Abstract

In this work we report a separate-absorption-charge-multiplication Ge/Si avalanche photodiode with an enhanced gain-bandwidth-product of 845GHz at a wavelength of 1310nm. The corresponding gain value is 65 and the electrical bandwidth is 13GHz at an optical input power of −30dBm. The unconventional high gain-bandwidth-product is investigated using device physical simulation and optical pulse response measurement. The analysis of the electric field distribution, electron and hole concentration and drift velocities in the device shows that the enhanced gain-bandwidth-product at high bias voltages is due to a decrease of the transit time and avalanche build-up time limitation at high fields.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. B. Emmons, “Avalanche photodiode frequency response,” J. Appl. Phys. 38(9), 3705–3714 (1967).
    [CrossRef]
  2. R. J. McIntyre, “The distribution of gains in uniformly multiplying avalanche photodiodes: theory,” IEEE Trans. Electron. Dev. 19(6), 703–713 (1972).
    [CrossRef]
  3. Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. Sfar Zaoui, J. E. Bowers, A. Beling, D. C. Mcintosh, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2008).
    [CrossRef]
  4. G. Kim, I. G. Kim, J. H. Baek, and O. K. Kwon, “Enhanced frequency response associated with negative photoconductance in an InGaAs/InAlAs avalanche photodetector,” Appl. Phys. Lett. 83(6), 1249–1251 (2003).
    [CrossRef]
  5. H. S. Kang, M.J. Lee and W.Y. Choi, “Si avalanche photodetectors fabricated in standard complementary metal-oxide-semiconductor process,” Appl. Phys. Lett. 90, 151118.1–151118.3 (2007).
  6. J. W. Shi, Y. S. Wu, Z. R. Li, and P. S. Chen, “Impact-ionization-induced bandwidth-enhancement of a Si-SiGe-based avalanche photodiode operating at a wavelength of 830 nm with a gain-bandwidth product of 428 GHz,” IEEE Photon. Technol. Lett. 19(7), 474–476 (2007).
    [CrossRef]
  7. F. Capasso, Semiconductors and semimetals (Academic press, 1985), Vol. 22, part D.
  8. S. Selberherr, Analysis and simulation of semiconductor devices (Springer-Verlag, 1984).
  9. H. C. Bowers, “Space-charge-induced negative resistance in avalanche diodes,” IEEE Trans. Electron. Dev. 15(6), 343–350 (1968).
    [CrossRef]

2008

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. Sfar Zaoui, J. E. Bowers, A. Beling, D. C. Mcintosh, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2008).
[CrossRef]

2007

J. W. Shi, Y. S. Wu, Z. R. Li, and P. S. Chen, “Impact-ionization-induced bandwidth-enhancement of a Si-SiGe-based avalanche photodiode operating at a wavelength of 830 nm with a gain-bandwidth product of 428 GHz,” IEEE Photon. Technol. Lett. 19(7), 474–476 (2007).
[CrossRef]

2003

G. Kim, I. G. Kim, J. H. Baek, and O. K. Kwon, “Enhanced frequency response associated with negative photoconductance in an InGaAs/InAlAs avalanche photodetector,” Appl. Phys. Lett. 83(6), 1249–1251 (2003).
[CrossRef]

1972

R. J. McIntyre, “The distribution of gains in uniformly multiplying avalanche photodiodes: theory,” IEEE Trans. Electron. Dev. 19(6), 703–713 (1972).
[CrossRef]

1968

H. C. Bowers, “Space-charge-induced negative resistance in avalanche diodes,” IEEE Trans. Electron. Dev. 15(6), 343–350 (1968).
[CrossRef]

1967

R. B. Emmons, “Avalanche photodiode frequency response,” J. Appl. Phys. 38(9), 3705–3714 (1967).
[CrossRef]

Baek, J. H.

G. Kim, I. G. Kim, J. H. Baek, and O. K. Kwon, “Enhanced frequency response associated with negative photoconductance in an InGaAs/InAlAs avalanche photodetector,” Appl. Phys. Lett. 83(6), 1249–1251 (2003).
[CrossRef]

Beling, A.

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. Sfar Zaoui, J. E. Bowers, A. Beling, D. C. Mcintosh, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2008).
[CrossRef]

Bowers, H. C.

H. C. Bowers, “Space-charge-induced negative resistance in avalanche diodes,” IEEE Trans. Electron. Dev. 15(6), 343–350 (1968).
[CrossRef]

Bowers, J. E.

