Abstract

Continuous-wave (cw) laser action around 2 μm in Ho3+-doped Lu2SiO5 (LSO) was demonstrated in this paper. Cryogenically cooled by liquid nitrogen, a 10-mm long Tm-sensitized (6% at.) Ho(0.4% at.):LSO produced a maximum output power of 3 W at 2.07 μm for incident diode power of 11 W at 786 nm, and a slope efficiency of 35% with respect to incident pump power. To achieve room-temperature operation of Tm, Ho:LSO laser, a 1-mm long microchip crystal was pumped by a high brightness diode, generating an output power of greater than 80 mW and a slope efficiency of 26% at 2.08 μm. Using a 1.91 μm Tm:YLF laser as an in-band pump source, room-temperature cw operation of singly-doped Ho: Lu2SiO5 laser at 2106 nm was attained with a maximum output power of 2.8 W and a slope efficiency of 35% corresponding to absorbed pump power.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, and A. V. Huffaker, “Eye-safe coherent laser radar system at 2.1 Mum using Tm,Ho:YAG lasers,” Opt. Lett. 16(10), 773–775 (1991).
    [CrossRef] [PubMed]
  2. P. A. Budni, L. A. Pomeranz, M. L. Lemons, C. A. Miller, J. R. Mosto, and E. P. Chicklis, “Efficient mid-infrared laser using 1.9-μm-pumped Ho:YAG and ZnGeP2 optical parametric oscillators,” J. Opt. Soc. Am. B 17(5), 723–728 (2000).
    [CrossRef]
  3. J. R. Yu, B. C. Trieu, E. A. Modlin, U. N. Singh, M. J. Kavaya, S. S. Chen, Y. X. Bai, P. J. Petzar, and M. Petros, “1 J/pulseQ-switched 2 µm solid-state laser,” Opt. Lett. 31(4), 462–464 (2006).
    [CrossRef] [PubMed]
  4. E. Lippert, S. Nicolas, G. Arisholm, K. Stenersen, and G. Rustad, “Midinfrared laser source with high power and beam quality,” Appl. Opt. 45(16), 3839–3845 (2006).
    [CrossRef] [PubMed]
  5. A. Dergachev, D. Armstrong, A. Smith, T. Drake, and M. Dubois, “3.4-mum ZGP RISTRA nanosecond optical parametric oscillator pumped by a 2.05-mum Ho:YLF MOPA system,” Opt. Express 15(22), 14404–14413 (2007).
    [CrossRef] [PubMed]
  6. H. I. Cong, H. J. Zhang, J. Y. Wang, W. T. Yu, J. D. Fan, X. F. Cheng, S. Q. Sun, J. Zhang, Q. M. Lu, C. J. Jiang, and R. I. Boughton, “Structural and thermal properties of the monoclinic Lu2SiO5 single crystal: evaluation as a new laser matrix,” J. Appl. Cryst. 42(2), 284–294 (2009).
    [CrossRef]
  7. R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Thermo-optic properties of laser crystals in the 100-300 K temperature range:Y3Al5O12(YAG), YAlO3(YALO) and LiYF4(YLF),” Proc. SPIE 5707, 165–170 (2005).
    [CrossRef]
  8. R. Gaumé, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
    [CrossRef]
  9. H. Hemmati, “2.07-µm cw diode-laser-pumped Tm, Ho:YLiF4 room-temperature laser,” Opt. Lett. 14(9), 435–437 (1989).
    [CrossRef] [PubMed]
  10. R. Gaume, P. H. Haumesser, B. Viana, B. Ferrand, and G. Aka, “Optical and laser properties of Yb:Y2SiO5 single crystals and discussion of the figure of merit relevant to compare ytterbium-doped laser materials,” Opt. Mater. 19(1), 81–88 (2002).
    [CrossRef]
  11. T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm, Ho:YAG,” IEEE J. Quantum Electron. 24(6), 924–933 (1988).
    [CrossRef]
  12. B. M. Walsh and N. P. Barnes, “Spectroscopy and modeling of solid state lanthanide lasers: application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95(7), 3255–3271 (2004).
    [CrossRef]
  13. D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “165-W cryogenically cooled Yb:YAG laser,” Opt. Lett. 29(18), 2154–2156 (2004).
    [CrossRef] [PubMed]
  14. R. C. Stoneman and L. Esterowitz, “Efficient 1.94-μm Tm:YALO laser,” IEEE J. Sel. Top. Quantum Electron. 1(1), 78–81 (1995).
    [CrossRef]
  15. X. Mateos, V. Petrov, J. H. Liu, M. C. Pujol, U. Griebner, M. Aguilo, F. Diaz, M. Galan, and G. Viera, “Efficient 2-μm continuous-wave laser oscillation of Tm3+: KLu(WO4)2,” IEEE Quantum Electron. 42, 1008–1015 (2006).
    [CrossRef]
  16. G. J. Koch, J. P. Deyst, and M. E. Storm, “Single-frequency lasing of monolithic Ho,Tm:YLF,” Opt. Lett. 18(15), 1235–1237 (1993).
    [CrossRef] [PubMed]

