PubMed]

S. Y. Zheng, F. Fang, G. Y. Zhou, G. R. Chen, L. Z. Ouyang, M. Zhu, and D. L. Sun, “Hydrogen storage properties of space-confined NaAlH4 nanoparticles in ordered mesoporous silica,” Chem. Mater. 20(12), 3954–3958 (2008).
[CrossRef]

2007

X. Zhou, Y. Fang, and P. Zhang, “A new substrate for surface enhanced Raman scattering of dye Sudan molecules,” Spectrochim. Acta [A] 67(1), 122–124 (2007).
[CrossRef]

J. J. Wang, F. Walters, X. M. Liu, P. Sciortino, and X. G. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
[CrossRef]

L. G. Guo, W. L. Song, C. S. Xie, X. T. Zhang, and M. L. Hu, “Characterization and thermal properties of carbon-coated aluminum nanopowders prepared by laser-induction complex heating in methane,” Mater. Lett. 61(14-15), 3211–3214 (2007).
[CrossRef]

Y. S. Kwon, A. A. Gromov, and J. I. Strokova, “Passivation of the surface of aluminum nanopowders by protective coatings of the different chemical origin,” Appl. Surf. Sci. 253(12), 5558–5564 (2007).
[CrossRef]

G. W. Yang, “Laser ablation in liquids: Applications in the synthesis of nanocrystals,” Prog. Mater. Sci. 52(4), 648–698 (2007).
[CrossRef]

2006

P. V. Kazakevich, A. V. Simakin, V. V. Voronov, and G. A. Shafeev, “Laser induced synthesis of nanoparticles in liquids,” Appl. Surf. Sci. 252(13), 4373–4380 (2006).
[CrossRef]

L. Galfetti, L. T. De Luca, F. Severini, L. Meda, G. Marra, M. Marchetti, M. Regi, and S. Bellucci, “Nanoparticles for solid rocket propulsion,” J. Phys. Condens. Matter 18(33), S1991–S2005 (2006).
[CrossRef]

2005

K. Park, D. Lee, A. Rai, D. Mukherjee, and M. R. Zachariah, “Size-resolved kinetic measurements of aluminum nanoparticle oxidation with single particle mass spectrometry,” J. Phys. Chem. B 109(15), 7290–7299 (2005).
[CrossRef]

T. J. Foley, C. E. Johnson, and K. T. Higa, “Inhibition of Oxide Formation on Aluminum Nanoparticles by Transition Metal Coating,” Chem. Mater. 17(16), 4086–4091 (2005).
[CrossRef]

R. J. Jouet, A. D. Warren, D. M. Rosenberg, V. J. Bellitto, K. Park, and M. R. Zachariah, “Passivation of bare aluminum nanoparticles using perfluoroalkyl carboxylic acids,” Chem. Mater. 17(11), 2987–2996 (2005).
[CrossRef]

C. X. Wang, P. Liu, H. Cui, and G. W. Yang, “Nucleation and growth kinetics of nanocrystals formed upon pulsed-laser ablation in liquid,” Appl. Phys. Lett. 87(20), 201913–201915 (2005).
[CrossRef]

2002

M. Comet, L. Schreyeck-Reinert, C. Louis, and H. Fuzellier, “Synthesis and characterization of high surface area aluminium and alumina microtubes from carbonaceous materials,” J. Mater. Chem. 12(3), 754–757 (2002).
[CrossRef]

1998

J. C. Sanchez-Lopez, A. Caballero, and A. Fernandez, “Characterisation of passivated aluminum nanopowders: An XPS and TEM/EELS study,” J. Eur. Ceram. Soc. 18(9), 1195–1200 (1998).
[CrossRef]

1997

V. Dembovský, “Thermodynamics of dissolution and liberation of gases in the atomization of molten metals by plasma-induced expansion,” J. Mater. Process. Technol. 64(1-3), 65–74 (1997).
[CrossRef]

1995

G. L. Hornyak, K. L. N. Phani, D. L. Kunked, V. P. Menon, and C. R. Martin, “Fabrication, characterization and optical theory of aluminum nanometal/nanoporous membrane thin film composites,” Nanostruct. Mater. 6(5-8), 839–842 (1995).
[CrossRef]

1991

J. A. Creighton and D. G. Eadon, “Ultraviolet-visible absorption spectra of the colloidal metallic elements,” J. Chem. Soc., Faraday Trans. 87(24), 3881 (1991).
[CrossRef]

Arentzen, P.

H. Tyagi, P. E. Phelan, R. Prasher, R. Peck, T. Lee, J. R. Pacheco, and P. Arentzen, “Increased hot-plate ignition probability for nanoparticle-laden diesel fuel,” Nano Lett. 8(5), 1410–1416 (2008).
[CrossRef] [PubMed]

Balde, C. P.

C. P. Balde, B. P. C. Hereijgers, J. H. Bitter, and K. P. de Jong, “Sodium alanate nanoparticles--linking size to hydrogen storage properties,” J. Am. Chem. Soc. 130(21), 6761–6765 (2008).
[CrossRef] [PubMed]

Barberoglou, M.

E. Stratakis, V. Zorba, M. Barberoglou, C. Fotakis, and G. A. Shafeev, “Laser writing of nanostructures on bulk Al via its ablation in liquids,” Nanotechnology 20(10), 105303–105311 (2009).
[CrossRef] [PubMed]

E. Stratakis, V. Zorba, M. Barberoglou, C. Fotakis, and G. A. Shafeev, “Femtosecond laser writing of nanostructures on bulk Al via its ablation in air and liquids,” Appl. Surf. Sci. 255(10), 5346–5350 (2009).
[CrossRef]

Bellitto, V. J.

R. J. Jouet, A. D. Warren, D. M. Rosenberg, V. J. Bellitto, K. Park, and M. R. Zachariah, “Passivation of bare aluminum nanoparticles using perfluoroalkyl carboxylic acids,” Chem. Mater. 17(11), 2987–2996 (2005).
[CrossRef]

Bellucci, S.