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. Sfar Zaoui, J. E. Bowers, A. Beling, D. C. Mcintosh, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2008).
[CrossRef]

Campbell, J. C.

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. Sfar Zaoui, J. E. Bowers, A. Beling, D. C. Mcintosh, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2008).
[CrossRef]

Chen, H. W.

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. Sfar Zaoui, J. E. Bowers, A. Beling, D. C. Mcintosh, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2008).
[CrossRef]

Chen, P. S.

J. W. Shi, Y. S. Wu, Z. R. Li, and P. S. Chen, “Impact-ionization-induced bandwidth-enhancement of a Si-SiGe-based avalanche photodiode operating at a wavelength of 830 nm with a gain-bandwidth product of 428 GHz,” IEEE Photon. Technol. Lett. 19(7), 474–476 (2007).
[CrossRef]

Emmons, R. B.

R. B. Emmons, “Avalanche photodiode frequency response,” J. Appl. Phys. 38(9), 3705–3714 (1967).
[CrossRef]

Kang, Y.

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. Sfar Zaoui, J. E. Bowers, A. Beling, D. C. Mcintosh, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2008).
[CrossRef]

Kim, G.

G. Kim, I. G. Kim, J. H. Baek, and O. K. Kwon, “Enhanced frequency response associated with negative photoconductance in an InGaAs/InAlAs avalanche photodetector,” Appl. Phys. Lett. 83(6), 1249–1251 (2003).
[CrossRef]

Kim, I. G.

G. Kim, I. G. Kim, J. H. Baek, and O. K. Kwon, “Enhanced frequency response associated with negative photoconductance in an InGaAs/InAlAs avalanche photodetector,” Appl. Phys. Lett. 83(6), 1249–1251 (2003).
[CrossRef]

Kuo, Y. H.

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. Sfar Zaoui, J. E. Bowers, A. Beling, D. C. Mcintosh, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2008).
[CrossRef]

Kwon, O. K.

G. Kim, I. G. Kim, J. H. Baek, and O. K. Kwon, “Enhanced frequency response associated with negative photoconductance in an InGaAs/InAlAs avalanche photodetector,” Appl. Phys. Lett. 83(6), 1249–1251 (2003).
[CrossRef]

Li, Z. R.

J. W. Shi, Y. S. Wu, Z. R. Li, and P. S. Chen, “Impact-ionization-induced bandwidth-enhancement of a Si-SiGe-based avalanche photodiode operating at a wavelength of 830 nm with a gain-bandwidth product of 428 GHz,” IEEE Photon. Technol. Lett. 19(7), 474–476 (2007).
[CrossRef]

Litski, S.

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. Sfar Zaoui, J. E. Bowers, A. Beling, D. C. Mcintosh, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2008).
[CrossRef]

Liu, H. D.

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. Sfar Zaoui, J. E. Bowers, A. Beling, D. C. Mcintosh, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2008).
[CrossRef]

Mcintosh, D. C.

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. Sfar Zaoui, J. E. Bowers, A. Beling, D. C. Mcintosh, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2008).
[CrossRef]

McIntyre, R. J.

R. J. McIntyre, “The distribution of gains in uniformly multiplying avalanche photodiodes: theory,” IEEE Trans. Electron. Dev. 19(6), 703–713 (1972).
[CrossRef]

Morse, M.

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. Sfar Zaoui, J. E. Bowers, A. Beling, D. C. Mcintosh, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2008).
[CrossRef]

Paniccia, M. J.

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. Sfar Zaoui, J. E. Bowers, A. Beling, D. C. Mcintosh, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2008).
[CrossRef]

Pauchard, A.

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. Sfar Zaoui, J. E. Bowers, A. Beling, D. C. Mcintosh, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2008).
[CrossRef]

Sarid, G.

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. Sfar Zaoui, J. E. Bowers, A. Beling, D. C. Mcintosh, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2008).
[CrossRef]

Sfar Zaoui, W.

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. Sfar Zaoui, J. E. Bowers, A. Beling, D. C. Mcintosh, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2008).
[CrossRef]

Shi, J. W.

J. W. Shi, Y. S. Wu, Z. R. Li, and P. S. Chen, “Impact-ionization-induced bandwidth-enhancement of a Si-SiGe-based avalanche photodiode operating at a wavelength of 830 nm with a gain-bandwidth product of 428 GHz,” IEEE Photon. Technol. Lett. 19(7), 474–476 (2007).
[CrossRef]

Wu, Y. S.

