Abstract

A room-temperature pulsed operation was demonstrated using lateral current injection-type lasers composed of a 400-nm-thick GaInAsP core layer with compressively strained 5 quantum wells. A threshold current of 105 mA and corresponding density of 1.3 kA/cm2 (260 A/cm2 per well) were obtained with the stripe width of 5.4 µm and the cavity length of 1.47 mm. A fundamental transverse mode operation was obtained with the narrower stripe device of 2.0 µm and the cavity length of 805 µm, while the threshold current and corresponding density were 49 mA and 3.0 kA/cm2, respectively.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Kapur, J. P. McVittie, and K. C. Saraswat, “Technology and reliability constrained future copper interconnects—Part I: Resistance modeling,” Trans. Electron Devices. 49(4), 590–597 (2002).
    [CrossRef]
  2. P. Kapur, G. Chandra, J. P. McVittie, and K. C. Saraswat, “Technology and reliability constrained future copper interconnects.II. Performance implications,” Trans. Electron Devices. 49(4), 598–604 (2002).
    [CrossRef]
  3. D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
    [CrossRef]
  4. G. Chen, H. Chen, M. Haurylau, N. A. Nelson, D. H. Albonesi, P. M. Fauchet, and E. G. Friedman, ““Prediction of CMOS compatible on-chip optical interconnect,” Integr,” VLSI J. 40(4), 434–446 (2007).
    [CrossRef]
  5. R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, V. Dominic, A. Mathur, P. Chavarkar, M. Missey, A. Dentai, S. Hurtt, J. Bäck, R. Muthiah, S. Murthy, R. Salvatore, S. Grubb, C. Joyner, J. Rossi, R. Schneider, M. Ziari, F. Kish, and D. Welch, “Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s,” Electron. Lett. 42(13), 771–772 (2006).
    [CrossRef]
  6. M. Fujita, R. Ushigome, and T. Baba, “Continuous wave lasing in GaInAsP microdisk injection laser with threshold current of 40 μA,” Electron. Lett. 36(9), 790–791 (2000).
    [CrossRef]
  7. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
    [CrossRef] [PubMed]
  8. H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J. H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
    [CrossRef] [PubMed]
  9. C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakir, H. T. Hattori, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonic components and ciricuits: Toward 2.5 dimentional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11(2), 395–407 (2005).
    [CrossRef]
  10. T. Okamoto, N. Nunoya, Y. Onodera, T. Yamazaki, S. Tamura, and S. Arai, “Optically pumped membrane BH-DFB lasers for low-threshold and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1361–1366 (2003).
    [CrossRef]
  11. N. Nunoya, M. Nakamura, M. Morshed, S. Tamura, and S. Arai, “High-performance 1.55-μm wavelength GaInAsP-InP Distributed-Feedback Lasers with wirelike active regions,” IEEE J. Sel. Top. Quantum Electron. 7(2), 249–258 (2001).
    [CrossRef]
  12. S. Sakamoto, H. Naitoh, M. Ohtake, Y. Nishimoto, S. Tamura, T. Maruyama, N. Nishiyama, and S. Arai, “Strongly index-coupled membrane BH-DFB lasers with surface corrugation grating,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1135–1141 (2007).
    [CrossRef]
  13. H. Naitoh, S. Sakamoto, M. Ohtake, T. Okumura, T. Maruyama, N. Nishiyama, and S. Arai, “GaInAsP/InP Membrane Buried Heterostructure Distributed Feedback Laser with Air-Bridge Structure,” Jpn. J. Appl. Phys. 46(47), L1158–L1160 (2007).
    [CrossRef]
  14. T. Maruyama, T. Okumura, S. Sakamoto, K. Miura, Y. Nishimoto, and S. Arai, “GaInAsP/InP membrane BH-DFB lasers directly bonded on SOI substrate,” Opt. Express 14(18), 8184–8188 (2006).
    [CrossRef] [PubMed]
  15. T. Okumura, T. Maruyama, M. Kanemaru, S. Sakamoto, and S. Arai, “Single-mode operation of GaInAsP/InP- membrane distributed feedback lasers bonded on silicon-on-insulator substrate with rib-waveguide structure,” Jpn. J. Appl. Phys. 46(48), L1206–L1208 (2007).
    [CrossRef]
  16. H. Namizaki, H. Kan, M. Ishii, and A. Ito, “Transverse-junction-stripe-geometry double-heterostructure lasers with very low threshold current,” J. Appl. Phys. 45(6), 2785–2786 (1974).
    [CrossRef]
  17. K. Oe, Y. Noguchi, and C. Caneau, “GaInAsP lateral current injection lasers on semi-insulating substrate,” IEEE Photon. Technol. Lett. 6(4), 479–481 (1994).
    [CrossRef]
  18. E. H. Sargent, K. Oe, C. Caneau, and J. M. Xu, “OEIC-enabling LCI lasers with current guides: Combined theoretical-experimental investigation of internal operating mechanisms,” IEEE J. Quantum Electron. 34(7), 1280–1287 (1998).
    [CrossRef]
  19. M. Aoki, H. Sano, M. Suzuki, M. Takahashi, K. Uomi, and A. Takai, “Novel structure MQW electroabsorption-modulator/DFB-laser integrated device fabricated by selective area MOCVD growth,” Electron. Lett. 27(23), 2138–2140 (1991).
    [CrossRef]

2007 (4)

G. Chen, H. Chen, M. Haurylau, N. A. Nelson, D. H. Albonesi, P. M. Fauchet, and E. G. Friedman, ““Prediction of CMOS compatible on-chip optical interconnect,” Integr,” VLSI J. 40(4), 434–446 (2007).
[CrossRef]

S. Sakamoto, H. Naitoh, M. Ohtake, Y. Nishimoto, S. Tamura, T. Maruyama, N. Nishiyama, and S. Arai, “Strongly index-coupled membrane BH-DFB lasers with surface corrugation grating,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1135–1141 (2007).
[CrossRef]

