Abstract

A flat waveguide for the middle infrared was made by co-extrusion of two silver halide crystals of different chemical compositions. The transmission of the waveguide and its modal behavior was studied using a Fourier Transform Spectrometer and a dedicated optical bench. Analyzing this spectrum, we were able to obtain the cut-off wavelength of the waveguide. We observed a single mode behavior for wavelengths longer than 8.83μm, in good agreement with the theoretically expected values. This novel procedure is ideal for tailoring the properties of the waveguide for specific applications, in particular the spectral range where it exhibits a single-mode behavior. It can thus be applied to achieve modal filtering for mid-IR astronomical interferometers (e.g. beam combiners, nullers, etc.).

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. H. Julien, P. Vagos, J. M. Lourtioz, D. D. Yang, and R. Planel, “Novel all-optical 10_m waveguide modulator based on intersubband absorption in GaAs_A1GaAs quantum wells,” Appl. Phys. Lett. 59(21), 2645–2647 (1991).
    [CrossRef]
  2. Y. Raichlin and A. Katzir, “Fiber optic evanescent wave spectroscopy in the middle infrared,” Appl. Spect. 62, 55A–72A (2008).
  3. S. E. Plunkett, S. Propst, and M. S. Braiman, “Supported planar germanium waveguides for infrared evanescent-wave sensing,” Appl. Opt. 36(18), 4055–4061 (1997).
    [CrossRef] [PubMed]
  4. L. Labadie, P. Kern, P. Labeye, E. LeCoarer, C. Vigreux-Bercovici, A. Pradel, J.-E. Broquin, and V. Kirschner, “Technology challenges for space interferometry: The option of mid-infrared integrated optics,” Adv. Space Res. 41(12), 1975–1982 (2008).
    [CrossRef]
  5. T. Lewi, S. Shalem, A. Tzun, and A. Katzir, “Silver halide single mode fiber with improved properties in the middle infrared,” Appl. Phys. Lett. 91(25), 251112 (2007).
    [CrossRef]
  6. O. Eyal, V. Scharf, S. Shalem, and A. Katzir, “Single-mode mid-infrared silver halide planar waveguides,” Opt. Lett. 21(15), 1147 (1996).
    [CrossRef] [PubMed]
  7. B. Dekel and A. Katzir, “Mid-infrared diffused planar waveguides made of silver halide chloro-bromide,” Appl. Opt. 41(18), 3622–3627 (2002).
    [CrossRef] [PubMed]
  8. B. Dekel and A. Katzir, “Graded-index mid-infrared planar optical waveguides made from silver halides,” Opt. Lett. 26(20), 1553–1555 (2001).
    [CrossRef]
  9. J.-P. Berger, P. Haguenauer, P. Kern, K. Rousselet-Perraut, F. Malbet, S. Gluck, L. Lagny, I. Schanen-Duport, E. Laurent, A. Delboulbe, E. Tatulli, W. A. Traub, N. Carleton, R. Millan-Gabet, J. D. Monnier, E. Pedretti, and S. Ragland, “An integrated-optics 3-way beam combiner for IOTA,” Proc. SPIE 4838, 1099–1106 (2003).
    [CrossRef]
  10. D. Bunimovich and A. Katzir, “Dielectric properties of silver halide and potassium halide crystals,” Appl. Opt. 32(12), 2045–2048 (1993).
    [CrossRef] [PubMed]
  11. C. V. M. Fridlund, “The Darwin Mission,” Adv. Space Res. 34(3), 613–617 (2004).
    [CrossRef]
  12. C. A. Beichman, N. J. Woolf, and C. A. Lindensmith, eds., “The Terrestrial Planet Finder (TPF): a NASA Origins Program to search for habitable planets (Pasadena: JPL Publication 99-3, 1999).
  13. Y. Katsuyama, M. Tokuda, N. Uchida, and M. Nakahara, “New Method for measuring V-Value of a single mode optical fiber,” Electron. Lett. 12(25), 669–670 (1976).
    [CrossRef]