2009 (1)

H. I. Cong, H. J. Zhang, J. Y. Wang, W. T. Yu, J. D. Fan, X. F. Cheng, S. Q. Sun, J. Zhang, Q. M. Lu, C. J. Jiang, and R. I. Boughton, “Structural and thermal properties of the monoclinic Lu2SiO5 single crystal: evaluation as a new laser matrix,” J. Appl. Cryst. 42(2), 284–294 (2009).
[CrossRef]

2007 (1)

2006 (3)

2005 (1)

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Thermo-optic properties of laser crystals in the 100-300 K temperature range:Y3Al5O12(YAG), YAlO3(YALO) and LiYF4(YLF),” Proc. SPIE 5707, 165–170 (2005).
[CrossRef]

2004 (2)

B. M. Walsh and N. P. Barnes, “Spectroscopy and modeling of solid state lanthanide lasers: application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95(7), 3255–3271 (2004).
[CrossRef]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “165-W cryogenically cooled Yb:YAG laser,” Opt. Lett. 29(18), 2154–2156 (2004).
[CrossRef] [PubMed]

2003 (1)

R. Gaumé, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[CrossRef]

2002 (1)

R. Gaume, P. H. Haumesser, B. Viana, B. Ferrand, and G. Aka, “Optical and laser properties of Yb:Y2SiO5 single crystals and discussion of the figure of merit relevant to compare ytterbium-doped laser materials,” Opt. Mater. 19(1), 81–88 (2002).
[CrossRef]

2000 (1)

1995 (1)

R. C. Stoneman and L. Esterowitz, “Efficient 1.94-μm Tm:YALO laser,” IEEE J. Sel. Top. Quantum Electron. 1(1), 78–81 (1995).
[CrossRef]

1993 (1)

1991 (1)

1989 (1)

1988 (1)

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm, Ho:YAG,” IEEE J. Quantum Electron. 24(6), 924–933 (1988).
[CrossRef]

Aggarwal, R. L.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Thermo-optic properties of laser crystals in the 100-300 K temperature range:Y3Al5O12(YAG), YAlO3(YALO) and LiYF4(YLF),” Proc. SPIE 5707, 165–170 (2005).
[CrossRef]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “165-W cryogenically cooled Yb:YAG laser,” Opt. Lett. 29(18), 2154–2156 (2004).
[CrossRef] [PubMed]

Aguilo, M.

X. Mateos, V. Petrov, J. H. Liu, M. C. Pujol, U. Griebner, M. Aguilo, F. Diaz, M. Galan, and G. Viera, “Efficient 2-μm continuous-wave laser oscillation of Tm3+: KLu(WO4)2,” IEEE Quantum Electron. 42, 1008–1015 (2006).
[CrossRef]

Aka, G.

R. Gaume, P. H. Haumesser, B. Viana, B. Ferrand, and G. Aka, “Optical and laser properties of Yb:Y2SiO5 single crystals and discussion of the figure of merit relevant to compare ytterbium-doped laser materials,” Opt. Mater. 19(1), 81–88 (2002).
[CrossRef]

Arisholm, G.

Armstrong, D.