H. Naitoh, S. Sakamoto, M. Ohtake, T. Okumura, T. Maruyama, N. Nishiyama, and S. Arai, “GaInAsP/InP Membrane Buried Heterostructure Distributed Feedback Laser with Air-Bridge Structure,” Jpn. J. Appl. Phys. 46(47), L1158–L1160 (2007).
[CrossRef]

T. Okumura, T. Maruyama, M. Kanemaru, S. Sakamoto, and S. Arai, “Single-mode operation of GaInAsP/InP- membrane distributed feedback lasers bonded on silicon-on-insulator substrate with rib-waveguide structure,” Jpn. J. Appl. Phys. 46(48), L1206–L1208 (2007).
[CrossRef]

2006 (2)

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, V. Dominic, A. Mathur, P. Chavarkar, M. Missey, A. Dentai, S. Hurtt, J. Bäck, R. Muthiah, S. Murthy, R. Salvatore, S. Grubb, C. Joyner, J. Rossi, R. Schneider, M. Ziari, F. Kish, and D. Welch, “Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s,” Electron. Lett. 42(13), 771–772 (2006).
[CrossRef]

T. Maruyama, T. Okumura, S. Sakamoto, K. Miura, Y. Nishimoto, and S. Arai, “GaInAsP/InP membrane BH-DFB lasers directly bonded on SOI substrate,” Opt. Express 14(18), 8184–8188 (2006).
[CrossRef] [PubMed]

2005 (1)

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakir, H. T. Hattori, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonic components and ciricuits: Toward 2.5 dimentional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11(2), 395–407 (2005).
[CrossRef]

2004 (1)

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J. H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[CrossRef] [PubMed]

2003 (1)

T. Okamoto, N. Nunoya, Y. Onodera, T. Yamazaki, S. Tamura, and S. Arai, “Optically pumped membrane BH-DFB lasers for low-threshold and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1361–1366 (2003).
[CrossRef]

2002 (2)

P. Kapur, J. P. McVittie, and K. C. Saraswat, “Technology and reliability constrained future copper interconnects—Part I: Resistance modeling,” Trans. Electron Devices. 49(4), 590–597 (2002).
[CrossRef]

P. Kapur, G. Chandra, J. P. McVittie, and K. C. Saraswat, “Technology and reliability constrained future copper interconnects.II. Performance implications,” Trans. Electron Devices. 49(4), 598–604 (2002).
[CrossRef]

2001 (1)

N. Nunoya, M. Nakamura, M. Morshed, S. Tamura, and S. Arai, “High-performance 1.55-μm wavelength GaInAsP-InP Distributed-Feedback Lasers with wirelike active regions,” IEEE J. Sel. Top. Quantum Electron. 7(2), 249–258 (2001).
[CrossRef]

2000 (2)

D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
[CrossRef]

M. Fujita, R. Ushigome, and T. Baba, “Continuous wave lasing in GaInAsP microdisk injection laser with threshold current of 40 μA,” Electron. Lett. 36(9), 790–791 (2000).
[CrossRef]

1999 (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

1998 (1)

E. H. Sargent, K. Oe, C. Caneau, and J. M. Xu, “OEIC-enabling LCI lasers with current guides: Combined theoretical-experimental investigation of internal operating mechanisms,” IEEE J. Quantum Electron. 34(7), 1280–1287 (1998).
[CrossRef]

1994 (1)

K. Oe, Y. Noguchi, and C. Caneau, “GaInAsP lateral current injection lasers on semi-insulating substrate,” IEEE Photon. Technol. Lett. 6(4), 479–481 (1994).
[CrossRef]

1991 (1)

M. Aoki, H. Sano, M. Suzuki, M. Takahashi, K. Uomi, and A. Takai, “Novel structure MQW electroabsorption-modulator/DFB-laser integrated device fabricated by selective area MOCVD growth,” Electron. Lett. 27(23), 2138–2140 (1991).
[CrossRef]

1974 (1)

H. Namizaki, H. Kan, M. Ishii, and A. Ito, “Transverse-junction-stripe-geometry double-heterostructure lasers with very low threshold current,” J. Appl. Phys. 45(6), 2785–2786 (1974).
[CrossRef]

Albonesi, D. H.

G. Chen, H. Chen, M. Haurylau, N. A. Nelson, D. H. Albonesi, P. M. Fauchet, and E. G. Friedman, ““Prediction of CMOS compatible on-chip optical interconnect,” Integr,” VLSI J. 40(4), 434–446 (2007).
[CrossRef]

Aoki, M.

M. Aoki, H. Sano, M. Suzuki, M. Takahashi, K. Uomi, and A. Takai, “Novel structure MQW electroabsorption-modulator/DFB-laser integrated device fabricated by selective area MOCVD growth,” Electron. Lett. 27(23), 2138–2140 (1991).
[CrossRef]

Arai, S.

H. Naitoh, S. Sakamoto, M. Ohtake, T. Okumura, T. Maruyama, N. Nishiyama, and S. Arai, “GaInAsP/InP Membrane Buried Heterostructure Distributed Feedback Laser with Air-Bridge Structure,” Jpn. J. Appl. Phys. 46(47), L1158–L1160 (2007).
[CrossRef]

T. Okumura, T. Maruyama, M. Kanemaru, S. Sakamoto, and S. Arai, “Single-mode operation of GaInAsP/InP- membrane distributed feedback lasers bonded on silicon-on-insulator substrate with rib-waveguide structure,” Jpn. J. Appl. Phys. 46(48), L1206–L1208 (2007).
[CrossRef]

S. Sakamoto, H. Naitoh, M. Ohtake, Y. Nishimoto, S. Tamura, T. Maruyama, N. Nishiyama, and S. Arai, “Strongly index-coupled membrane BH-DFB lasers with surface corrugation grating,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1135–1141 (2007).
[CrossRef]

T. Maruyama, T. Okumura, S. Sakamoto, K. Miura, Y. Nishimoto, and S. Arai, “GaInAsP/InP membrane BH-DFB lasers directly bonded on SOI substrate,” Opt. Express 14(18), 8184–8188 (2006).
[CrossRef] [PubMed]

T. Okamoto, N. Nunoya, Y. Onodera, T. Yamazaki, S. Tamura, and S. Arai, “Optically pumped membrane BH-DFB lasers for low-threshold and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1361–1366 (2003).
[CrossRef]

N. Nunoya, M. Nakamura, M. Morshed, S. Tamura, and S. Arai, “High-performance 1.55-μm wavelength GaInAsP-InP Distributed-Feedback Lasers with wirelike active regions,” IEEE J. Sel. Top. Quantum Electron. 7(2), 249–258 (2001).
[CrossRef]

Baba, T.