2008

L. Labadie, P. Kern, P. Labeye, E. LeCoarer, C. Vigreux-Bercovici, A. Pradel, J.-E. Broquin, and V. Kirschner, “Technology challenges for space interferometry: The option of mid-infrared integrated optics,” Adv. Space Res. 41(12), 1975–1982 (2008).
[CrossRef]

2007

T. Lewi, S. Shalem, A. Tzun, and A. Katzir, “Silver halide single mode fiber with improved properties in the middle infrared,” Appl. Phys. Lett. 91(25), 251112 (2007).
[CrossRef]

2004

C. V. M. Fridlund, “The Darwin Mission,” Adv. Space Res. 34(3), 613–617 (2004).
[CrossRef]

2003

J.-P. Berger, P. Haguenauer, P. Kern, K. Rousselet-Perraut, F. Malbet, S. Gluck, L. Lagny, I. Schanen-Duport, E. Laurent, A. Delboulbe, E. Tatulli, W. A. Traub, N. Carleton, R. Millan-Gabet, J. D. Monnier, E. Pedretti, and S. Ragland, “An integrated-optics 3-way beam combiner for IOTA,” Proc. SPIE 4838, 1099–1106 (2003).
[CrossRef]

2002

2001

1997

1996

1993

1991

F. H. Julien, P. Vagos, J. M. Lourtioz, D. D. Yang, and R. Planel, “Novel all-optical 10_m waveguide modulator based on intersubband absorption in GaAs_A1GaAs quantum wells,” Appl. Phys. Lett. 59(21), 2645–2647 (1991).
[CrossRef]

1976

Y. Katsuyama, M. Tokuda, N. Uchida, and M. Nakahara, “New Method for measuring V-Value of a single mode optical fiber,” Electron. Lett. 12(25), 669–670 (1976).
[CrossRef]

Berger, J.-P.

J.-P. Berger, P. Haguenauer, P. Kern, K. Rousselet-Perraut, F. Malbet, S. Gluck, L. Lagny, I. Schanen-Duport, E. Laurent, A. Delboulbe, E. Tatulli, W. A. Traub, N. Carleton, R. Millan-Gabet, J. D. Monnier, E. Pedretti, and S. Ragland, “An integrated-optics 3-way beam combiner for IOTA,” Proc. SPIE 4838, 1099–1106 (2003).
[CrossRef]

Braiman, M. S.

Broquin, J.-E.

L. Labadie, P. Kern, P. Labeye, E. LeCoarer, C. Vigreux-Bercovici, A. Pradel, J.-E. Broquin, and V. Kirschner, “Technology challenges for space interferometry: The option of mid-infrared integrated optics,” Adv. Space Res. 41(12), 1975–1982 (2008).
[CrossRef]

Bunimovich, D.

Carleton, N.

J.-P. Berger, P. Haguenauer, P. Kern, K. Rousselet-Perraut, F. Malbet, S. Gluck, L. Lagny, I. Schanen-Duport, E. Laurent, A. Delboulbe, E. Tatulli, W. A. Traub, N. Carleton, R. Millan-Gabet, J. D. Monnier, E. Pedretti, and S. Ragland, “An integrated-optics 3-way beam combiner for IOTA,” Proc. SPIE 4838, 1099–1106 (2003).
[CrossRef]

Dekel, B.

Delboulbe, A.

J.-P. Berger, P. Haguenauer, P. Kern, K. Rousselet-Perraut, F. Malbet, S. Gluck, L. Lagny, I. Schanen-Duport, E. Laurent, A. Delboulbe, E. Tatulli, W. A. Traub, N. Carleton, R. Millan-Gabet, J. D. Monnier, E. Pedretti, and S. Ragland, “An integrated-optics 3-way beam combiner for IOTA,” Proc. SPIE 4838, 1099–1106 (2003).
[CrossRef]

Eyal, O.

Fridlund, C. V. M.

C. V. M. Fridlund, “The Darwin Mission,” Adv. Space Res. 34(3), 613–617 (2004).
[CrossRef]

Gluck, S.

J.-P. Berger, P. Haguenauer, P. Kern, K. Rousselet-Perraut, F. Malbet, S. Gluck, L. Lagny, I. Schanen-Duport, E. Laurent, A. Delboulbe, E. Tatulli, W. A. Traub, N. Carleton, R. Millan-Gabet, J. D. Monnier, E. Pedretti, and S. Ragland, “An integrated-optics 3-way beam combiner for IOTA,” Proc. SPIE 4838, 1099–1106 (2003).
[CrossRef]

Haguenauer, P.

