Abstract

We report about a thermal regeneration of fiber Bragg gratings written in photosensitive fibers with nanosecond laser pulses. We observe a regenerative process in a highly photosensitive fiber without hydrogen loading which indicates a secondary grating growth in an optical fiber by thermal activation. This process is more temperature stable than the commonly known gratings produced by color center modifications. The writing conditions of such new type of gratings are investigated and the temperature behavior of these regenerated fiber Bragg gratings is analyzed. The application possibilities are in the field of high temperature sensor systems by making use of the combination of good spectral shape of a Type I grating with a Type II like temperature stability.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. P. Hand and P. St. J. Russell, “Photoinduced refractive- index changes in germanosilicate fibers,” Opt. Lett. 15(2), 102–104 (1990).
    [CrossRef] [PubMed]
  2. P. St. J. Russell, L. J. Poyntz-Wright, and D. P. Hand, “Frequency doubling, absorption, and grating formation in glass fibers: effective defects or defective effects?” Proc. SPIE 1373, 126 (1991).
    [CrossRef]
  3. H. G. Limberger, P. Y. Fonjallaz, R. P. Salathe, and F. Cochet, “Compaction- and photoelastic-induced index changes in fiber Bragg gratings,” Appl. Phys. Lett. 68(22), 3069 (1996).
    [CrossRef]
  4. M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, “Densification involved in the UV-based photosensitivity of silicaglasses and optical fibers,” J. Lightwave Technol. 15(8), 1329–1342 (1997).
    [CrossRef]
  5. T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73 (1994).
    [CrossRef]
  6. J.-L. Archambault, L. Reekie, and P. St. J. Russell, “100% reflectivity Bragg reflectors produced in optical fibres by single Excimer laser pulses,” Electron. Lett. 29(5), 453–455 (1993).
    [CrossRef]
  7. C. Chojetzki, M. Rothhardt, S. Ommer, S. Unger, K. Schuster, and H. R. Mueller, “High-reflectivity draw-tower fiber Bragg grating arrays and single gratings of type II,” Opt. Eng. 44(6), 060503 (2005).
    [CrossRef]
  8. N. Groothoff and J. Canning, “Enhanced type IIA gratings for high-temperature operation,” Opt. Lett. 29(20), 2360–2362 (2004).
    [CrossRef] [PubMed]
  9. L. Dong and W. F. Liu, “Thermal decay of fiber Bragg gratings of positive and negative index changes formed at 193 nm in a boron-codoped germanosilicate fiber,” Appl. Opt. 36(31), 8222–8226 (1997).
    [CrossRef]
  10. M. Fokine, “Thermal stability of chemical composition gratings in fluorine-germanium-doped silica fibers,” Opt. Lett. 27(12), 1016–1018 (2002).
    [CrossRef]
  11. S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett. 33(16), 1917–1919 (2008).
    [CrossRef] [PubMed]
  12. M. L. Dockney, S. W. James, and R. P. Tatam, “Fibre Bragg gratings fabricated using a wavelength tuneable laser source and a phase mask based interferometer,” Meas. Sci. Technol. 7(4), 445–448 (1996).
    [CrossRef]
  13. E. Lindner, M. Becker, M. Rothhardt, and H. Bartelt, “Generation and Characterization of First Order Fiber Bragg Gratings with Bragg Wavelengths in the Visible Spectral Range,” Opt. Commun. 281(18), 4612–4615 (2008).
    [CrossRef]
  14. M. Becker, J. Bergmann, S. Brückner, M. Franke, E. Lindner, M. W. Rothhardt, and H. Bartelt, “Fiber Bragg grating inscription combining DUV sub-picosecond laser pulses and two-beam interferometry,” Opt. Express 16(23), 19169–19178 (2008).
    [CrossRef]

2008 (3)

2005 (1)

C. Chojetzki, M. Rothhardt, S. Ommer, S. Unger, K. Schuster, and H. R. Mueller, “High-reflectivity draw-tower fiber Bragg grating arrays and single gratings of type II,” Opt. Eng. 44(6), 060503 (2005).
[CrossRef]