M. Fujita, R. Ushigome, and T. Baba, “Continuous wave lasing in GaInAsP microdisk injection laser with threshold current of 40 μA,” Electron. Lett. 36(9), 790–791 (2000).
[CrossRef]

Bäck, J.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, V. Dominic, A. Mathur, P. Chavarkar, M. Missey, A. Dentai, S. Hurtt, J. Bäck, R. Muthiah, S. Murthy, R. Salvatore, S. Grubb, C. Joyner, J. Rossi, R. Schneider, M. Ziari, F. Kish, and D. Welch, “Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s,” Electron. Lett. 42(13), 771–772 (2006).
[CrossRef]

Baek, J. H.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J. H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[CrossRef] [PubMed]

Bakir, B. B.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakir, H. T. Hattori, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonic components and ciricuits: Toward 2.5 dimentional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11(2), 395–407 (2005).
[CrossRef]

Caneau, C.

E. H. Sargent, K. Oe, C. Caneau, and J. M. Xu, “OEIC-enabling LCI lasers with current guides: Combined theoretical-experimental investigation of internal operating mechanisms,” IEEE J. Quantum Electron. 34(7), 1280–1287 (1998).
[CrossRef]

K. Oe, Y. Noguchi, and C. Caneau, “GaInAsP lateral current injection lasers on semi-insulating substrate,” IEEE Photon. Technol. Lett. 6(4), 479–481 (1994).
[CrossRef]

Chandra, G.

P. Kapur, G. Chandra, J. P. McVittie, and K. C. Saraswat, “Technology and reliability constrained future copper interconnects.II. Performance implications,” Trans. Electron Devices. 49(4), 598–604 (2002).
[CrossRef]

Chavarkar, P.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, V. Dominic, A. Mathur, P. Chavarkar, M. Missey, A. Dentai, S. Hurtt, J. Bäck, R. Muthiah, S. Murthy, R. Salvatore, S. Grubb, C. Joyner, J. Rossi, R. Schneider, M. Ziari, F. Kish, and D. Welch, “Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s,” Electron. Lett. 42(13), 771–772 (2006).
[CrossRef]

Chen, A.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, V. Dominic, A. Mathur, P. Chavarkar, M. Missey, A. Dentai, S. Hurtt, J. Bäck, R. Muthiah, S. Murthy, R. Salvatore, S. Grubb, C. Joyner, J. Rossi, R. Schneider, M. Ziari, F. Kish, and D. Welch, “Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s,” Electron. Lett. 42(13), 771–772 (2006).
[CrossRef]

Chen, G.

G. Chen, H. Chen, M. Haurylau, N. A. Nelson, D. H. Albonesi, P. M. Fauchet, and E. G. Friedman, ““Prediction of CMOS compatible on-chip optical interconnect,” Integr,” VLSI J. 40(4), 434–446 (2007).
[CrossRef]

Chen, H.

G. Chen, H. Chen, M. Haurylau, N. A. Nelson, D. H. Albonesi, P. M. Fauchet, and E. G. Friedman, ““Prediction of CMOS compatible on-chip optical interconnect,” Integr,” VLSI J. 40(4), 434–446 (2007).
[CrossRef]

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Dentai, A.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, V. Dominic, A. Mathur, P. Chavarkar, M. Missey, A. Dentai, S. Hurtt, J. Bäck, R. Muthiah, S. Murthy, R. Salvatore, S. Grubb, C. Joyner, J. Rossi, R. Schneider, M. Ziari, F. Kish, and D. Welch, “Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s,” Electron. Lett. 42(13), 771–772 (2006).
[CrossRef]

Dominic, V.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, V. Dominic, A. Mathur, P. Chavarkar, M. Missey, A. Dentai, S. Hurtt, J. Bäck, R. Muthiah, S. Murthy, R. Salvatore, S. Grubb, C. Joyner, J. Rossi, R. Schneider, M. Ziari, F. Kish, and D. Welch, “Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s,” Electron. Lett. 42(13), 771–772 (2006).
[CrossRef]

Evans, P.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, V. Dominic, A. Mathur, P. Chavarkar, M. Missey, A. Dentai, S. Hurtt, J. Bäck, R. Muthiah, S. Murthy, R. Salvatore, S. Grubb, C. Joyner, J. Rossi, R. Schneider, M. Ziari, F. Kish, and D. Welch, “Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s,” Electron. Lett. 42(13), 771–772 (2006).
[CrossRef]

Fauchet, P. M.

G. Chen, H. Chen, M. Haurylau, N. A. Nelson, D. H. Albonesi, P. M. Fauchet, and E. G. Friedman, ““Prediction of CMOS compatible on-chip optical interconnect,” Integr,” VLSI J. 40(4), 434–446 (2007).
[CrossRef]

Friedman, E. G.

G. Chen, H. Chen, M. Haurylau, N. A. Nelson, D. H. Albonesi, P. M. Fauchet, and E. G. Friedman, ““Prediction of CMOS compatible on-chip optical interconnect,” Integr,” VLSI J. 40(4), 434–446 (2007).
[CrossRef]

Fujita, M.

M. Fujita, R. Ushigome, and T. Baba, “Continuous wave lasing in GaInAsP microdisk injection laser with threshold current of 40 μA,” Electron. Lett. 36(9), 790–791 (2000).
[CrossRef]

Grubb, S.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, V. Dominic, A. Mathur, P. Chavarkar, M. Missey, A. Dentai, S. Hurtt, J. Bäck, R. Muthiah, S. Murthy, R. Salvatore, S. Grubb, C. Joyner, J. Rossi, R. Schneider, M. Ziari, F. Kish, and D. Welch, “Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s,” Electron. Lett. 42(13), 771–772 (2006).
[CrossRef]

Hattori, H. T.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakir, H. T. Hattori, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonic components and ciricuits: Toward 2.5 dimentional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11(2), 395–407 (2005).
[CrossRef]

Haurylau, M.