Bai, Y. X.

Barnes, N. P.

B. M. Walsh and N. P. Barnes, “Spectroscopy and modeling of solid state lanthanide lasers: application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95(7), 3255–3271 (2004).
[CrossRef]

Boughton, R. I.

H. I. Cong, H. J. Zhang, J. Y. Wang, W. T. Yu, J. D. Fan, X. F. Cheng, S. Q. Sun, J. Zhang, Q. M. Lu, C. J. Jiang, and R. I. Boughton, “Structural and thermal properties of the monoclinic Lu2SiO5 single crystal: evaluation as a new laser matrix,” J. Appl. Cryst. 42(2), 284–294 (2009).
[CrossRef]

Budni, P. A.

Byer, R. L.

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm, Ho:YAG,” IEEE J. Quantum Electron. 24(6), 924–933 (1988).
[CrossRef]

Chen, S. S.

Cheng, X. F.

H. I. Cong, H. J. Zhang, J. Y. Wang, W. T. Yu, J. D. Fan, X. F. Cheng, S. Q. Sun, J. Zhang, Q. M. Lu, C. J. Jiang, and R. I. Boughton, “Structural and thermal properties of the monoclinic Lu2SiO5 single crystal: evaluation as a new laser matrix,” J. Appl. Cryst. 42(2), 284–294 (2009).
[CrossRef]

Chicklis, E. P.

Cong, H. I.

H. I. Cong, H. J. Zhang, J. Y. Wang, W. T. Yu, J. D. Fan, X. F. Cheng, S. Q. Sun, J. Zhang, Q. M. Lu, C. J. Jiang, and R. I. Boughton, “Structural and thermal properties of the monoclinic Lu2SiO5 single crystal: evaluation as a new laser matrix,” J. Appl. Cryst. 42(2), 284–294 (2009).
[CrossRef]

Dergachev, A.

Deyst, J. P.

Diaz, F.

X. Mateos, V. Petrov, J. H. Liu, M. C. Pujol, U. Griebner, M. Aguilo, F. Diaz, M. Galan, and G. Viera, “Efficient 2-μm continuous-wave laser oscillation of Tm3+: KLu(WO4)2,” IEEE Quantum Electron. 42, 1008–1015 (2006).
[CrossRef]

Drake, T.

Dubois, M.

Esterowitz, L.

R. C. Stoneman and L. Esterowitz, “Efficient 1.94-μm Tm:YALO laser,” IEEE J. Sel. Top. Quantum Electron. 1(1), 78–81 (1995).
[CrossRef]

Fan, J. D.

H. I. Cong, H. J. Zhang, J. Y. Wang, W. T. Yu, J. D. Fan, X. F. Cheng, S. Q. Sun, J. Zhang, Q. M. Lu, C. J. Jiang, and R. I. Boughton, “Structural and thermal properties of the monoclinic Lu2SiO5 single crystal: evaluation as a new laser matrix,” J. Appl. Cryst. 42(2), 284–294 (2009).
[CrossRef]

Fan, T. Y.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Thermo-optic properties of laser crystals in the 100-300 K temperature range:Y3Al5O12(YAG), YAlO3(YALO) and LiYF4(YLF),” Proc. SPIE 5707, 165–170 (2005).
[CrossRef]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “165-W cryogenically cooled Yb:YAG laser,” Opt. Lett. 29(18), 2154–2156 (2004).
[CrossRef] [PubMed]

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm, Ho:YAG,” IEEE J. Quantum Electron. 24(6), 924–933 (1988).
[CrossRef]

Ferrand, B.

R. Gaume, P. H. Haumesser, B. Viana, B. Ferrand, and G. Aka, “Optical and laser properties of Yb:Y2SiO5 single crystals and discussion of the figure of merit relevant to compare ytterbium-doped laser materials,” Opt. Mater. 19(1), 81–88 (2002).
[CrossRef]

Fournier, D.

R. Gaumé, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[CrossRef]

Galan, M.