2004 (1)

2002 (1)

1997 (2)

L. Dong and W. F. Liu, “Thermal decay of fiber Bragg gratings of positive and negative index changes formed at 193 nm in a boron-codoped germanosilicate fiber,” Appl. Opt. 36(31), 8222–8226 (1997).
[CrossRef]

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, “Densification involved in the UV-based photosensitivity of silicaglasses and optical fibers,” J. Lightwave Technol. 15(8), 1329–1342 (1997).
[CrossRef]

1996 (2)

H. G. Limberger, P. Y. Fonjallaz, R. P. Salathe, and F. Cochet, “Compaction- and photoelastic-induced index changes in fiber Bragg gratings,” Appl. Phys. Lett. 68(22), 3069 (1996).
[CrossRef]

M. L. Dockney, S. W. James, and R. P. Tatam, “Fibre Bragg gratings fabricated using a wavelength tuneable laser source and a phase mask based interferometer,” Meas. Sci. Technol. 7(4), 445–448 (1996).
[CrossRef]

1994 (1)

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73 (1994).
[CrossRef]

1993 (1)

J.-L. Archambault, L. Reekie, and P. St. J. Russell, “100% reflectivity Bragg reflectors produced in optical fibres by single Excimer laser pulses,” Electron. Lett. 29(5), 453–455 (1993).
[CrossRef]

1991 (1)

P. St. J. Russell, L. J. Poyntz-Wright, and D. P. Hand, “Frequency doubling, absorption, and grating formation in glass fibers: effective defects or defective effects?” Proc. SPIE 1373, 126 (1991).
[CrossRef]

1990 (1)

Archambault, J.-L.

J.-L. Archambault, L. Reekie, and P. St. J. Russell, “100% reflectivity Bragg reflectors produced in optical fibres by single Excimer laser pulses,” Electron. Lett. 29(5), 453–455 (1993).
[CrossRef]

Bandyopadhyay, S.

Bartelt, H.

M. Becker, J. Bergmann, S. Brückner, M. Franke, E. Lindner, M. W. Rothhardt, and H. Bartelt, “Fiber Bragg grating inscription combining DUV sub-picosecond laser pulses and two-beam interferometry,” Opt. Express 16(23), 19169–19178 (2008).
[CrossRef]

E. Lindner, M. Becker, M. Rothhardt, and H. Bartelt, “Generation and Characterization of First Order Fiber Bragg Gratings with Bragg Wavelengths in the Visible Spectral Range,” Opt. Commun. 281(18), 4612–4615 (2008).
[CrossRef]

Bayon, J. F.

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, “Densification involved in the UV-based photosensitivity of silicaglasses and optical fibers,” J. Lightwave Technol. 15(8), 1329–1342 (1997).
[CrossRef]

Becker, M.

E. Lindner, M. Becker, M. Rothhardt, and H. Bartelt, “Generation and Characterization of First Order Fiber Bragg Gratings with Bragg Wavelengths in the Visible Spectral Range,” Opt. Commun. 281(18), 4612–4615 (2008).
[CrossRef]

M. Becker, J. Bergmann, S. Brückner, M. Franke, E. Lindner, M. W. Rothhardt, and H. Bartelt, “Fiber Bragg grating inscription combining DUV sub-picosecond laser pulses and two-beam interferometry,” Opt. Express 16(23), 19169–19178 (2008).
[CrossRef]

Bergmann, J.

Bernage, P.

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, “Densification involved in the UV-based photosensitivity of silicaglasses and optical fibers,” J. Lightwave Technol. 15(8), 1329–1342 (1997).
[CrossRef]

Brückner, S.

Canning, J.

Chojetzki, C.

C. Chojetzki, M. Rothhardt, S. Ommer, S. Unger, K. Schuster, and H. R. Mueller, “High-reflectivity draw-tower fiber Bragg grating arrays and single gratings of type II,” Opt. Eng. 44(6), 060503 (2005).
[CrossRef]

Cochet, F.