L. Galfetti, L. T. De Luca, F. Severini, L. Meda, G. Marra, M. Marchetti, M. Regi, and S. Bellucci, “Nanoparticles for solid rocket propulsion,” J. Phys. Condens. Matter 18(33), S1991–S2005 (2006).
[CrossRef]

Bitter, J. H.

C. P. Balde, B. P. C. Hereijgers, J. H. Bitter, and K. P. de Jong, “Sodium alanate nanoparticles--linking size to hydrogen storage properties,” J. Am. Chem. Soc. 130(21), 6761–6765 (2008).
[CrossRef] [PubMed]

Bunker, C. E.

M. J. Meziani, C. E. Bunker, F. Lu, H. Li, W. Wang, E. A. Guliants, R. A. Quinn, and Y.-P. Sun, “Formation and Properties of Stabilized Aluminum Nanoparticles,” ACS Appl. Mater. Interfaces 1(3), 703–709 (2009).
[CrossRef]

Caballero, A.

J. C. Sanchez-Lopez, A. Caballero, and A. Fernandez, “Characterisation of passivated aluminum nanopowders: An XPS and TEM/EELS study,” J. Eur. Ceram. Soc. 18(9), 1195–1200 (1998).
[CrossRef]

Cao, Y. L.

P. Liu, Y. L. Cao, C. X. Wang, X. Y. Chen, and G. W. Yang, “Micro- and nanocubes of carbon with C8-like and blue luminescence,” Nano Lett. 8(8), 2570–2575 (2008).
[CrossRef] [PubMed]

Castleman, A. W.

P. J. Roach, W. H. Woodward, A. W. Castleman, A. C. Reber, and S. N. Khanna, “Complementary active sites cause size-selective reactivity of aluminum cluster anions with water,” Science 323(5913), 492–495 (2009).
[CrossRef] [PubMed]

Chen, G. R.

S. Y. Zheng, F. Fang, G. Y. Zhou, G. R. Chen, L. Z. Ouyang, M. Zhu, and D. L. Sun, “Hydrogen storage properties of space-confined NaAlH4 nanoparticles in ordered mesoporous silica,” Chem. Mater. 20(12), 3954–3958 (2008).
[CrossRef]

Chen, X. Y.

P. Liu, Y. L. Cao, C. X. Wang, X. Y. Chen, and G. W. Yang, “Micro- and nanocubes of carbon with C8-like and blue luminescence,” Nano Lett. 8(8), 2570–2575 (2008).
[CrossRef] [PubMed]

Chowdhury, M. H.

M. H. Chowdhury, K. Ray, S. K. Gray, J. Pond, and J. R. Lakowicz, “Aluminum nanoparticles as substrates for metal-enhanced fluorescence in the ultraviolet for the label-free detection of biomolecules,” Anal. Chem. 81(4), 1397–1403 (2009).
[CrossRef] [PubMed]

Comet, M.

M. Comet, L. Schreyeck-Reinert, C. Louis, and H. Fuzellier, “Synthesis and characterization of high surface area aluminium and alumina microtubes from carbonaceous materials,” J. Mater. Chem. 12(3), 754–757 (2002).
[CrossRef]

Creighton, J. A.

J. A. Creighton and D. G. Eadon, “Ultraviolet-visible absorption spectra of the colloidal metallic elements,” J. Chem. Soc., Faraday Trans. 87(24), 3881 (1991).
[CrossRef]

Cui, H.

C. X. Wang, P. Liu, H. Cui, and G. W. Yang, “Nucleation and growth kinetics of nanocrystals formed upon pulsed-laser ablation in liquid,” Appl. Phys. Lett. 87(20), 201913–201915 (2005).
[CrossRef]

de Jong, K. P.

C. P. Balde, B. P. C. Hereijgers, J. H. Bitter, and K. P. de Jong, “Sodium alanate nanoparticles--linking size to hydrogen storage properties,” J. Am. Chem. Soc. 130(21), 6761–6765 (2008).
[CrossRef] [PubMed]

De Luca, L. T.

L. Galfetti, L. T. De Luca, F. Severini, L. Meda, G. Marra, M. Marchetti, M. Regi, and S. Bellucci, “Nanoparticles for solid rocket propulsion,” J. Phys. Condens. Matter 18(33), S1991–S2005 (2006).
[CrossRef]

Dembovský, V.

V. Dembovský, “Thermodynamics of dissolution and liberation of gases in the atomization of molten metals by plasma-induced expansion,” J. Mater. Process. Technol. 64(1-3), 65–74 (1997).
[CrossRef]

Deng, X. G.

J. J. Wang, F. Walters, X. M. Liu, P. Sciortino, and X. G. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
[CrossRef]

Eadon, D. G.

J. A. Creighton and D. G. Eadon, “Ultraviolet-visible absorption spectra of the colloidal metallic elements,” J. Chem. Soc., Faraday Trans. 87(24), 3881 (1991).
[CrossRef]

Ekinci, Y.

Y. Ekinci, H. H. Solak, and J. F. Loffler, “Fabrication and characterization of metallic nanostructures for surface-enhanced Raman spectroscopy,” J. Appl. Phys. 104, 083107 (2008).
[CrossRef]

Fang, F.

S. Y. Zheng, F. Fang, G. Y. Zhou, G. R. Chen, L. Z. Ouyang, M. Zhu, and D. L. Sun, “Hydrogen storage properties of space-confined NaAlH4 nanoparticles in ordered mesoporous silica,” Chem. Mater. 20(12), 3954–3958 (2008).
[CrossRef]

Fang, Y.

X. Zhou, Y. Fang, and P. Zhang, “A new substrate for surface enhanced Raman scattering of dye Sudan molecules,” Spectrochim. Acta [A] 67(1), 122–124 (2007).
[CrossRef]

Fernandez, A.

J. C. Sanchez-Lopez, A. Caballero, and A. Fernandez, “Characterisation of passivated aluminum nanopowders: An XPS and TEM/EELS study,” J. Eur. Ceram. Soc. 18(9), 1195–1200 (1998).
[CrossRef]

Foley, T. J.

T. J. Foley, C. E. Johnson, and K. T. Higa, “Inhibition of Oxide Formation on Aluminum Nanoparticles by Transition Metal Coating,” Chem. Mater. 17(16), 4086–4091 (2005).
[CrossRef]

Fotakis, C.