G. Chen, H. Chen, M. Haurylau, N. A. Nelson, D. H. Albonesi, P. M. Fauchet, and E. G. Friedman, ““Prediction of CMOS compatible on-chip optical interconnect,” Integr,” VLSI J. 40(4), 434–446 (2007).
[CrossRef]

Hurtt, S.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, V. Dominic, A. Mathur, P. Chavarkar, M. Missey, A. Dentai, S. Hurtt, J. Bäck, R. Muthiah, S. Murthy, R. Salvatore, S. Grubb, C. Joyner, J. Rossi, R. Schneider, M. Ziari, F. Kish, and D. Welch, “Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s,” Electron. Lett. 42(13), 771–772 (2006).
[CrossRef]

Ishii, M.

H. Namizaki, H. Kan, M. Ishii, and A. Ito, “Transverse-junction-stripe-geometry double-heterostructure lasers with very low threshold current,” J. Appl. Phys. 45(6), 2785–2786 (1974).
[CrossRef]

Ito, A.

H. Namizaki, H. Kan, M. Ishii, and A. Ito, “Transverse-junction-stripe-geometry double-heterostructure lasers with very low threshold current,” J. Appl. Phys. 45(6), 2785–2786 (1974).
[CrossRef]

Joyner, C.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, V. Dominic, A. Mathur, P. Chavarkar, M. Missey, A. Dentai, S. Hurtt, J. Bäck, R. Muthiah, S. Murthy, R. Salvatore, S. Grubb, C. Joyner, J. Rossi, R. Schneider, M. Ziari, F. Kish, and D. Welch, “Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s,” Electron. Lett. 42(13), 771–772 (2006).
[CrossRef]

Ju, Y.-G.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J. H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[CrossRef] [PubMed]

Kan, H.

H. Namizaki, H. Kan, M. Ishii, and A. Ito, “Transverse-junction-stripe-geometry double-heterostructure lasers with very low threshold current,” J. Appl. Phys. 45(6), 2785–2786 (1974).
[CrossRef]

Kanemaru, M.

T. Okumura, T. Maruyama, M. Kanemaru, S. Sakamoto, and S. Arai, “Single-mode operation of GaInAsP/InP- membrane distributed feedback lasers bonded on silicon-on-insulator substrate with rib-waveguide structure,” Jpn. J. Appl. Phys. 46(48), L1206–L1208 (2007).
[CrossRef]

Kapur, P.

P. Kapur, G. Chandra, J. P. McVittie, and K. C. Saraswat, “Technology and reliability constrained future copper interconnects.II. Performance implications,” Trans. Electron Devices. 49(4), 598–604 (2002).
[CrossRef]

P. Kapur, J. P. McVittie, and K. C. Saraswat, “Technology and reliability constrained future copper interconnects—Part I: Resistance modeling,” Trans. Electron Devices. 49(4), 590–597 (2002).
[CrossRef]

Kato, M.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, V. Dominic, A. Mathur, P. Chavarkar, M. Missey, A. Dentai, S. Hurtt, J. Bäck, R. Muthiah, S. Murthy, R. Salvatore, S. Grubb, C. Joyner, J. Rossi, R. Schneider, M. Ziari, F. Kish, and D. Welch, “Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s,” Electron. Lett. 42(13), 771–772 (2006).
[CrossRef]

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Kim, S.-B.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J. H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[CrossRef] [PubMed]

Kim, S.-H.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J. H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[CrossRef] [PubMed]

Kish, F.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, V. Dominic, A. Mathur, P. Chavarkar, M. Missey, A. Dentai, S. Hurtt, J. Bäck, R. Muthiah, S. Murthy, R. Salvatore, S. Grubb, C. Joyner, J. Rossi, R. Schneider, M. Ziari, F. Kish, and D. Welch, “Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s,” Electron. Lett. 42(13), 771–772 (2006).
[CrossRef]

Kwon, S.-H.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J. H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[CrossRef] [PubMed]

Lambert, D.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, V. Dominic, A. Mathur, P. Chavarkar, M. Missey, A. Dentai, S. Hurtt, J. Bäck, R. Muthiah, S. Murthy, R. Salvatore, S. Grubb, C. Joyner, J. Rossi, R. Schneider, M. Ziari, F. Kish, and D. Welch, “Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s,” Electron. Lett. 42(13), 771–772 (2006).
[CrossRef]

Leclercq, J.-L.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakir, H. T. Hattori, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonic components and ciricuits: Toward 2.5 dimentional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11(2), 395–407 (2005).
[CrossRef]

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Lee, Y.-H.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J. H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[CrossRef] [PubMed]

Letartre, X.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakir, H. T. Hattori, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonic components and ciricuits: Toward 2.5 dimentional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11(2), 395–407 (2005).
[CrossRef]

Maruyama, T.

S. Sakamoto, H. Naitoh, M. Ohtake, Y. Nishimoto, S. Tamura, T. Maruyama, N. Nishiyama, and S. Arai, “Strongly index-coupled membrane BH-DFB lasers with surface corrugation grating,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1135–1141 (2007).
[CrossRef]

H. Naitoh, S. Sakamoto, M. Ohtake, T. Okumura, T. Maruyama, N. Nishiyama, and S. Arai, “GaInAsP/InP Membrane Buried Heterostructure Distributed Feedback Laser with Air-Bridge Structure,” Jpn. J. Appl. Phys. 46(47), L1158–L1160 (2007).
[CrossRef]

T. Okumura, T. Maruyama, M. Kanemaru, S. Sakamoto, and S. Arai, “Single-mode operation of GaInAsP/InP- membrane distributed feedback lasers bonded on silicon-on-insulator substrate with rib-waveguide structure,” Jpn. J. Appl. Phys. 46(48), L1206–L1208 (2007).
[CrossRef]

T. Maruyama, T. Okumura, S. Sakamoto, K. Miura, Y. Nishimoto, and S. Arai, “GaInAsP/InP membrane BH-DFB lasers directly bonded on SOI substrate,” Opt. Express 14(18), 8184–8188 (2006).
[CrossRef] [PubMed]

Mathur, A.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, V. Dominic, A. Mathur, P. Chavarkar, M. Missey, A. Dentai, S. Hurtt, J. Bäck, R. Muthiah, S. Murthy, R. Salvatore, S. Grubb, C. Joyner, J. Rossi, R. Schneider, M. Ziari, F. Kish, and D. Welch, “Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s,” Electron. Lett. 42(13), 771–772 (2006).
[CrossRef]

McVittie, J. P.