H. G. Limberger, P. Y. Fonjallaz, R. P. Salathe, and F. Cochet, “Compaction- and photoelastic-induced index changes in fiber Bragg gratings,” Appl. Phys. Lett. 68(22), 3069 (1996).
[CrossRef]

Cook, K.

Cordier, P.

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, “Densification involved in the UV-based photosensitivity of silicaglasses and optical fibers,” J. Lightwave Technol. 15(8), 1329–1342 (1997).
[CrossRef]

Delevaque, E.

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, “Densification involved in the UV-based photosensitivity of silicaglasses and optical fibers,” J. Lightwave Technol. 15(8), 1329–1342 (1997).
[CrossRef]

Dockney, M. L.

M. L. Dockney, S. W. James, and R. P. Tatam, “Fibre Bragg gratings fabricated using a wavelength tuneable laser source and a phase mask based interferometer,” Meas. Sci. Technol. 7(4), 445–448 (1996).
[CrossRef]

Dong, L.

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, “Densification involved in the UV-based photosensitivity of silicaglasses and optical fibers,” J. Lightwave Technol. 15(8), 1329–1342 (1997).
[CrossRef]

L. Dong and W. F. Liu, “Thermal decay of fiber Bragg gratings of positive and negative index changes formed at 193 nm in a boron-codoped germanosilicate fiber,” Appl. Opt. 36(31), 8222–8226 (1997).
[CrossRef]

Douay, M.

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, “Densification involved in the UV-based photosensitivity of silicaglasses and optical fibers,” J. Lightwave Technol. 15(8), 1329–1342 (1997).
[CrossRef]

Erdogan, T.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73 (1994).
[CrossRef]

Fokine, M.

Fonjallaz, P. Y.

H. G. Limberger, P. Y. Fonjallaz, R. P. Salathe, and F. Cochet, “Compaction- and photoelastic-induced index changes in fiber Bragg gratings,” Appl. Phys. Lett. 68(22), 3069 (1996).
[CrossRef]

Franke, M.

Groothoff, N.

Hand, D. P.

P. St. J. Russell, L. J. Poyntz-Wright, and D. P. Hand, “Frequency doubling, absorption, and grating formation in glass fibers: effective defects or defective effects?” Proc. SPIE 1373, 126 (1991).
[CrossRef]

D. P. Hand and P. St. J. Russell, “Photoinduced refractive- index changes in germanosilicate fibers,” Opt. Lett. 15(2), 102–104 (1990).
[CrossRef] [PubMed]

James, S. W.

M. L. Dockney, S. W. James, and R. P. Tatam, “Fibre Bragg gratings fabricated using a wavelength tuneable laser source and a phase mask based interferometer,” Meas. Sci. Technol. 7(4), 445–448 (1996).
[CrossRef]

Lemaire, P. J.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73 (1994).
[CrossRef]

Limberger, H. G.

H. G. Limberger, P. Y. Fonjallaz, R. P. Salathe, and F. Cochet, “Compaction- and photoelastic-induced index changes in fiber Bragg gratings,” Appl. Phys. Lett. 68(22), 3069 (1996).
[CrossRef]

Lindner, E.

E. Lindner, M. Becker, M. Rothhardt, and H. Bartelt, “Generation and Characterization of First Order Fiber Bragg Gratings with Bragg Wavelengths in the Visible Spectral Range,” Opt. Commun. 281(18), 4612–4615 (2008).
[CrossRef]

M. Becker, J. Bergmann, S. Brückner, M. Franke, E. Lindner, M. W. Rothhardt, and H. Bartelt, “Fiber Bragg grating inscription combining DUV sub-picosecond laser pulses and two-beam interferometry,” Opt. Express 16(23), 19169–19178 (2008).
[CrossRef]

Liu, W. F.

Mizrahi, V.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73 (1994).
[CrossRef]

Monroe, D.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73 (1994).
[CrossRef]

Mueller, H. R.

