Abstract

We study the influence of Stimulated Brillouin Scattering on the polarization stabilization of a light beam propagating in a highly-birefringent optical fiber. In particular, due to a saturation effect, we find that the output polarization lies on a ring when the polarization is represented onto the Poincaré sphere.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Martinelli, P. Martelli, and S. M. Pietralunga, "Polarization stabilization in optical communications systems," J. Lightwave Technol. 24, 4172-4183 (2006).
    [CrossRef]
  2. B. Koch, A. Hidayat, H. Zhang, V. Mirvoda, M. Lichtinger, D. Sandel, and R. Noè, "Optical endless polarization stabilization at 9 krad/s with FPGA-based controller," IEEE Photon. Technol. Lett. 20, 961-963 (2008).
    [CrossRef]
  3. S. Pitois, A. Sauter and G. Millot, "Simultaneous achievement of polarization attraction and Raman amplification in isotropic optical fibers", Opt. Lett. 29, 599-601 (2004).
    [CrossRef] [PubMed]
  4. S. Pitois, J. Fatome, and G. Millot, "Polarization attraction using counter-propagating waves in optical fiber at telecommunication wavelengths," Opt. Express 16, 6646-6651 (2008). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-9-6646
    [CrossRef] [PubMed]
  5. L. Thevenaz, A. Zadok, A. Eyal and M. Tur, "All-optical polarization control through Brillouin amplification", in Optical Fiber Communication Conference, 2008 OSA Technical Digest CD (2008), paper OML7.
  6. A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, "Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers," Opt. Express 16, 21692-21707 (2008). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-26-21692
    [CrossRef] [PubMed]
  7. M. Martinelli, M. Cirigliano, M. Ferrario, L. Marazzi, and P. Martelli, "Evidence of Raman-induced polarization pulling," Opt. Express 17, 947-955 (2009). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-2-947 8. S. Wabnitz," Chiral polarization solitons in elliptically birefringent spun optical fibers", Opt. Lett. 34, 908-910 (2009).
    [CrossRef] [PubMed]
  8. J.E. Heebner, R.S. Bennink, R.W. Boyd and R.A. Fisher, "Conversion of unpolarized light to polarized light with greater than 50% efficiency by photorefractive two-beam coupling", Opt. Lett. 25, 257-259 (2000).Q1
    [CrossRef] [PubMed]
  9. R.H. Chiao, B.P. Stoicheff and C.H. Townes, "Stimulated Brillouin scattering + coherent generation of intense hypersonic waves", Phys. Rev. Lett. 12, 592-595 (1964).
    [CrossRef]
  10. G.P. Agrawal, Nonlinear Fiber Optics, Third Edition. 2001: San Fransisco, CA: Academic Press.
    [CrossRef]
  11. R.W. Hellwarth, "Theory of Stimulated Raman scattering", Phys. Rev. 130, 1850-1852 (1963).

2008 (3)

2006 (1)

2004 (1)

2000 (1)

1964 (1)

R.H. Chiao, B.P. Stoicheff and C.H. Townes, "Stimulated Brillouin scattering + coherent generation of intense hypersonic waves", Phys. Rev. Lett. 12, 592-595 (1964).
[CrossRef]

1963 (1)

R.W. Hellwarth, "Theory of Stimulated Raman scattering", Phys. Rev. 130, 1850-1852 (1963).

Bennink, R.S.

Boyd, R.W.

Chiao, R.H.

R.H. Chiao, B.P. Stoicheff and C.H. Townes, "Stimulated Brillouin scattering + coherent generation of intense hypersonic waves", Phys. Rev. Lett. 12, 592-595 (1964).
[CrossRef]

Eyal, A.

Fatome, J.

Fisher, R.A.

Heebner, J.E.

Hellwarth, R.W.

R.W. Hellwarth, "Theory of Stimulated Raman scattering", Phys. Rev. 130, 1850-1852 (1963).

Hidayat, A.

B. Koch, A. Hidayat, H. Zhang, V. Mirvoda, M. Lichtinger, D. Sandel, and R. Noè, "Optical endless polarization stabilization at 9 krad/s with FPGA-based controller," IEEE Photon. Technol. Lett. 20, 961-963 (2008).
[CrossRef]

Koch, B.

B. Koch, A. Hidayat, H. Zhang, V. Mirvoda, M. Lichtinger, D. Sandel, and R. Noè, "Optical endless polarization stabilization at 9 krad/s with FPGA-based controller," IEEE Photon. Technol. Lett. 20, 961-963 (2008).
[CrossRef]

Lichtinger, M.

B. Koch, A. Hidayat, H. Zhang, V. Mirvoda, M. Lichtinger, D. Sandel, and R. Noè, "Optical endless polarization stabilization at 9 krad/s with FPGA-based controller," IEEE Photon. Technol. Lett. 20, 961-963 (2008).
[CrossRef]

Martelli, P.

Martinelli, M.

Millot, G.

Mirvoda, V.

B. Koch, A. Hidayat, H. Zhang, V. Mirvoda, M. Lichtinger, D. Sandel, and R. Noè, "Optical endless polarization stabilization at 9 krad/s with FPGA-based controller," IEEE Photon. Technol. Lett. 20, 961-963 (2008).
[CrossRef]

Noè, R.

B. Koch, A. Hidayat, H. Zhang, V. Mirvoda, M. Lichtinger, D. Sandel, and R. Noè, "Optical endless polarization stabilization at 9 krad/s with FPGA-based controller," IEEE Photon. Technol. Lett. 20, 961-963 (2008).
[CrossRef]

Pietralunga, S. M.