X. Mateos, V. Petrov, J. H. Liu, M. C. Pujol, U. Griebner, M. Aguilo, F. Diaz, M. Galan, and G. Viera, “Efficient 2-μm continuous-wave laser oscillation of Tm3+: KLu(WO4)2,” IEEE Quantum Electron. 42, 1008–1015 (2006).
[CrossRef]

Gaume, R.

R. Gaume, P. H. Haumesser, B. Viana, B. Ferrand, and G. Aka, “Optical and laser properties of Yb:Y2SiO5 single crystals and discussion of the figure of merit relevant to compare ytterbium-doped laser materials,” Opt. Mater. 19(1), 81–88 (2002).
[CrossRef]

Gaumé, R.

R. Gaumé, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[CrossRef]

Griebner, U.

X. Mateos, V. Petrov, J. H. Liu, M. C. Pujol, U. Griebner, M. Aguilo, F. Diaz, M. Galan, and G. Viera, “Efficient 2-μm continuous-wave laser oscillation of Tm3+: KLu(WO4)2,” IEEE Quantum Electron. 42, 1008–1015 (2006).
[CrossRef]

Hale, C. P.

Haumesser, P. H.

R. Gaume, P. H. Haumesser, B. Viana, B. Ferrand, and G. Aka, “Optical and laser properties of Yb:Y2SiO5 single crystals and discussion of the figure of merit relevant to compare ytterbium-doped laser materials,” Opt. Mater. 19(1), 81–88 (2002).
[CrossRef]

Hemmati, H.

Henderson, S. W.

Huber, G.

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm, Ho:YAG,” IEEE J. Quantum Electron. 24(6), 924–933 (1988).
[CrossRef]

Huffaker, A. V.

Jiang, C. J.

H. I. Cong, H. J. Zhang, J. Y. Wang, W. T. Yu, J. D. Fan, X. F. Cheng, S. Q. Sun, J. Zhang, Q. M. Lu, C. J. Jiang, and R. I. Boughton, “Structural and thermal properties of the monoclinic Lu2SiO5 single crystal: evaluation as a new laser matrix,” J. Appl. Cryst. 42(2), 284–294 (2009).
[CrossRef]

Kavaya, M. J.

Koch, G. J.

Lemons, M. L.

Lippert, E.

Liu, J. H.

X. Mateos, V. Petrov, J. H. Liu, M. C. Pujol, U. Griebner, M. Aguilo, F. Diaz, M. Galan, and G. Viera, “Efficient 2-μm continuous-wave laser oscillation of Tm3+: KLu(WO4)2,” IEEE Quantum Electron. 42, 1008–1015 (2006).
[CrossRef]

Lu, Q. M.

H. I. Cong, H. J. Zhang, J. Y. Wang, W. T. Yu, J. D. Fan, X. F. Cheng, S. Q. Sun, J. Zhang, Q. M. Lu, C. J. Jiang, and R. I. Boughton, “Structural and thermal properties of the monoclinic Lu2SiO5 single crystal: evaluation as a new laser matrix,” J. Appl. Cryst. 42(2), 284–294 (2009).
[CrossRef]

Magee, J. R.

Mateos, X.

X. Mateos, V. Petrov, J. H. Liu, M. C. Pujol, U. Griebner, M. Aguilo, F. Diaz, M. Galan, and G. Viera, “Efficient 2-μm continuous-wave laser oscillation of Tm3+: KLu(WO4)2,” IEEE Quantum Electron. 42, 1008–1015 (2006).
[CrossRef]

Miller, C. A.

Mitzscherlich, P.

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm, Ho:YAG,” IEEE J. Quantum Electron. 24(6), 924–933 (1988).
[CrossRef]

Modlin, E. A.

Mosto, J. R.

Nicolas, S.

Ochoa, J. R.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Thermo-optic properties of laser crystals in the 100-300 K temperature range:Y3Al5O12(YAG), YAlO3(YALO) and LiYF4(YLF),” Proc. SPIE 5707, 165–170 (2005).
[CrossRef]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “165-W cryogenically cooled Yb:YAG laser,” Opt. Lett. 29(18), 2154–2156 (2004).
[CrossRef] [PubMed]

Petros, M.

Petrov, V.