C. Chojetzki, M. Rothhardt, S. Ommer, S. Unger, K. Schuster, and H. R. Mueller, “High-reflectivity draw-tower fiber Bragg grating arrays and single gratings of type II,” Opt. Eng. 44(6), 060503 (2005).
[CrossRef]

Niay, P.

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, “Densification involved in the UV-based photosensitivity of silicaglasses and optical fibers,” J. Lightwave Technol. 15(8), 1329–1342 (1997).
[CrossRef]

Ommer, S.

C. Chojetzki, M. Rothhardt, S. Ommer, S. Unger, K. Schuster, and H. R. Mueller, “High-reflectivity draw-tower fiber Bragg grating arrays and single gratings of type II,” Opt. Eng. 44(6), 060503 (2005).
[CrossRef]

Poignant, H.

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, “Densification involved in the UV-based photosensitivity of silicaglasses and optical fibers,” J. Lightwave Technol. 15(8), 1329–1342 (1997).
[CrossRef]

Poumellec, B.

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, “Densification involved in the UV-based photosensitivity of silicaglasses and optical fibers,” J. Lightwave Technol. 15(8), 1329–1342 (1997).
[CrossRef]

Poyntz-Wright, L. J.

P. St. J. Russell, L. J. Poyntz-Wright, and D. P. Hand, “Frequency doubling, absorption, and grating formation in glass fibers: effective defects or defective effects?” Proc. SPIE 1373, 126 (1991).
[CrossRef]

Reekie, L.

J.-L. Archambault, L. Reekie, and P. St. J. Russell, “100% reflectivity Bragg reflectors produced in optical fibres by single Excimer laser pulses,” Electron. Lett. 29(5), 453–455 (1993).
[CrossRef]

Rothhardt, M.

E. Lindner, M. Becker, M. Rothhardt, and H. Bartelt, “Generation and Characterization of First Order Fiber Bragg Gratings with Bragg Wavelengths in the Visible Spectral Range,” Opt. Commun. 281(18), 4612–4615 (2008).
[CrossRef]

C. Chojetzki, M. Rothhardt, S. Ommer, S. Unger, K. Schuster, and H. R. Mueller, “High-reflectivity draw-tower fiber Bragg grating arrays and single gratings of type II,” Opt. Eng. 44(6), 060503 (2005).
[CrossRef]

Rothhardt, M. W.

Russell, P. St. J.

J.-L. Archambault, L. Reekie, and P. St. J. Russell, “100% reflectivity Bragg reflectors produced in optical fibres by single Excimer laser pulses,” Electron. Lett. 29(5), 453–455 (1993).
[CrossRef]

P. St. J. Russell, L. J. Poyntz-Wright, and D. P. Hand, “Frequency doubling, absorption, and grating formation in glass fibers: effective defects or defective effects?” Proc. SPIE 1373, 126 (1991).
[CrossRef]

D. P. Hand and P. St. J. Russell, “Photoinduced refractive- index changes in germanosilicate fibers,” Opt. Lett. 15(2), 102–104 (1990).
[CrossRef] [PubMed]

Salathe, R. P.

H. G. Limberger, P. Y. Fonjallaz, R. P. Salathe, and F. Cochet, “Compaction- and photoelastic-induced index changes in fiber Bragg gratings,” Appl. Phys. Lett. 68(22), 3069 (1996).
[CrossRef]

Schuster, K.

C. Chojetzki, M. Rothhardt, S. Ommer, S. Unger, K. Schuster, and H. R. Mueller, “High-reflectivity draw-tower fiber Bragg grating arrays and single gratings of type II,” Opt. Eng. 44(6), 060503 (2005).
[CrossRef]

Stevenson, M.

Tatam, R. P.

M. L. Dockney, S. W. James, and R. P. Tatam, “Fibre Bragg gratings fabricated using a wavelength tuneable laser source and a phase mask based interferometer,” Meas. Sci. Technol. 7(4), 445–448 (1996).
[CrossRef]

Taunay, T.

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, “Densification involved in the UV-based photosensitivity of silicaglasses and optical fibers,” J. Lightwave Technol. 15(8), 1329–1342 (1997).
[CrossRef]

Unger, S.