J.-P. Berger, P. Haguenauer, P. Kern, K. Rousselet-Perraut, F. Malbet, S. Gluck, L. Lagny, I. Schanen-Duport, E. Laurent, A. Delboulbe, E. Tatulli, W. A. Traub, N. Carleton, R. Millan-Gabet, J. D. Monnier, E. Pedretti, and S. Ragland, “An integrated-optics 3-way beam combiner for IOTA,” Proc. SPIE 4838, 1099–1106 (2003).
[CrossRef]

Julien, F. H.

F. H. Julien, P. Vagos, J. M. Lourtioz, D. D. Yang, and R. Planel, “Novel all-optical 10_m waveguide modulator based on intersubband absorption in GaAs_A1GaAs quantum wells,” Appl. Phys. Lett. 59(21), 2645–2647 (1991).
[CrossRef]

Katsuyama, Y.

Y. Katsuyama, M. Tokuda, N. Uchida, and M. Nakahara, “New Method for measuring V-Value of a single mode optical fiber,” Electron. Lett. 12(25), 669–670 (1976).
[CrossRef]

Katzir, A.

Kern, P.

L. Labadie, P. Kern, P. Labeye, E. LeCoarer, C. Vigreux-Bercovici, A. Pradel, J.-E. Broquin, and V. Kirschner, “Technology challenges for space interferometry: The option of mid-infrared integrated optics,” Adv. Space Res. 41(12), 1975–1982 (2008).
[CrossRef]

J.-P. Berger, P. Haguenauer, P. Kern, K. Rousselet-Perraut, F. Malbet, S. Gluck, L. Lagny, I. Schanen-Duport, E. Laurent, A. Delboulbe, E. Tatulli, W. A. Traub, N. Carleton, R. Millan-Gabet, J. D. Monnier, E. Pedretti, and S. Ragland, “An integrated-optics 3-way beam combiner for IOTA,” Proc. SPIE 4838, 1099–1106 (2003).
[CrossRef]

Kirschner, V.

L. Labadie, P. Kern, P. Labeye, E. LeCoarer, C. Vigreux-Bercovici, A. Pradel, J.-E. Broquin, and V. Kirschner, “Technology challenges for space interferometry: The option of mid-infrared integrated optics,” Adv. Space Res. 41(12), 1975–1982 (2008).
[CrossRef]

Labadie, L.

L. Labadie, P. Kern, P. Labeye, E. LeCoarer, C. Vigreux-Bercovici, A. Pradel, J.-E. Broquin, and V. Kirschner, “Technology challenges for space interferometry: The option of mid-infrared integrated optics,” Adv. Space Res. 41(12), 1975–1982 (2008).
[CrossRef]

Labeye, P.

L. Labadie, P. Kern, P. Labeye, E. LeCoarer, C. Vigreux-Bercovici, A. Pradel, J.-E. Broquin, and V. Kirschner, “Technology challenges for space interferometry: The option of mid-infrared integrated optics,” Adv. Space Res. 41(12), 1975–1982 (2008).
[CrossRef]

Lagny, L.

J.-P. Berger, P. Haguenauer, P. Kern, K. Rousselet-Perraut, F. Malbet, S. Gluck, L. Lagny, I. Schanen-Duport, E. Laurent, A. Delboulbe, E. Tatulli, W. A. Traub, N. Carleton, R. Millan-Gabet, J. D. Monnier, E. Pedretti, and S. Ragland, “An integrated-optics 3-way beam combiner for IOTA,” Proc. SPIE 4838, 1099–1106 (2003).
[CrossRef]

Laurent, E.

J.-P. Berger, P. Haguenauer, P. Kern, K. Rousselet-Perraut, F. Malbet, S. Gluck, L. Lagny, I. Schanen-Duport, E. Laurent, A. Delboulbe, E. Tatulli, W. A. Traub, N. Carleton, R. Millan-Gabet, J. D. Monnier, E. Pedretti, and S. Ragland, “An integrated-optics 3-way beam combiner for IOTA,” Proc. SPIE 4838, 1099–1106 (2003).
[CrossRef]

LeCoarer, E.