E. Stratakis, V. Zorba, M. Barberoglou, C. Fotakis, and G. A. Shafeev, “Laser writing of nanostructures on bulk Al via its ablation in liquids,” Nanotechnology 20(10), 105303–105311 (2009).
[CrossRef] [PubMed]

E. Stratakis, V. Zorba, M. Barberoglou, C. Fotakis, and G. A. Shafeev, “Femtosecond laser writing of nanostructures on bulk Al via its ablation in air and liquids,” Appl. Surf. Sci. 255(10), 5346–5350 (2009).
[CrossRef]

Fuzellier, H.

M. Comet, L. Schreyeck-Reinert, C. Louis, and H. Fuzellier, “Synthesis and characterization of high surface area aluminium and alumina microtubes from carbonaceous materials,” J. Mater. Chem. 12(3), 754–757 (2002).
[CrossRef]

Galfetti, L.

L. Galfetti, L. T. De Luca, F. Severini, L. Meda, G. Marra, M. Marchetti, M. Regi, and S. Bellucci, “Nanoparticles for solid rocket propulsion,” J. Phys. Condens. Matter 18(33), S1991–S2005 (2006).
[CrossRef]

Gray, S. K.

M. H. Chowdhury, K. Ray, S. K. Gray, J. Pond, and J. R. Lakowicz, “Aluminum nanoparticles as substrates for metal-enhanced fluorescence in the ultraviolet for the label-free detection of biomolecules,” Anal. Chem. 81(4), 1397–1403 (2009).
[CrossRef] [PubMed]

Gromov, A. A.

Y. S. Kwon, A. A. Gromov, and J. I. Strokova, “Passivation of the surface of aluminum nanopowders by protective coatings of the different chemical origin,” Appl. Surf. Sci. 253(12), 5558–5564 (2007).
[CrossRef]

Guliants, E. A.

M. J. Meziani, C. E. Bunker, F. Lu, H. Li, W. Wang, E. A. Guliants, R. A. Quinn, and Y.-P. Sun, “Formation and Properties of Stabilized Aluminum Nanoparticles,” ACS Appl. Mater. Interfaces 1(3), 703–709 (2009).
[CrossRef]

Guo, L. G.

L. G. Guo, W. L. Song, C. S. Xie, X. T. Zhang, and M. L. Hu, “Characterization and thermal properties of carbon-coated aluminum nanopowders prepared by laser-induction complex heating in methane,” Mater. Lett. 61(14-15), 3211–3214 (2007).
[CrossRef]

Hereijgers, B. P. C.

C. P. Balde, B. P. C. Hereijgers, J. H. Bitter, and K. P. de Jong, “Sodium alanate nanoparticles--linking size to hydrogen storage properties,” J. Am. Chem. Soc. 130(21), 6761–6765 (2008).
[CrossRef] [PubMed]

Higa, K. T.

T. J. Foley, C. E. Johnson, and K. T. Higa, “Inhibition of Oxide Formation on Aluminum Nanoparticles by Transition Metal Coating,” Chem. Mater. 17(16), 4086–4091 (2005).
[CrossRef]

Hornyak, G. L.

G. L. Hornyak, K. L. N. Phani, D. L. Kunked, V. P. Menon, and C. R. Martin, “Fabrication, characterization and optical theory of aluminum nanometal/nanoporous membrane thin film composites,” Nanostruct. Mater. 6(5-8), 839–842 (1995).
[CrossRef]

Hu, M. L.

L. G. Guo, W. L. Song, C. S. Xie, X. T. Zhang, and M. L. Hu, “Characterization and thermal properties of carbon-coated aluminum nanopowders prepared by laser-induction complex heating in methane,” Mater. Lett. 61(14-15), 3211–3214 (2007).
[CrossRef]

Johnson, C. E.

T. J. Foley, C. E. Johnson, and K. T. Higa, “Inhibition of Oxide Formation on Aluminum Nanoparticles by Transition Metal Coating,” Chem. Mater. 17(16), 4086–4091 (2005).
[CrossRef]

Jouet, R. J.

R. J. Jouet, A. D. Warren, D. M. Rosenberg, V. J. Bellitto, K. Park, and M. R. Zachariah, “Passivation of bare aluminum nanoparticles using perfluoroalkyl carboxylic acids,” Chem. Mater. 17(11), 2987–2996 (2005).
[CrossRef]

Kazakevich, P. V.

P. V. Kazakevich, A. V. Simakin, V. V. Voronov, and G. A. Shafeev, “Laser induced synthesis of nanoparticles in liquids,” Appl. Surf. Sci. 252(13), 4373–4380 (2006).
[CrossRef]

Khanna, S. N.

P. J. Roach, W. H. Woodward, A. W. Castleman, A. C. Reber, and S. N. Khanna, “Complementary active sites cause size-selective reactivity of aluminum cluster anions with water,” Science 323(5913), 492–495 (2009).
[CrossRef] [PubMed]

Kunked, D. L.

G. L. Hornyak, K. L. N. Phani, D. L. Kunked, V. P. Menon, and C. R. Martin, “Fabrication, characterization and optical theory of aluminum nanometal/nanoporous membrane thin film composites,” Nanostruct. Mater. 6(5-8), 839–842 (1995).
[CrossRef]

Kwon, Y. S.

Y. S. Kwon, A. A. Gromov, and J. I. Strokova, “Passivation of the surface of aluminum nanopowders by protective coatings of the different chemical origin,” Appl. Surf. Sci. 253(12), 5558–5564 (2007).
[CrossRef]

Lakowicz, J. R.

M. H. Chowdhury, K. Ray, S. K. Gray, J. Pond, and J. R. Lakowicz, “Aluminum nanoparticles as substrates for metal-enhanced fluorescence in the ultraviolet for the label-free detection of biomolecules,” Anal. Chem. 81(4), 1397–1403 (2009).
[CrossRef] [PubMed]

Lee, D.

K. Park, D. Lee, A. Rai, D. Mukherjee, and M. R. Zachariah, “Size-resolved kinetic measurements of aluminum nanoparticle oxidation with single particle mass spectrometry,” J. Phys. Chem. B 109(15), 7290–7299 (2005).
[CrossRef]

Lee, T.