X. Mateos, V. Petrov, J. H. Liu, M. C. Pujol, U. Griebner, M. Aguilo, F. Diaz, M. Galan, and G. Viera, “Efficient 2-μm continuous-wave laser oscillation of Tm3+: KLu(WO4)2,” IEEE Quantum Electron. 42, 1008–1015 (2006).
[CrossRef]

Petzar, P. J.

Pomeranz, L. A.

Pujol, M. C.

X. Mateos, V. Petrov, J. H. Liu, M. C. Pujol, U. Griebner, M. Aguilo, F. Diaz, M. Galan, and G. Viera, “Efficient 2-μm continuous-wave laser oscillation of Tm3+: KLu(WO4)2,” IEEE Quantum Electron. 42, 1008–1015 (2006).
[CrossRef]

Ripin, D. J.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Thermo-optic properties of laser crystals in the 100-300 K temperature range:Y3Al5O12(YAG), YAlO3(YALO) and LiYF4(YLF),” Proc. SPIE 5707, 165–170 (2005).
[CrossRef]

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, “165-W cryogenically cooled Yb:YAG laser,” Opt. Lett. 29(18), 2154–2156 (2004).
[CrossRef] [PubMed]

Roger, J. P.

R. Gaumé, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[CrossRef]

Rustad, G.

Singh, U. N.

Smith, A.

Stenersen, K.

Stoneman, R. C.

R. C. Stoneman and L. Esterowitz, “Efficient 1.94-μm Tm:YALO laser,” IEEE J. Sel. Top. Quantum Electron. 1(1), 78–81 (1995).
[CrossRef]

Storm, M. E.

Sun, S. Q.

H. I. Cong, H. J. Zhang, J. Y. Wang, W. T. Yu, J. D. Fan, X. F. Cheng, S. Q. Sun, J. Zhang, Q. M. Lu, C. J. Jiang, and R. I. Boughton, “Structural and thermal properties of the monoclinic Lu2SiO5 single crystal: evaluation as a new laser matrix,” J. Appl. Cryst. 42(2), 284–294 (2009).
[CrossRef]

Trieu, B. C.

Viana, B.

R. Gaumé, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[CrossRef]

R. Gaume, P. H. Haumesser, B. Viana, B. Ferrand, and G. Aka, “Optical and laser properties of Yb:Y2SiO5 single crystals and discussion of the figure of merit relevant to compare ytterbium-doped laser materials,” Opt. Mater. 19(1), 81–88 (2002).
[CrossRef]

Viera, G.

X. Mateos, V. Petrov, J. H. Liu, M. C. Pujol, U. Griebner, M. Aguilo, F. Diaz, M. Galan, and G. Viera, “Efficient 2-μm continuous-wave laser oscillation of Tm3+: KLu(WO4)2,” IEEE Quantum Electron. 42, 1008–1015 (2006).
[CrossRef]

Vivien, D.

R. Gaumé, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[CrossRef]

Walsh, B. M.

B. M. Walsh and N. P. Barnes, “Spectroscopy and modeling of solid state lanthanide lasers: application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95(7), 3255–3271 (2004).
[CrossRef]

Wang, J. Y.

H. I. Cong, H. J. Zhang, J. Y. Wang, W. T. Yu, J. D. Fan, X. F. Cheng, S. Q. Sun, J. Zhang, Q. M. Lu, C. J. Jiang, and R. I. Boughton, “Structural and thermal properties of the monoclinic Lu2SiO5 single crystal: evaluation as a new laser matrix,” J. Appl. Cryst. 42(2), 284–294 (2009).
[CrossRef]

Yu, J. R.

Yu, W. T.

H. I. Cong, H. J. Zhang, J. Y. Wang, W. T. Yu, J. D. Fan, X. F. Cheng, S. Q. Sun, J. Zhang, Q. M. Lu, C. J. Jiang, and R. I. Boughton, “Structural and thermal properties of the monoclinic Lu2SiO5 single crystal: evaluation as a new laser matrix,” J. Appl. Cryst. 42(2), 284–294 (2009).
[CrossRef]

Zhang, H. J.