P. Kapur, J. P. McVittie, and K. C. Saraswat, “Technology and reliability constrained future copper interconnects—Part I: Resistance modeling,” Trans. Electron Devices. 49(4), 590–597 (2002).
[CrossRef]

P. Kapur, G. Chandra, J. P. McVittie, and K. C. Saraswat, “Technology and reliability constrained future copper interconnects.II. Performance implications,” Trans. Electron Devices. 49(4), 598–604 (2002).
[CrossRef]

Miller, D. A. B.

D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
[CrossRef]

Missey, M.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, V. Dominic, A. Mathur, P. Chavarkar, M. Missey, A. Dentai, S. Hurtt, J. Bäck, R. Muthiah, S. Murthy, R. Salvatore, S. Grubb, C. Joyner, J. Rossi, R. Schneider, M. Ziari, F. Kish, and D. Welch, “Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s,” Electron. Lett. 42(13), 771–772 (2006).
[CrossRef]

Miura, K.

Monat, C.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakir, H. T. Hattori, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonic components and ciricuits: Toward 2.5 dimentional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11(2), 395–407 (2005).
[CrossRef]

Morshed, M.

N. Nunoya, M. Nakamura, M. Morshed, S. Tamura, and S. Arai, “High-performance 1.55-μm wavelength GaInAsP-InP Distributed-Feedback Lasers with wirelike active regions,” IEEE J. Sel. Top. Quantum Electron. 7(2), 249–258 (2001).
[CrossRef]

Mouette, J.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakir, H. T. Hattori, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonic components and ciricuits: Toward 2.5 dimentional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11(2), 395–407 (2005).
[CrossRef]

Murthy, S.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, V. Dominic, A. Mathur, P. Chavarkar, M. Missey, A. Dentai, S. Hurtt, J. Bäck, R. Muthiah, S. Murthy, R. Salvatore, S. Grubb, C. Joyner, J. Rossi, R. Schneider, M. Ziari, F. Kish, and D. Welch, “Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s,” Electron. Lett. 42(13), 771–772 (2006).
[CrossRef]

Muthiah, R.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, V. Dominic, A. Mathur, P. Chavarkar, M. Missey, A. Dentai, S. Hurtt, J. Bäck, R. Muthiah, S. Murthy, R. Salvatore, S. Grubb, C. Joyner, J. Rossi, R. Schneider, M. Ziari, F. Kish, and D. Welch, “Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s,” Electron. Lett. 42(13), 771–772 (2006).
[CrossRef]

Nagarajan, R.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, V. Dominic, A. Mathur, P. Chavarkar, M. Missey, A. Dentai, S. Hurtt, J. Bäck, R. Muthiah, S. Murthy, R. Salvatore, S. Grubb, C. Joyner, J. Rossi, R. Schneider, M. Ziari, F. Kish, and D. Welch, “Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s,” Electron. Lett. 42(13), 771–772 (2006).
[CrossRef]

Naitoh, H.

S. Sakamoto, H. Naitoh, M. Ohtake, Y. Nishimoto, S. Tamura, T. Maruyama, N. Nishiyama, and S. Arai, “Strongly index-coupled membrane BH-DFB lasers with surface corrugation grating,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1135–1141 (2007).
[CrossRef]

H. Naitoh, S. Sakamoto, M. Ohtake, T. Okumura, T. Maruyama, N. Nishiyama, and S. Arai, “GaInAsP/InP Membrane Buried Heterostructure Distributed Feedback Laser with Air-Bridge Structure,” Jpn. J. Appl. Phys. 46(47), L1158–L1160 (2007).
[CrossRef]

Nakamura, M.

N. Nunoya, M. Nakamura, M. Morshed, S. Tamura, and S. Arai, “High-performance 1.55-μm wavelength GaInAsP-InP Distributed-Feedback Lasers with wirelike active regions,” IEEE J. Sel. Top. Quantum Electron. 7(2), 249–258 (2001).
[CrossRef]

Namizaki, H.

H. Namizaki, H. Kan, M. Ishii, and A. Ito, “Transverse-junction-stripe-geometry double-heterostructure lasers with very low threshold current,” J. Appl. Phys. 45(6), 2785–2786 (1974).
[CrossRef]

Nelson, N. A.

G. Chen, H. Chen, M. Haurylau, N. A. Nelson, D. H. Albonesi, P. M. Fauchet, and E. G. Friedman, ““Prediction of CMOS compatible on-chip optical interconnect,” Integr,” VLSI J. 40(4), 434–446 (2007).
[CrossRef]

Nishimoto, Y.

S. Sakamoto, H. Naitoh, M. Ohtake, Y. Nishimoto, S. Tamura, T. Maruyama, N. Nishiyama, and S. Arai, “Strongly index-coupled membrane BH-DFB lasers with surface corrugation grating,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1135–1141 (2007).
[CrossRef]

T. Maruyama, T. Okumura, S. Sakamoto, K. Miura, Y. Nishimoto, and S. Arai, “GaInAsP/InP membrane BH-DFB lasers directly bonded on SOI substrate,” Opt. Express 14(18), 8184–8188 (2006).
[CrossRef] [PubMed]

Nishiyama, N.