H. Tyagi, P. E. Phelan, R. Prasher, R. Peck, T. Lee, J. R. Pacheco, and P. Arentzen, “Increased hot-plate ignition probability for nanoparticle-laden diesel fuel,” Nano Lett. 8(5), 1410–1416 (2008).
[CrossRef] [PubMed]

Li, H.

M. J. Meziani, C. E. Bunker, F. Lu, H. Li, W. Wang, E. A. Guliants, R. A. Quinn, and Y.-P. Sun, “Formation and Properties of Stabilized Aluminum Nanoparticles,” ACS Appl. Mater. Interfaces 1(3), 703–709 (2009).
[CrossRef]

Liu, P.

P. Liu, Y. L. Cao, C. X. Wang, X. Y. Chen, and G. W. Yang, “Micro- and nanocubes of carbon with C8-like and blue luminescence,” Nano Lett. 8(8), 2570–2575 (2008).
[CrossRef] [PubMed]

C. X. Wang, P. Liu, H. Cui, and G. W. Yang, “Nucleation and growth kinetics of nanocrystals formed upon pulsed-laser ablation in liquid,” Appl. Phys. Lett. 87(20), 201913–201915 (2005).
[CrossRef]

Liu, X. M.

J. J. Wang, F. Walters, X. M. Liu, P. Sciortino, and X. G. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
[CrossRef]

Loffler, J. F.

Y. Ekinci, H. H. Solak, and J. F. Loffler, “Fabrication and characterization of metallic nanostructures for surface-enhanced Raman spectroscopy,” J. Appl. Phys. 104, 083107 (2008).
[CrossRef]

Louis, C.

M. Comet, L. Schreyeck-Reinert, C. Louis, and H. Fuzellier, “Synthesis and characterization of high surface area aluminium and alumina microtubes from carbonaceous materials,” J. Mater. Chem. 12(3), 754–757 (2002).
[CrossRef]

Lu, F.

M. J. Meziani, C. E. Bunker, F. Lu, H. Li, W. Wang, E. A. Guliants, R. A. Quinn, and Y.-P. Sun, “Formation and Properties of Stabilized Aluminum Nanoparticles,” ACS Appl. Mater. Interfaces 1(3), 703–709 (2009).
[CrossRef]

Marchetti, M.

L. Galfetti, L. T. De Luca, F. Severini, L. Meda, G. Marra, M. Marchetti, M. Regi, and S. Bellucci, “Nanoparticles for solid rocket propulsion,” J. Phys. Condens. Matter 18(33), S1991–S2005 (2006).
[CrossRef]

Marra, G.

L. Galfetti, L. T. De Luca, F. Severini, L. Meda, G. Marra, M. Marchetti, M. Regi, and S. Bellucci, “Nanoparticles for solid rocket propulsion,” J. Phys. Condens. Matter 18(33), S1991–S2005 (2006).
[CrossRef]

Martin, C. R.

G. L. Hornyak, K. L. N. Phani, D. L. Kunked, V. P. Menon, and C. R. Martin, “Fabrication, characterization and optical theory of aluminum nanometal/nanoporous membrane thin film composites,” Nanostruct. Mater. 6(5-8), 839–842 (1995).
[CrossRef]

Meda, L.

L. Galfetti, L. T. De Luca, F. Severini, L. Meda, G. Marra, M. Marchetti, M. Regi, and S. Bellucci, “Nanoparticles for solid rocket propulsion,” J. Phys. Condens. Matter 18(33), S1991–S2005 (2006).
[CrossRef]

Menon, V. P.

G. L. Hornyak, K. L. N. Phani, D. L. Kunked, V. P. Menon, and C. R. Martin, “Fabrication, characterization and optical theory of aluminum nanometal/nanoporous membrane thin film composites,” Nanostruct. Mater. 6(5-8), 839–842 (1995).
[CrossRef]

Meziani, M. J.

M. J. Meziani, C. E. Bunker, F. Lu, H. Li, W. Wang, E. A. Guliants, R. A. Quinn, and Y.-P. Sun, “Formation and Properties of Stabilized Aluminum Nanoparticles,” ACS Appl. Mater. Interfaces 1(3), 703–709 (2009).
[CrossRef]

Mukherjee, D.

K. Park, D. Lee, A. Rai, D. Mukherjee, and M. R. Zachariah, “Size-resolved kinetic measurements of aluminum nanoparticle oxidation with single particle mass spectrometry,” J. Phys. Chem. B 109(15), 7290–7299 (2005).
[CrossRef]

Ouyang, L. Z.

S. Y. Zheng, F. Fang, G. Y. Zhou, G. R. Chen, L. Z. Ouyang, M. Zhu, and D. L. Sun, “Hydrogen storage properties of space-confined NaAlH4 nanoparticles in ordered mesoporous silica,” Chem. Mater. 20(12), 3954–3958 (2008).
[CrossRef]

Pacheco, J. R.

H. Tyagi, P. E. Phelan, R. Prasher, R. Peck, T. Lee, J. R. Pacheco, and P. Arentzen, “Increased hot-plate ignition probability for nanoparticle-laden diesel fuel,” Nano Lett. 8(5), 1410–1416 (2008).
[CrossRef] [PubMed]

Park, K.

K. Park, D. Lee, A. Rai, D. Mukherjee, and M. R. Zachariah, “Size-resolved kinetic measurements of aluminum nanoparticle oxidation with single particle mass spectrometry,” J. Phys. Chem. B 109(15), 7290–7299 (2005).
[CrossRef]

R. J. Jouet, A. D. Warren, D. M. Rosenberg, V. J. Bellitto, K. Park, and M. R. Zachariah, “Passivation of bare aluminum nanoparticles using perfluoroalkyl carboxylic acids,” Chem. Mater. 17(11), 2987–2996 (2005).
[CrossRef]

Peck, R.

H. Tyagi, P. E. Phelan, R. Prasher, R. Peck, T. Lee, J. R. Pacheco, and P. Arentzen, “Increased hot-plate ignition probability for nanoparticle-laden diesel fuel,” Nano Lett. 8(5), 1410–1416 (2008).
[CrossRef] [PubMed]

Phani, K. L. N.