H. I. Cong, H. J. Zhang, J. Y. Wang, W. T. Yu, J. D. Fan, X. F. Cheng, S. Q. Sun, J. Zhang, Q. M. Lu, C. J. Jiang, and R. I. Boughton, “Structural and thermal properties of the monoclinic Lu2SiO5 single crystal: evaluation as a new laser matrix,” J. Appl. Cryst. 42(2), 284–294 (2009).
[CrossRef]

Zhang, J.

H. I. Cong, H. J. Zhang, J. Y. Wang, W. T. Yu, J. D. Fan, X. F. Cheng, S. Q. Sun, J. Zhang, Q. M. Lu, C. J. Jiang, and R. I. Boughton, “Structural and thermal properties of the monoclinic Lu2SiO5 single crystal: evaluation as a new laser matrix,” J. Appl. Cryst. 42(2), 284–294 (2009).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

R. Gaumé, B. Viana, D. Vivien, J. P. Roger, and D. Fournier, “A simple model for the prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83(7), 1355–1357 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Spectroscopy and diode laser-pumped operation of Tm, Ho:YAG,” IEEE J. Quantum Electron. 24(6), 924–933 (1988).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

R. C. Stoneman and L. Esterowitz, “Efficient 1.94-μm Tm:YALO laser,” IEEE J. Sel. Top. Quantum Electron. 1(1), 78–81 (1995).
[CrossRef]

IEEE Quantum Electron. (1)

X. Mateos, V. Petrov, J. H. Liu, M. C. Pujol, U. Griebner, M. Aguilo, F. Diaz, M. Galan, and G. Viera, “Efficient 2-μm continuous-wave laser oscillation of Tm3+: KLu(WO4)2,” IEEE Quantum Electron. 42, 1008–1015 (2006).
[CrossRef]

J. Appl. Cryst. (1)

H. I. Cong, H. J. Zhang, J. Y. Wang, W. T. Yu, J. D. Fan, X. F. Cheng, S. Q. Sun, J. Zhang, Q. M. Lu, C. J. Jiang, and R. I. Boughton, “Structural and thermal properties of the monoclinic Lu2SiO5 single crystal: evaluation as a new laser matrix,” J. Appl. Cryst. 42(2), 284–294 (2009).
[CrossRef]

J. Appl. Phys. (1)

B. M. Walsh and N. P. Barnes, “Spectroscopy and modeling of solid state lanthanide lasers: application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4,” J. Appl. Phys. 95(7), 3255–3271 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Lett. (5)

Opt. Mater. (1)

R. Gaume, P. H. Haumesser, B. Viana, B. Ferrand, and G. Aka, “Optical and laser properties of Yb:Y2SiO5 single crystals and discussion of the figure of merit relevant to compare ytterbium-doped laser materials,” Opt. Mater. 19(1), 81–88 (2002).
[CrossRef]

Proc. SPIE (1)

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Thermo-optic properties of laser crystals in the 100-300 K temperature range:Y3Al5O12(YAG), YAlO3(YALO) and LiYF4(YLF),” Proc. SPIE 5707, 165–170 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Room-temperature polarized absorption cross sections of the Tm 3H4 manifold in LSO.

Fig. 2
Fig. 2

Room-temperature polarized emission cross-section spectra of Ho:LSO 5I7 manifold.

Fig. 3
Fig. 3

Experiment setup of dual-end-pumped cryogenic Tm,Ho: LSO laser. DM, dichroic mirror (HR@2.0-2.1 μm and HT@791 nm), CL, collimating lens (focal length of 25 mm), FL, focusing lens (focal length of 38 mm).

Fig. 4
Fig. 4

Output power of cryogenically cooled Tm,Ho:LSO laser versus pump power with different output coupling. Inset, output laser spectrum with different OC transmissivity.

Fig. 5
Fig. 5

Output power of the room-temperature Tm,Ho:LSO laser versus incident pump power.

Fig. 6
Fig. 6

Schematic diagram of a resonantly pumped Ho:LSO laser operating in room temperature.

Fig. 7
Fig. 7

Laser output from resonantly pumped Ho:LSO. Inset, laser spectrum of Ho:LSO with OC transmissivity of 5%.

Metrics