C. Chojetzki, M. Rothhardt, S. Ommer, S. Unger, K. Schuster, and H. R. Mueller, “High-reflectivity draw-tower fiber Bragg grating arrays and single gratings of type II,” Opt. Eng. 44(6), 060503 (2005).
[CrossRef]

Xie, W. X.

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, “Densification involved in the UV-based photosensitivity of silicaglasses and optical fibers,” J. Lightwave Technol. 15(8), 1329–1342 (1997).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

H. G. Limberger, P. Y. Fonjallaz, R. P. Salathe, and F. Cochet, “Compaction- and photoelastic-induced index changes in fiber Bragg gratings,” Appl. Phys. Lett. 68(22), 3069 (1996).
[CrossRef]

Electron. Lett. (1)

J.-L. Archambault, L. Reekie, and P. St. J. Russell, “100% reflectivity Bragg reflectors produced in optical fibres by single Excimer laser pulses,” Electron. Lett. 29(5), 453–455 (1993).
[CrossRef]

J. Appl. Phys. (1)

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73 (1994).
[CrossRef]

J. Lightwave Technol. (1)

M. Douay, W. X. Xie, T. Taunay, P. Bernage, P. Niay, P. Cordier, B. Poumellec, L. Dong, J. F. Bayon, H. Poignant, and E. Delevaque, “Densification involved in the UV-based photosensitivity of silicaglasses and optical fibers,” J. Lightwave Technol. 15(8), 1329–1342 (1997).
[CrossRef]

Meas. Sci. Technol. (1)

M. L. Dockney, S. W. James, and R. P. Tatam, “Fibre Bragg gratings fabricated using a wavelength tuneable laser source and a phase mask based interferometer,” Meas. Sci. Technol. 7(4), 445–448 (1996).
[CrossRef]

Opt. Commun. (1)

E. Lindner, M. Becker, M. Rothhardt, and H. Bartelt, “Generation and Characterization of First Order Fiber Bragg Gratings with Bragg Wavelengths in the Visible Spectral Range,” Opt. Commun. 281(18), 4612–4615 (2008).
[CrossRef]

Opt. Eng. (1)

C. Chojetzki, M. Rothhardt, S. Ommer, S. Unger, K. Schuster, and H. R. Mueller, “High-reflectivity draw-tower fiber Bragg grating arrays and single gratings of type II,” Opt. Eng. 44(6), 060503 (2005).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Proc. SPIE (1)

P. St. J. Russell, L. J. Poyntz-Wright, and D. P. Hand, “Frequency doubling, absorption, and grating formation in glass fibers: effective defects or defective effects?” Proc. SPIE 1373, 126 (1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

a) Interferometer geometry, b) Annealing setup

Fig. 2
Fig. 2

Grating reflectivity (squares) and Bragg wavelength (triangles) evolution of the grating from Fig. 3 during the writing process.

Fig. 3
Fig. 3

Annealing behavior of regenerative fiber Bragg grating in comparison with common Type I gratings

Fig. 4
Fig. 4

Evolution of Bragg wavelength and spectral width (FWHM) during the annealing process at 700 °C

Fig. 5
Fig. 5

Regeneration factor (difference between 2nd maximum and minimum of grating reflectivity during annealing at 700 °C; triangles); time to 2nd maximum of grating reflectivity during annealing

Fig. 6
Fig. 6

Regeneration factor in dependence on writing laser fluence (squares: variation with pulse number, triangles variation with energy density)

Fig. 7
Fig. 7

Calibration curves of regenerated fiber Bragg gratings, red triangles from 1st calibration, blue squares from 2nd calibration. After 1st calibration, the grating was heated for 72 h at 550 °C (insets show magnified data at 250 °C and 500 °C)

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

λB=2neffΛFBG=neffλUVsin(ϑFBG)
ages=a0+a1+a2
d(ages)=d0(fages)f
Ed(ages)=d0d(ages)cos(ϑFBG)cos(α)Ed(0)
η=tanh1(R)

Metrics