G. L. Hornyak, K. L. N. Phani, D. L. Kunked, V. P. Menon, and C. R. Martin, “Fabrication, characterization and optical theory of aluminum nanometal/nanoporous membrane thin film composites,” Nanostruct. Mater. 6(5-8), 839–842 (1995).
[CrossRef]

Phelan, P. E.

H. Tyagi, P. E. Phelan, R. Prasher, R. Peck, T. Lee, J. R. Pacheco, and P. Arentzen, “Increased hot-plate ignition probability for nanoparticle-laden diesel fuel,” Nano Lett. 8(5), 1410–1416 (2008).
[CrossRef] [PubMed]

Pond, J.

M. H. Chowdhury, K. Ray, S. K. Gray, J. Pond, and J. R. Lakowicz, “Aluminum nanoparticles as substrates for metal-enhanced fluorescence in the ultraviolet for the label-free detection of biomolecules,” Anal. Chem. 81(4), 1397–1403 (2009).
[CrossRef] [PubMed]

Prasher, R.

H. Tyagi, P. E. Phelan, R. Prasher, R. Peck, T. Lee, J. R. Pacheco, and P. Arentzen, “Increased hot-plate ignition probability for nanoparticle-laden diesel fuel,” Nano Lett. 8(5), 1410–1416 (2008).
[CrossRef] [PubMed]

Quinn, R. A.

M. J. Meziani, C. E. Bunker, F. Lu, H. Li, W. Wang, E. A. Guliants, R. A. Quinn, and Y.-P. Sun, “Formation and Properties of Stabilized Aluminum Nanoparticles,” ACS Appl. Mater. Interfaces 1(3), 703–709 (2009).
[CrossRef]

Rai, A.

K. Park, D. Lee, A. Rai, D. Mukherjee, and M. R. Zachariah, “Size-resolved kinetic measurements of aluminum nanoparticle oxidation with single particle mass spectrometry,” J. Phys. Chem. B 109(15), 7290–7299 (2005).
[CrossRef]

Ray, K.

M. H. Chowdhury, K. Ray, S. K. Gray, J. Pond, and J. R. Lakowicz, “Aluminum nanoparticles as substrates for metal-enhanced fluorescence in the ultraviolet for the label-free detection of biomolecules,” Anal. Chem. 81(4), 1397–1403 (2009).
[CrossRef] [PubMed]

Reber, A. C.

P. J. Roach, W. H. Woodward, A. W. Castleman, A. C. Reber, and S. N. Khanna, “Complementary active sites cause size-selective reactivity of aluminum cluster anions with water,” Science 323(5913), 492–495 (2009).
[CrossRef] [PubMed]

Regi, M.

L. Galfetti, L. T. De Luca, F. Severini, L. Meda, G. Marra, M. Marchetti, M. Regi, and S. Bellucci, “Nanoparticles for solid rocket propulsion,” J. Phys. Condens. Matter 18(33), S1991–S2005 (2006).
[CrossRef]

Roach, P. J.

P. J. Roach, W. H. Woodward, A. W. Castleman, A. C. Reber, and S. N. Khanna, “Complementary active sites cause size-selective reactivity of aluminum cluster anions with water,” Science 323(5913), 492–495 (2009).
[CrossRef] [PubMed]

Rosenberg, D. M.

R. J. Jouet, A. D. Warren, D. M. Rosenberg, V. J. Bellitto, K. Park, and M. R. Zachariah, “Passivation of bare aluminum nanoparticles using perfluoroalkyl carboxylic acids,” Chem. Mater. 17(11), 2987–2996 (2005).
[CrossRef]

Sanchez-Lopez, J. C.

J. C. Sanchez-Lopez, A. Caballero, and A. Fernandez, “Characterisation of passivated aluminum nanopowders: An XPS and TEM/EELS study,” J. Eur. Ceram. Soc. 18(9), 1195–1200 (1998).
[CrossRef]

Schreyeck-Reinert, L.

M. Comet, L. Schreyeck-Reinert, C. Louis, and H. Fuzellier, “Synthesis and characterization of high surface area aluminium and alumina microtubes from carbonaceous materials,” J. Mater. Chem. 12(3), 754–757 (2002).
[CrossRef]

Sciortino, P.

J. J. Wang, F. Walters, X. M. Liu, P. Sciortino, and X. G. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
[CrossRef]

Severini, F.

L. Galfetti, L. T. De Luca, F. Severini, L. Meda, G. Marra, M. Marchetti, M. Regi, and S. Bellucci, “Nanoparticles for solid rocket propulsion,” J. Phys. Condens. Matter 18(33), S1991–S2005 (2006).
[CrossRef]

Shafeev, G. A.

E. Stratakis, V. Zorba, M. Barberoglou, C. Fotakis, and G. A. Shafeev, “Laser writing of nanostructures on bulk Al via its ablation in liquids,” Nanotechnology 20(10), 105303–105311 (2009).
[CrossRef] [PubMed]

E. Stratakis, V. Zorba, M. Barberoglou, C. Fotakis, and G. A. Shafeev, “Femtosecond laser writing of nanostructures on bulk Al via its ablation in air and liquids,” Appl. Surf. Sci. 255(10), 5346–5350 (2009).
[CrossRef]

P. V. Kazakevich, A. V. Simakin, V. V. Voronov, and G. A. Shafeev, “Laser induced synthesis of nanoparticles in liquids,” Appl. Surf. Sci. 252(13), 4373–4380 (2006).
[CrossRef]

Simakin, A. V.

P. V. Kazakevich, A. V. Simakin, V. V. Voronov, and G. A. Shafeev, “Laser induced synthesis of nanoparticles in liquids,” Appl. Surf. Sci. 252(13), 4373–4380 (2006).
[CrossRef]

Solak, H. H.

Y. Ekinci, H. H. Solak, and J. F. Loffler, “Fabrication and characterization of metallic nanostructures for surface-enhanced Raman spectroscopy,” J. Appl. Phys. 104, 083107 (2008).
[CrossRef]

Song, W. L.