H. Naitoh, S. Sakamoto, M. Ohtake, T. Okumura, T. Maruyama, N. Nishiyama, and S. Arai, “GaInAsP/InP Membrane Buried Heterostructure Distributed Feedback Laser with Air-Bridge Structure,” Jpn. J. Appl. Phys. 46(47), L1158–L1160 (2007).
[CrossRef]

S. Sakamoto, H. Naitoh, M. Ohtake, Y. Nishimoto, S. Tamura, T. Maruyama, N. Nishiyama, and S. Arai, “Strongly index-coupled membrane BH-DFB lasers with surface corrugation grating,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1135–1141 (2007).
[CrossRef]

Noguchi, Y.

K. Oe, Y. Noguchi, and C. Caneau, “GaInAsP lateral current injection lasers on semi-insulating substrate,” IEEE Photon. Technol. Lett. 6(4), 479–481 (1994).
[CrossRef]

Nunoya, N.

T. Okamoto, N. Nunoya, Y. Onodera, T. Yamazaki, S. Tamura, and S. Arai, “Optically pumped membrane BH-DFB lasers for low-threshold and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1361–1366 (2003).
[CrossRef]

N. Nunoya, M. Nakamura, M. Morshed, S. Tamura, and S. Arai, “High-performance 1.55-μm wavelength GaInAsP-InP Distributed-Feedback Lasers with wirelike active regions,” IEEE J. Sel. Top. Quantum Electron. 7(2), 249–258 (2001).
[CrossRef]

O’Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Oe, K.

E. H. Sargent, K. Oe, C. Caneau, and J. M. Xu, “OEIC-enabling LCI lasers with current guides: Combined theoretical-experimental investigation of internal operating mechanisms,” IEEE J. Quantum Electron. 34(7), 1280–1287 (1998).
[CrossRef]

K. Oe, Y. Noguchi, and C. Caneau, “GaInAsP lateral current injection lasers on semi-insulating substrate,” IEEE Photon. Technol. Lett. 6(4), 479–481 (1994).
[CrossRef]

Ohtake, M.

H. Naitoh, S. Sakamoto, M. Ohtake, T. Okumura, T. Maruyama, N. Nishiyama, and S. Arai, “GaInAsP/InP Membrane Buried Heterostructure Distributed Feedback Laser with Air-Bridge Structure,” Jpn. J. Appl. Phys. 46(47), L1158–L1160 (2007).
[CrossRef]

S. Sakamoto, H. Naitoh, M. Ohtake, Y. Nishimoto, S. Tamura, T. Maruyama, N. Nishiyama, and S. Arai, “Strongly index-coupled membrane BH-DFB lasers with surface corrugation grating,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1135–1141 (2007).
[CrossRef]

Okamoto, T.

T. Okamoto, N. Nunoya, Y. Onodera, T. Yamazaki, S. Tamura, and S. Arai, “Optically pumped membrane BH-DFB lasers for low-threshold and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1361–1366 (2003).
[CrossRef]

Okumura, T.

H. Naitoh, S. Sakamoto, M. Ohtake, T. Okumura, T. Maruyama, N. Nishiyama, and S. Arai, “GaInAsP/InP Membrane Buried Heterostructure Distributed Feedback Laser with Air-Bridge Structure,” Jpn. J. Appl. Phys. 46(47), L1158–L1160 (2007).
[CrossRef]

T. Okumura, T. Maruyama, M. Kanemaru, S. Sakamoto, and S. Arai, “Single-mode operation of GaInAsP/InP- membrane distributed feedback lasers bonded on silicon-on-insulator substrate with rib-waveguide structure,” Jpn. J. Appl. Phys. 46(48), L1206–L1208 (2007).
[CrossRef]

T. Maruyama, T. Okumura, S. Sakamoto, K. Miura, Y. Nishimoto, and S. Arai, “GaInAsP/InP membrane BH-DFB lasers directly bonded on SOI substrate,” Opt. Express 14(18), 8184–8188 (2006).
[CrossRef] [PubMed]

Onodera, Y.

T. Okamoto, N. Nunoya, Y. Onodera, T. Yamazaki, S. Tamura, and S. Arai, “Optically pumped membrane BH-DFB lasers for low-threshold and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1361–1366 (2003).
[CrossRef]

Painter, O.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Park, H.-G.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J. H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[CrossRef] [PubMed]

Pleumeekers, J.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, V. Dominic, A. Mathur, P. Chavarkar, M. Missey, A. Dentai, S. Hurtt, J. Bäck, R. Muthiah, S. Murthy, R. Salvatore, S. Grubb, C. Joyner, J. Rossi, R. Schneider, M. Ziari, F. Kish, and D. Welch, “Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s,” Electron. Lett. 42(13), 771–772 (2006).
[CrossRef]

Rojo-Romeo, P.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakir, H. T. Hattori, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonic components and ciricuits: Toward 2.5 dimentional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11(2), 395–407 (2005).
[CrossRef]

Rossi, J.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, V. Dominic, A. Mathur, P. Chavarkar, M. Missey, A. Dentai, S. Hurtt, J. Bäck, R. Muthiah, S. Murthy, R. Salvatore, S. Grubb, C. Joyner, J. Rossi, R. Schneider, M. Ziari, F. Kish, and D. Welch, “Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s,” Electron. Lett. 42(13), 771–772 (2006).
[CrossRef]

Sakamoto, S.

S. Sakamoto, H. Naitoh, M. Ohtake, Y. Nishimoto, S. Tamura, T. Maruyama, N. Nishiyama, and S. Arai, “Strongly index-coupled membrane BH-DFB lasers with surface corrugation grating,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1135–1141 (2007).
[CrossRef]

H. Naitoh, S. Sakamoto, M. Ohtake, T. Okumura, T. Maruyama, N. Nishiyama, and S. Arai, “GaInAsP/InP Membrane Buried Heterostructure Distributed Feedback Laser with Air-Bridge Structure,” Jpn. J. Appl. Phys. 46(47), L1158–L1160 (2007).
[CrossRef]

T. Okumura, T. Maruyama, M. Kanemaru, S. Sakamoto, and S. Arai, “Single-mode operation of GaInAsP/InP- membrane distributed feedback lasers bonded on silicon-on-insulator substrate with rib-waveguide structure,” Jpn. J. Appl. Phys. 46(48), L1206–L1208 (2007).
[CrossRef]

T. Maruyama, T. Okumura, S. Sakamoto, K. Miura, Y. Nishimoto, and S. Arai, “GaInAsP/InP membrane BH-DFB lasers directly bonded on SOI substrate,” Opt. Express 14(18), 8184–8188 (2006).
[CrossRef] [PubMed]

Salvatore, R.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, V. Dominic, A. Mathur, P. Chavarkar, M. Missey, A. Dentai, S. Hurtt, J. Bäck, R. Muthiah, S. Murthy, R. Salvatore, S. Grubb, C. Joyner, J. Rossi, R. Schneider, M. Ziari, F. Kish, and D. Welch, “Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s,” Electron. Lett. 42(13), 771–772 (2006).
[CrossRef]

Sano, H.