Pitois, S.

Sandel, D.

B. Koch, A. Hidayat, H. Zhang, V. Mirvoda, M. Lichtinger, D. Sandel, and R. Noè, "Optical endless polarization stabilization at 9 krad/s with FPGA-based controller," IEEE Photon. Technol. Lett. 20, 961-963 (2008).
[CrossRef]

Sauter, A.

Stoicheff, B.P.

R.H. Chiao, B.P. Stoicheff and C.H. Townes, "Stimulated Brillouin scattering + coherent generation of intense hypersonic waves", Phys. Rev. Lett. 12, 592-595 (1964).
[CrossRef]

Thévenaz, L.

Townes, C.H.

R.H. Chiao, B.P. Stoicheff and C.H. Townes, "Stimulated Brillouin scattering + coherent generation of intense hypersonic waves", Phys. Rev. Lett. 12, 592-595 (1964).
[CrossRef]

Tur, M.

Zadok, A.

Zhang, H.

B. Koch, A. Hidayat, H. Zhang, V. Mirvoda, M. Lichtinger, D. Sandel, and R. Noè, "Optical endless polarization stabilization at 9 krad/s with FPGA-based controller," IEEE Photon. Technol. Lett. 20, 961-963 (2008).
[CrossRef]

Zilka, E.

IEEE Photon. Technol. Lett. (1)

B. Koch, A. Hidayat, H. Zhang, V. Mirvoda, M. Lichtinger, D. Sandel, and R. Noè, "Optical endless polarization stabilization at 9 krad/s with FPGA-based controller," IEEE Photon. Technol. Lett. 20, 961-963 (2008).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. (1)

R.W. Hellwarth, "Theory of Stimulated Raman scattering", Phys. Rev. 130, 1850-1852 (1963).

Phys. Rev. Lett. (1)

R.H. Chiao, B.P. Stoicheff and C.H. Townes, "Stimulated Brillouin scattering + coherent generation of intense hypersonic waves", Phys. Rev. Lett. 12, 592-595 (1964).
[CrossRef]

Other (3)

G.P. Agrawal, Nonlinear Fiber Optics, Third Edition. 2001: San Fransisco, CA: Academic Press.
[CrossRef]

M. Martinelli, M. Cirigliano, M. Ferrario, L. Marazzi, and P. Martelli, "Evidence of Raman-induced polarization pulling," Opt. Express 17, 947-955 (2009). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-2-947 8. S. Wabnitz," Chiral polarization solitons in elliptically birefringent spun optical fibers", Opt. Lett. 34, 908-910 (2009).
[CrossRef] [PubMed]

L. Thevenaz, A. Zadok, A. Eyal and M. Tur, "All-optical polarization control through Brillouin amplification", in Optical Fiber Communication Conference, 2008 OSA Technical Digest CD (2008), paper OML7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

(a) Experimental transmitted (triangles) and back-scattered Brillouin (circles) powers as a function of the input power for the fast (blue lines) and slow (black lines) axes of the 500-m long Hi-Bi fiber.

Fig. 1.
Fig. 1.

(b) Theoretical transmitted power (blue line) as a function of the input power compared to the experimental data (circles and crosses).

Fig. 2.
Fig. 2.

a). Polarization of the input scrambled signal plotted on the Poincaré sphere.

Fig. 2.
Fig. 2.

b). Polarization of the output signal plotted on the Poincaré sphere.

Fig. 3.
Fig. 3.

Experimental set-up. CIR: Circulator, EDFA: Erbium-doped Fiber Amplifier, EOM: Electro-optic modulator, POL: Polarizer, ISO: Optical isolator, PRBS: Pseudo-random bit sequence, OSA: Optical Spectrum Analyzer.

Fig. 4.
Fig. 4.

Output polarization of the scrambled signal after propagation in the 500-m long PM-HNLF for an input average power of (a) 10 mW and (b) 400 mW.

Fig. 5.
Fig. 5.

Output polarization of the scrambled signal after propagation in the 200-m long PM-PCF for an input average power of (a) 100 mW and (b) 1100 mW.

Fig. 6.
Fig. 6.

Polarization of the back-scattered signal generated into the 500-m long PM-HNLF for an input average power of (a) 10 mW and (b) 150 mW (c) Same as (b) but for the 200-m long PCF and an input average power of 250 mW.

Fig. 7.
Fig. 7.

(a) Output intensity profile of the scrambled signal propagating into the 500-m long PM-HNLF and passing through a polarizer, for an input average power of 10 mW (blue line) and 400 mW (black line) (b) same as (a) but in presence of a counter-propagating seed-signal.

Fig. 8.
Fig. 8.

(a) Intensity profile of the scrambled signal propagating into the 200-m long PM-PCF in presence of a counter-propagating seed-signal and recorded after the polarizer (a) for an input average power of 10 mW (b) 400 mW.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Pxout=Psat×tanh(αPxinPsat),
Pyout=Psat×tanh(αPyinPsat),
{S1=PxPyS2=2PxPycos(φ)S3=2PxPysin(φ)
{S1=Psat[tanh(αPxinPsat)tanh(αPyinPsat)]S2=2Psattanh(αPxinPsat)×tanh(αPyinPsat)cos(φ)S3=2Psattanh(αPxinPsat)×tanh(αPyinPsat)sin(φ).
{S10S22Psatcos(φ)S32Psatsin(φ)}

Metrics