L. G. Guo, W. L. Song, C. S. Xie, X. T. Zhang, and M. L. Hu, “Characterization and thermal properties of carbon-coated aluminum nanopowders prepared by laser-induction complex heating in methane,” Mater. Lett. 61(14-15), 3211–3214 (2007).
[CrossRef]

Stratakis, E.

E. Stratakis, V. Zorba, M. Barberoglou, C. Fotakis, and G. A. Shafeev, “Femtosecond laser writing of nanostructures on bulk Al via its ablation in air and liquids,” Appl. Surf. Sci. 255(10), 5346–5350 (2009).
[CrossRef]

E. Stratakis, V. Zorba, M. Barberoglou, C. Fotakis, and G. A. Shafeev, “Laser writing of nanostructures on bulk Al via its ablation in liquids,” Nanotechnology 20(10), 105303–105311 (2009).
[CrossRef] [PubMed]

Strokova, J. I.

Y. S. Kwon, A. A. Gromov, and J. I. Strokova, “Passivation of the surface of aluminum nanopowders by protective coatings of the different chemical origin,” Appl. Surf. Sci. 253(12), 5558–5564 (2007).
[CrossRef]

Sun, D. L.

S. Y. Zheng, F. Fang, G. Y. Zhou, G. R. Chen, L. Z. Ouyang, M. Zhu, and D. L. Sun, “Hydrogen storage properties of space-confined NaAlH4 nanoparticles in ordered mesoporous silica,” Chem. Mater. 20(12), 3954–3958 (2008).
[CrossRef]

Sun, Y.-P.

M. J. Meziani, C. E. Bunker, F. Lu, H. Li, W. Wang, E. A. Guliants, R. A. Quinn, and Y.-P. Sun, “Formation and Properties of Stabilized Aluminum Nanoparticles,” ACS Appl. Mater. Interfaces 1(3), 703–709 (2009).
[CrossRef]

Tyagi, H.

H. Tyagi, P. E. Phelan, R. Prasher, R. Peck, T. Lee, J. R. Pacheco, and P. Arentzen, “Increased hot-plate ignition probability for nanoparticle-laden diesel fuel,” Nano Lett. 8(5), 1410–1416 (2008).
[CrossRef] [PubMed]

Voronov, V. V.

P. V. Kazakevich, A. V. Simakin, V. V. Voronov, and G. A. Shafeev, “Laser induced synthesis of nanoparticles in liquids,” Appl. Surf. Sci. 252(13), 4373–4380 (2006).
[CrossRef]

Walters, F.

J. J. Wang, F. Walters, X. M. Liu, P. Sciortino, and X. G. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
[CrossRef]

Wang, C. X.

P. Liu, Y. L. Cao, C. X. Wang, X. Y. Chen, and G. W. Yang, “Micro- and nanocubes of carbon with C8-like and blue luminescence,” Nano Lett. 8(8), 2570–2575 (2008).
[CrossRef] [PubMed]

C. X. Wang, P. Liu, H. Cui, and G. W. Yang, “Nucleation and growth kinetics of nanocrystals formed upon pulsed-laser ablation in liquid,” Appl. Phys. Lett. 87(20), 201913–201915 (2005).
[CrossRef]

Wang, J. J.

J. J. Wang, F. Walters, X. M. Liu, P. Sciortino, and X. G. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
[CrossRef]

Wang, W.

M. J. Meziani, C. E. Bunker, F. Lu, H. Li, W. Wang, E. A. Guliants, R. A. Quinn, and Y.-P. Sun, “Formation and Properties of Stabilized Aluminum Nanoparticles,” ACS Appl. Mater. Interfaces 1(3), 703–709 (2009).
[CrossRef]

Warren, A. D.

R. J. Jouet, A. D. Warren, D. M. Rosenberg, V. J. Bellitto, K. Park, and M. R. Zachariah, “Passivation of bare aluminum nanoparticles using perfluoroalkyl carboxylic acids,” Chem. Mater. 17(11), 2987–2996 (2005).
[CrossRef]

Woodward, W. H.

P. J. Roach, W. H. Woodward, A. W. Castleman, A. C. Reber, and S. N. Khanna, “Complementary active sites cause size-selective reactivity of aluminum cluster anions with water,” Science 323(5913), 492–495 (2009).
[CrossRef] [PubMed]

Xie, C. S.

L. G. Guo, W. L. Song, C. S. Xie, X. T. Zhang, and M. L. Hu, “Characterization and thermal properties of carbon-coated aluminum nanopowders prepared by laser-induction complex heating in methane,” Mater. Lett. 61(14-15), 3211–3214 (2007).
[CrossRef]

Yang, G. W.

P. Liu, Y. L. Cao, C. X. Wang, X. Y. Chen, and G. W. Yang, “Micro- and nanocubes of carbon with C8-like and blue luminescence,” Nano Lett. 8(8), 2570–2575 (2008).
[CrossRef] [PubMed]

G. W. Yang, “Laser ablation in liquids: Applications in the synthesis of nanocrystals,” Prog. Mater. Sci. 52(4), 648–698 (2007).
[CrossRef]

C. X. Wang, P. Liu, H. Cui, and G. W. Yang, “Nucleation and growth kinetics of nanocrystals formed upon pulsed-laser ablation in liquid,” Appl. Phys. Lett. 87(20), 201913–201915 (2005).
[CrossRef]

Zachariah, M. R.

R. J. Jouet, A. D. Warren, D. M. Rosenberg, V. J. Bellitto, K. Park, and M. R. Zachariah, “Passivation of bare aluminum nanoparticles using perfluoroalkyl carboxylic acids,” Chem. Mater. 17(11), 2987–2996 (2005).
[CrossRef]

K. Park, D. Lee, A. Rai, D. Mukherjee, and M. R. Zachariah, “Size-resolved kinetic measurements of aluminum nanoparticle oxidation with single particle mass spectrometry,” J. Phys. Chem. B 109(15), 7290–7299 (2005).
[CrossRef]

Zhang, P.

X. Zhou, Y. Fang, and P. Zhang, “A new substrate for surface enhanced Raman scattering of dye Sudan molecules,” Spectrochim. Acta [A] 67(1), 122–124 (2007).
[CrossRef]

Zhang, X. T.