M. Aoki, H. Sano, M. Suzuki, M. Takahashi, K. Uomi, and A. Takai, “Novel structure MQW electroabsorption-modulator/DFB-laser integrated device fabricated by selective area MOCVD growth,” Electron. Lett. 27(23), 2138–2140 (1991).
[CrossRef]

Saraswat, K. C.

P. Kapur, G. Chandra, J. P. McVittie, and K. C. Saraswat, “Technology and reliability constrained future copper interconnects.II. Performance implications,” Trans. Electron Devices. 49(4), 598–604 (2002).
[CrossRef]

P. Kapur, J. P. McVittie, and K. C. Saraswat, “Technology and reliability constrained future copper interconnects—Part I: Resistance modeling,” Trans. Electron Devices. 49(4), 590–597 (2002).
[CrossRef]

Sargent, E. H.

E. H. Sargent, K. Oe, C. Caneau, and J. M. Xu, “OEIC-enabling LCI lasers with current guides: Combined theoretical-experimental investigation of internal operating mechanisms,” IEEE J. Quantum Electron. 34(7), 1280–1287 (1998).
[CrossRef]

Scherer, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Schneider, R.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, V. Dominic, A. Mathur, P. Chavarkar, M. Missey, A. Dentai, S. Hurtt, J. Bäck, R. Muthiah, S. Murthy, R. Salvatore, S. Grubb, C. Joyner, J. Rossi, R. Schneider, M. Ziari, F. Kish, and D. Welch, “Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s,” Electron. Lett. 42(13), 771–772 (2006).
[CrossRef]

Seassal, C.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakir, H. T. Hattori, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonic components and ciricuits: Toward 2.5 dimentional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11(2), 395–407 (2005).
[CrossRef]

Suzuki, M.

M. Aoki, H. Sano, M. Suzuki, M. Takahashi, K. Uomi, and A. Takai, “Novel structure MQW electroabsorption-modulator/DFB-laser integrated device fabricated by selective area MOCVD growth,” Electron. Lett. 27(23), 2138–2140 (1991).
[CrossRef]

Takahashi, M.

M. Aoki, H. Sano, M. Suzuki, M. Takahashi, K. Uomi, and A. Takai, “Novel structure MQW electroabsorption-modulator/DFB-laser integrated device fabricated by selective area MOCVD growth,” Electron. Lett. 27(23), 2138–2140 (1991).
[CrossRef]

Takai, A.

M. Aoki, H. Sano, M. Suzuki, M. Takahashi, K. Uomi, and A. Takai, “Novel structure MQW electroabsorption-modulator/DFB-laser integrated device fabricated by selective area MOCVD growth,” Electron. Lett. 27(23), 2138–2140 (1991).
[CrossRef]

Tamura, S.

S. Sakamoto, H. Naitoh, M. Ohtake, Y. Nishimoto, S. Tamura, T. Maruyama, N. Nishiyama, and S. Arai, “Strongly index-coupled membrane BH-DFB lasers with surface corrugation grating,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1135–1141 (2007).
[CrossRef]

T. Okamoto, N. Nunoya, Y. Onodera, T. Yamazaki, S. Tamura, and S. Arai, “Optically pumped membrane BH-DFB lasers for low-threshold and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1361–1366 (2003).
[CrossRef]

N. Nunoya, M. Nakamura, M. Morshed, S. Tamura, and S. Arai, “High-performance 1.55-μm wavelength GaInAsP-InP Distributed-Feedback Lasers with wirelike active regions,” IEEE J. Sel. Top. Quantum Electron. 7(2), 249–258 (2001).
[CrossRef]

Touraille, E.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakir, H. T. Hattori, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonic components and ciricuits: Toward 2.5 dimentional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11(2), 395–407 (2005).
[CrossRef]

Uomi, K.

M. Aoki, H. Sano, M. Suzuki, M. Takahashi, K. Uomi, and A. Takai, “Novel structure MQW electroabsorption-modulator/DFB-laser integrated device fabricated by selective area MOCVD growth,” Electron. Lett. 27(23), 2138–2140 (1991).
[CrossRef]

Ushigome, R.

M. Fujita, R. Ushigome, and T. Baba, “Continuous wave lasing in GaInAsP microdisk injection laser with threshold current of 40 μA,” Electron. Lett. 36(9), 790–791 (2000).
[CrossRef]

Viktorovitch, P.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakir, H. T. Hattori, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonic components and ciricuits: Toward 2.5 dimentional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11(2), 395–407 (2005).
[CrossRef]

Welch, D.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, V. Dominic, A. Mathur, P. Chavarkar, M. Missey, A. Dentai, S. Hurtt, J. Bäck, R. Muthiah, S. Murthy, R. Salvatore, S. Grubb, C. Joyner, J. Rossi, R. Schneider, M. Ziari, F. Kish, and D. Welch, “Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s,” Electron. Lett. 42(13), 771–772 (2006).
[CrossRef]

Xu, J. M.

E. H. Sargent, K. Oe, C. Caneau, and J. M. Xu, “OEIC-enabling LCI lasers with current guides: Combined theoretical-experimental investigation of internal operating mechanisms,” IEEE J. Quantum Electron. 34(7), 1280–1287 (1998).
[CrossRef]

Yamazaki, T.