J. W. Shi, Y. S. Wu, Z. R. Li, and P. S. Chen, “Impact-ionization-induced bandwidth-enhancement of a Si-SiGe-based avalanche photodiode operating at a wavelength of 830 nm with a gain-bandwidth product of 428 GHz,” IEEE Photon. Technol. Lett. 19(7), 474–476 (2007).
[CrossRef]

Zadka, M.

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. Sfar Zaoui, J. E. Bowers, A. Beling, D. C. Mcintosh, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2008).
[CrossRef]

Appl. Phys. Lett.

G. Kim, I. G. Kim, J. H. Baek, and O. K. Kwon, “Enhanced frequency response associated with negative photoconductance in an InGaAs/InAlAs avalanche photodetector,” Appl. Phys. Lett. 83(6), 1249–1251 (2003).
[CrossRef]

IEEE Photon. Technol. Lett.

J. W. Shi, Y. S. Wu, Z. R. Li, and P. S. Chen, “Impact-ionization-induced bandwidth-enhancement of a Si-SiGe-based avalanche photodiode operating at a wavelength of 830 nm with a gain-bandwidth product of 428 GHz,” IEEE Photon. Technol. Lett. 19(7), 474–476 (2007).
[CrossRef]

IEEE Trans. Electron. Dev.

H. C. Bowers, “Space-charge-induced negative resistance in avalanche diodes,” IEEE Trans. Electron. Dev. 15(6), 343–350 (1968).
[CrossRef]

R. J. McIntyre, “The distribution of gains in uniformly multiplying avalanche photodiodes: theory,” IEEE Trans. Electron. Dev. 19(6), 703–713 (1972).
[CrossRef]

J. Appl. Phys.

R. B. Emmons, “Avalanche photodiode frequency response,” J. Appl. Phys. 38(9), 3705–3714 (1967).
[CrossRef]

Nat. Photonics

Y. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. Sfar Zaoui, J. E. Bowers, A. Beling, D. C. Mcintosh, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340GHz gain-bandwidth product,” Nat. Photonics 3(1), 59–63 (2008).
[CrossRef]

Other

H. S. Kang, M.J. Lee and W.Y. Choi, “Si avalanche photodetectors fabricated in standard complementary metal-oxide-semiconductor process,” Appl. Phys. Lett. 90, 151118.1–151118.3 (2007).

F. Capasso, Semiconductors and semimetals (Academic press, 1985), Vol. 22, part D.

S. Selberherr, Analysis and simulation of semiconductor devices (Springer-Verlag, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Schematic drawing and (b) a scanning electron microscope (SEM) cross sectional image of the Ge/Si SACM APD device. (c) Schematic layer view of the simulated structure.

Fig. 2
Fig. 2

(a) Measured and (b) simulated dark current and total current on a 30μm-diameter Ge/Si SACM APD versus bias voltage under an optical power of −20dBm at 1310nm.

Fig. 3
Fig. 3

(a) Measured and (b) simulated gain curves versus bias voltage under −20dBm, −26dBm and −30dBm at 1310nm.

Fig. 4
Fig. 4

(a) Measured and (b) simulated frequency response at different bias voltages under −20dBm at 1310nm. The inset shows the normalized frequency response.

Fig. 5
Fig. 5

(a) Measured and (b) simulated electrical 3dB-BW versus bias voltage under −20dBm, −26dBm and −30dBm at 1310nm.

Fig. 6
Fig. 6

Calculated GBP versus gain under −20dBm, −26dBm and −30dBm at 1310nm from (a) experiment and (b) simulation results.

Fig. 7
Fig. 7

Measured pulse responses at different bias voltages under an optical power of (a) −20dBm and (b) −26dBm at 1550nm.

Fig. 8
Fig. 8

Simulated electric field distribution in the APD at different bias voltages. The inset shows the zoom-in electric field in the Si multiplication layer.

Fig. 9
Fig. 9

Simulated electron and hole concentration in the APD at different bias voltages.

Fig. 10
Fig. 10

Simulated electron and hole drift velocity in the APD at different bias voltages.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Mn=(αβ) ed (αβ)αβ ed (αβ),
α=An eBnE
β=Ap eBpE,

Metrics