L. G. Guo, W. L. Song, C. S. Xie, X. T. Zhang, and M. L. Hu, “Characterization and thermal properties of carbon-coated aluminum nanopowders prepared by laser-induction complex heating in methane,” Mater. Lett. 61(14-15), 3211–3214 (2007).
[CrossRef]

Zheng, S. Y.

S. Y. Zheng, F. Fang, G. Y. Zhou, G. R. Chen, L. Z. Ouyang, M. Zhu, and D. L. Sun, “Hydrogen storage properties of space-confined NaAlH4 nanoparticles in ordered mesoporous silica,” Chem. Mater. 20(12), 3954–3958 (2008).
[CrossRef]

Zhou, G. Y.

S. Y. Zheng, F. Fang, G. Y. Zhou, G. R. Chen, L. Z. Ouyang, M. Zhu, and D. L. Sun, “Hydrogen storage properties of space-confined NaAlH4 nanoparticles in ordered mesoporous silica,” Chem. Mater. 20(12), 3954–3958 (2008).
[CrossRef]

Zhou, X.

X. Zhou, Y. Fang, and P. Zhang, “A new substrate for surface enhanced Raman scattering of dye Sudan molecules,” Spectrochim. Acta [A] 67(1), 122–124 (2007).
[CrossRef]

Zhu, M.

S. Y. Zheng, F. Fang, G. Y. Zhou, G. R. Chen, L. Z. Ouyang, M. Zhu, and D. L. Sun, “Hydrogen storage properties of space-confined NaAlH4 nanoparticles in ordered mesoporous silica,” Chem. Mater. 20(12), 3954–3958 (2008).
[CrossRef]

Zorba, V.

E. Stratakis, V. Zorba, M. Barberoglou, C. Fotakis, and G. A. Shafeev, “Femtosecond laser writing of nanostructures on bulk Al via its ablation in air and liquids,” Appl. Surf. Sci. 255(10), 5346–5350 (2009).
[CrossRef]

E. Stratakis, V. Zorba, M. Barberoglou, C. Fotakis, and G. A. Shafeev, “Laser writing of nanostructures on bulk Al via its ablation in liquids,” Nanotechnology 20(10), 105303–105311 (2009).
[CrossRef] [PubMed]

ACS Appl. Mater. Interfaces

M. J. Meziani, C. E. Bunker, F. Lu, H. Li, W. Wang, E. A. Guliants, R. A. Quinn, and Y.-P. Sun, “Formation and Properties of Stabilized Aluminum Nanoparticles,” ACS Appl. Mater. Interfaces 1(3), 703–709 (2009).
[CrossRef]

Anal. Chem.

M. H. Chowdhury, K. Ray, S. K. Gray, J. Pond, and J. R. Lakowicz, “Aluminum nanoparticles as substrates for metal-enhanced fluorescence in the ultraviolet for the label-free detection of biomolecules,” Anal. Chem. 81(4), 1397–1403 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett.

J. J. Wang, F. Walters, X. M. Liu, P. Sciortino, and X. G. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
[CrossRef]

C. X. Wang, P. Liu, H. Cui, and G. W. Yang, “Nucleation and growth kinetics of nanocrystals formed upon pulsed-laser ablation in liquid,” Appl. Phys. Lett. 87(20), 201913–201915 (2005).
[CrossRef]

Appl. Surf. Sci.

E. Stratakis, V. Zorba, M. Barberoglou, C. Fotakis, and G. A. Shafeev, “Femtosecond laser writing of nanostructures on bulk Al via its ablation in air and liquids,” Appl. Surf. Sci. 255(10), 5346–5350 (2009).
[CrossRef]

Y. S. Kwon, A. A. Gromov, and J. I. Strokova, “Passivation of the surface of aluminum nanopowders by protective coatings of the different chemical origin,” Appl. Surf. Sci. 253(12), 5558–5564 (2007).
[CrossRef]

P. V. Kazakevich, A. V. Simakin, V. V. Voronov, and G. A. Shafeev, “Laser induced synthesis of nanoparticles in liquids,” Appl. Surf. Sci. 252(13), 4373–4380 (2006).
[CrossRef]

Chem. Mater.

T. J. Foley, C. E. Johnson, and K. T. Higa, “Inhibition of Oxide Formation on Aluminum Nanoparticles by Transition Metal Coating,” Chem. Mater. 17(16), 4086–4091 (2005).
[CrossRef]

R. J. Jouet, A. D. Warren, D. M. Rosenberg, V. J. Bellitto, K. Park, and M. R. Zachariah, “Passivation of bare aluminum nanoparticles using perfluoroalkyl carboxylic acids,” Chem. Mater. 17(11), 2987–2996 (2005).
[CrossRef]

S. Y. Zheng, F. Fang, G. Y. Zhou, G. R. Chen, L. Z. Ouyang, M. Zhu, and D. L. Sun, “Hydrogen storage properties of space-confined NaAlH4 nanoparticles in ordered mesoporous silica,” Chem. Mater. 20(12), 3954–3958 (2008).
[CrossRef]

J. Am. Chem. Soc.

C. P. Balde, B. P. C. Hereijgers, J. H. Bitter, and K. P. de Jong, “Sodium alanate nanoparticles--linking size to hydrogen storage properties,” J. Am. Chem. Soc. 130(21), 6761–6765 (2008).
[CrossRef] [PubMed]

J. Appl. Phys.

Y. Ekinci, H. H. Solak, and J. F. Loffler, “Fabrication and characterization of metallic nanostructures for surface-enhanced Raman spectroscopy,” J. Appl. Phys. 104, 083107 (2008).
[CrossRef]

J. Chem. Soc., Faraday Trans.

J. A. Creighton and D. G. Eadon, “Ultraviolet-visible absorption spectra of the colloidal metallic elements,” J. Chem. Soc., Faraday Trans. 87(24), 3881 (1991).
[CrossRef]

J. Eur. Ceram. Soc.

J. C. Sanchez-Lopez, A. Caballero, and A. Fernandez, “Characterisation of passivated aluminum nanopowders: An XPS and TEM/EELS study,” J. Eur. Ceram. Soc. 18(9), 1195–1200 (1998).
[CrossRef]