T. Okamoto, N. Nunoya, Y. Onodera, T. Yamazaki, S. Tamura, and S. Arai, “Optically pumped membrane BH-DFB lasers for low-threshold and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1361–1366 (2003).
[CrossRef]

Yang, J.-K.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J. H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[CrossRef] [PubMed]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Ziari, M.

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, V. Dominic, A. Mathur, P. Chavarkar, M. Missey, A. Dentai, S. Hurtt, J. Bäck, R. Muthiah, S. Murthy, R. Salvatore, S. Grubb, C. Joyner, J. Rossi, R. Schneider, M. Ziari, F. Kish, and D. Welch, “Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s,” Electron. Lett. 42(13), 771–772 (2006).
[CrossRef]

Electron. Lett. (3)

R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, V. Dominic, A. Mathur, P. Chavarkar, M. Missey, A. Dentai, S. Hurtt, J. Bäck, R. Muthiah, S. Murthy, R. Salvatore, S. Grubb, C. Joyner, J. Rossi, R. Schneider, M. Ziari, F. Kish, and D. Welch, “Single-chip 40-channel InP transmitter photonic integrated circuit capable of aggregate data rate of 1.6 Tbit/s,” Electron. Lett. 42(13), 771–772 (2006).
[CrossRef]

M. Fujita, R. Ushigome, and T. Baba, “Continuous wave lasing in GaInAsP microdisk injection laser with threshold current of 40 μA,” Electron. Lett. 36(9), 790–791 (2000).
[CrossRef]

M. Aoki, H. Sano, M. Suzuki, M. Takahashi, K. Uomi, and A. Takai, “Novel structure MQW electroabsorption-modulator/DFB-laser integrated device fabricated by selective area MOCVD growth,” Electron. Lett. 27(23), 2138–2140 (1991).
[CrossRef]

IEEE J. Quantum Electron. (1)

E. H. Sargent, K. Oe, C. Caneau, and J. M. Xu, “OEIC-enabling LCI lasers with current guides: Combined theoretical-experimental investigation of internal operating mechanisms,” IEEE J. Quantum Electron. 34(7), 1280–1287 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (4)

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. B. Bakir, H. T. Hattori, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonic components and ciricuits: Toward 2.5 dimentional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11(2), 395–407 (2005).
[CrossRef]

T. Okamoto, N. Nunoya, Y. Onodera, T. Yamazaki, S. Tamura, and S. Arai, “Optically pumped membrane BH-DFB lasers for low-threshold and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1361–1366 (2003).
[CrossRef]

N. Nunoya, M. Nakamura, M. Morshed, S. Tamura, and S. Arai, “High-performance 1.55-μm wavelength GaInAsP-InP Distributed-Feedback Lasers with wirelike active regions,” IEEE J. Sel. Top. Quantum Electron. 7(2), 249–258 (2001).
[CrossRef]

S. Sakamoto, H. Naitoh, M. Ohtake, Y. Nishimoto, S. Tamura, T. Maruyama, N. Nishiyama, and S. Arai, “Strongly index-coupled membrane BH-DFB lasers with surface corrugation grating,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1135–1141 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K. Oe, Y. Noguchi, and C. Caneau, “GaInAsP lateral current injection lasers on semi-insulating substrate,” IEEE Photon. Technol. Lett. 6(4), 479–481 (1994).
[CrossRef]

J. Appl. Phys. (1)

H. Namizaki, H. Kan, M. Ishii, and A. Ito, “Transverse-junction-stripe-geometry double-heterostructure lasers with very low threshold current,” J. Appl. Phys. 45(6), 2785–2786 (1974).
[CrossRef]

Jpn. J. Appl. Phys. (2)

H. Naitoh, S. Sakamoto, M. Ohtake, T. Okumura, T. Maruyama, N. Nishiyama, and S. Arai, “GaInAsP/InP Membrane Buried Heterostructure Distributed Feedback Laser with Air-Bridge Structure,” Jpn. J. Appl. Phys. 46(47), L1158–L1160 (2007).
[CrossRef]

T. Okumura, T. Maruyama, M. Kanemaru, S. Sakamoto, and S. Arai, “Single-mode operation of GaInAsP/InP- membrane distributed feedback lasers bonded on silicon-on-insulator substrate with rib-waveguide structure,” Jpn. J. Appl. Phys. 46(48), L1206–L1208 (2007).
[CrossRef]

Opt. Express (1)

Proc. IEEE (1)

D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
[CrossRef]

Science (2)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J. H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[CrossRef] [PubMed]

Trans. Electron Devices. (2)

P. Kapur, J. P. McVittie, and K. C. Saraswat, “Technology and reliability constrained future copper interconnects—Part I: Resistance modeling,” Trans. Electron Devices. 49(4), 590–597 (2002).
[CrossRef]

P. Kapur, G. Chandra, J. P. McVittie, and K. C. Saraswat, “Technology and reliability constrained future copper interconnects.II. Performance implications,” Trans. Electron Devices. 49(4), 598–604 (2002).
[CrossRef]

VLSI J. (1)

G. Chen, H. Chen, M. Haurylau, N. A. Nelson, D. H. Albonesi, P. M. Fauchet, and E. G. Friedman, ““Prediction of CMOS compatible on-chip optical interconnect,” Integr,” VLSI J. 40(4), 434–446 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Illustrations of (a) membrane BH-DFB laser and (b) BH laser on SI-InP substrate.

Fig. 2
Fig. 2

Wafer structure of the LCI laser and optical field.

Fig. 3
Fig. 3

Fabrication processes of LCI lasers.

Fig. 4
Fig. 4

(a) Schematic structure and cross sectional SEM views of the 5.4-um-wide device (b) I-V, I-L characteristics of 1470 µm long LCI laser (c) Far field pattern of 5.4-µm wide stripe.

Fig. 5
Fig. 5

a) Cross sectional SEM view of 2.0 µm width device (b) I-V, I-L characteristics of 2.0 m width and 805 µm long LCI laser (c) External quantum efficiency as a function of cavity length (d) Far field pattern of 2.0-µm wide stripe.

Fig. 6
Fig. 6

Simuration model and results of the recombination radiation distribution in latelal direction.

Metrics