J. Mater. Chem.

M. Comet, L. Schreyeck-Reinert, C. Louis, and H. Fuzellier, “Synthesis and characterization of high surface area aluminium and alumina microtubes from carbonaceous materials,” J. Mater. Chem. 12(3), 754–757 (2002).
[CrossRef]

J. Mater. Process. Technol.

V. Dembovský, “Thermodynamics of dissolution and liberation of gases in the atomization of molten metals by plasma-induced expansion,” J. Mater. Process. Technol. 64(1-3), 65–74 (1997).
[CrossRef]

J. Phys. Chem. B

K. Park, D. Lee, A. Rai, D. Mukherjee, and M. R. Zachariah, “Size-resolved kinetic measurements of aluminum nanoparticle oxidation with single particle mass spectrometry,” J. Phys. Chem. B 109(15), 7290–7299 (2005).
[CrossRef]

J. Phys. Condens. Matter

L. Galfetti, L. T. De Luca, F. Severini, L. Meda, G. Marra, M. Marchetti, M. Regi, and S. Bellucci, “Nanoparticles for solid rocket propulsion,” J. Phys. Condens. Matter 18(33), S1991–S2005 (2006).
[CrossRef]

Mater. Lett.

L. G. Guo, W. L. Song, C. S. Xie, X. T. Zhang, and M. L. Hu, “Characterization and thermal properties of carbon-coated aluminum nanopowders prepared by laser-induction complex heating in methane,” Mater. Lett. 61(14-15), 3211–3214 (2007).
[CrossRef]

Nano Lett.

H. Tyagi, P. E. Phelan, R. Prasher, R. Peck, T. Lee, J. R. Pacheco, and P. Arentzen, “Increased hot-plate ignition probability for nanoparticle-laden diesel fuel,” Nano Lett. 8(5), 1410–1416 (2008).
[CrossRef] [PubMed]

P. Liu, Y. L. Cao, C. X. Wang, X. Y. Chen, and G. W. Yang, “Micro- and nanocubes of carbon with C8-like and blue luminescence,” Nano Lett. 8(8), 2570–2575 (2008).
[CrossRef] [PubMed]

Nanostruct. Mater.

G. L. Hornyak, K. L. N. Phani, D. L. Kunked, V. P. Menon, and C. R. Martin, “Fabrication, characterization and optical theory of aluminum nanometal/nanoporous membrane thin film composites,” Nanostruct. Mater. 6(5-8), 839–842 (1995).
[CrossRef]

Nanotechnology

E. Stratakis, V. Zorba, M. Barberoglou, C. Fotakis, and G. A. Shafeev, “Laser writing of nanostructures on bulk Al via its ablation in liquids,” Nanotechnology 20(10), 105303–105311 (2009).
[CrossRef] [PubMed]

Prog. Mater. Sci.

G. W. Yang, “Laser ablation in liquids: Applications in the synthesis of nanocrystals,” Prog. Mater. Sci. 52(4), 648–698 (2007).
[CrossRef]

Science

P. J. Roach, W. H. Woodward, A. W. Castleman, A. C. Reber, and S. N. Khanna, “Complementary active sites cause size-selective reactivity of aluminum cluster anions with water,” Science 323(5913), 492–495 (2009).
[CrossRef] [PubMed]

Spectrochim. Acta [A]

X. Zhou, Y. Fang, and P. Zhang, “A new substrate for surface enhanced Raman scattering of dye Sudan molecules,” Spectrochim. Acta [A] 67(1), 122–124 (2007).
[CrossRef]

Other

G. A. Shafeev, Formation of nanoparticles under laser ablation of solids in liquids, in: Nanoparticles:New Research, editor Simone Luca Lombardi, Nova Science Publishers Inc., pp. 1 −37 (2008).

B. S. Luk'yanchuk and M. I. Tribelsky, “Anomalous Light Scattering by Small Particles and inverse hierarchy of optical resonances” Collection of papers devoted to memory of Prof. M. N. Libenson. The St.-Petersburg Union of the Scientists, Russia, pp. 101–117 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Optical density spectrum of Al nanoparticles generated in ethanol after ablation of an Al target using two different laser sources: 200 fs Ti:sapphire laser (curve 1), 30 ps Nd:YAG laser (curve 2), and 150 ps Nd:YAG laser (curve 3) (a). Aging of the colloidal solution of NPs prepared with a fs laser radiation: freshly prepared colloidal solution (curve 1), 1 month storage upon contact in air (curve2) and 6 months storage upon contact with air (curve 3) (b).

Fig. 2
Fig. 2

TEM view of nanoparticles generated via ablation of a bulk Al target in ethanol using fs laser radiation.

Fig. 3
Fig. 3

Distribution of NP size calculated from TEM images. Ablation using a Ti:sapphire fs laser at fluence of 0.4 J/cm2 (a), a 30 ps Nd:YAG laser at fluence of 8 J/cm2 in anaerobic conditions (b), and a 150 ps Nd:YAG laser at fluence of 1.5 J/cm2 (c). Following synthesis all three solutions were stored in a sealed-off container. The NP size was measured as the core diameter

Fig. 4
Fig. 4

TEM view of NPs generated by ablation Al with 200 fs laser radiation, showing distinct areas inside NPs.

Fig. 5
Fig. 5

HRTEM image of a NP generated by laser ablation of Al target in ethanol using a Ti:sapphire fs laser. Red square indicates the visible crystallographic planes. Inset: numerical diffraction pattern corresponding to the selected zone in the HRTEM image, the spots correspond to the (111) planes of aluminum (distance of 0.233 nm).

Fig. 6
Fig. 6

HRTEM image of a NP generated by laser ablation of Al target in ethanol using a Nd:YAG 30 ps laser.

Fig. 7
Fig. 7

TEM view of NPs generated by ablation of bulk Al target in ethanol with a 150 ps Nd:YAG laser without using anaerobic conditions.

Fig. 8
Fig. 8

SEM micrograph of a nanostructured surface prepared by fs laser ablation of Al into ethanol. The red ellipses indicate mushroom-like NSs formed on the ablated surface.

Metrics