L. Labadie, P. Kern, P. Labeye, E. LeCoarer, C. Vigreux-Bercovici, A. Pradel, J.-E. Broquin, and V. Kirschner, “Technology challenges for space interferometry: The option of mid-infrared integrated optics,” Adv. Space Res. 41(12), 1975–1982 (2008).
[CrossRef]

Lewi, T.

T. Lewi, S. Shalem, A. Tzun, and A. Katzir, “Silver halide single mode fiber with improved properties in the middle infrared,” Appl. Phys. Lett. 91(25), 251112 (2007).
[CrossRef]

Lourtioz, J. M.

F. H. Julien, P. Vagos, J. M. Lourtioz, D. D. Yang, and R. Planel, “Novel all-optical 10_m waveguide modulator based on intersubband absorption in GaAs_A1GaAs quantum wells,” Appl. Phys. Lett. 59(21), 2645–2647 (1991).
[CrossRef]

Malbet, F.

J.-P. Berger, P. Haguenauer, P. Kern, K. Rousselet-Perraut, F. Malbet, S. Gluck, L. Lagny, I. Schanen-Duport, E. Laurent, A. Delboulbe, E. Tatulli, W. A. Traub, N. Carleton, R. Millan-Gabet, J. D. Monnier, E. Pedretti, and S. Ragland, “An integrated-optics 3-way beam combiner for IOTA,” Proc. SPIE 4838, 1099–1106 (2003).
[CrossRef]

Millan-Gabet, R.

J.-P. Berger, P. Haguenauer, P. Kern, K. Rousselet-Perraut, F. Malbet, S. Gluck, L. Lagny, I. Schanen-Duport, E. Laurent, A. Delboulbe, E. Tatulli, W. A. Traub, N. Carleton, R. Millan-Gabet, J. D. Monnier, E. Pedretti, and S. Ragland, “An integrated-optics 3-way beam combiner for IOTA,” Proc. SPIE 4838, 1099–1106 (2003).
[CrossRef]

Monnier, J. D.

J.-P. Berger, P. Haguenauer, P. Kern, K. Rousselet-Perraut, F. Malbet, S. Gluck, L. Lagny, I. Schanen-Duport, E. Laurent, A. Delboulbe, E. Tatulli, W. A. Traub, N. Carleton, R. Millan-Gabet, J. D. Monnier, E. Pedretti, and S. Ragland, “An integrated-optics 3-way beam combiner for IOTA,” Proc. SPIE 4838, 1099–1106 (2003).
[CrossRef]

Nakahara, M.

Y. Katsuyama, M. Tokuda, N. Uchida, and M. Nakahara, “New Method for measuring V-Value of a single mode optical fiber,” Electron. Lett. 12(25), 669–670 (1976).
[CrossRef]

Pedretti, E.

J.-P. Berger, P. Haguenauer, P. Kern, K. Rousselet-Perraut, F. Malbet, S. Gluck, L. Lagny, I. Schanen-Duport, E. Laurent, A. Delboulbe, E. Tatulli, W. A. Traub, N. Carleton, R. Millan-Gabet, J. D. Monnier, E. Pedretti, and S. Ragland, “An integrated-optics 3-way beam combiner for IOTA,” Proc. SPIE 4838, 1099–1106 (2003).
[CrossRef]

Planel, R.

F. H. Julien, P. Vagos, J. M. Lourtioz, D. D. Yang, and R. Planel, “Novel all-optical 10_m waveguide modulator based on intersubband absorption in GaAs_A1GaAs quantum wells,” Appl. Phys. Lett. 59(21), 2645–2647 (1991).
[CrossRef]

Plunkett, S. E.

Pradel, A.

L. Labadie, P. Kern, P. Labeye, E. LeCoarer, C. Vigreux-Bercovici, A. Pradel, J.-E. Broquin, and V. Kirschner, “Technology challenges for space interferometry: The option of mid-infrared integrated optics,” Adv. Space Res. 41(12), 1975–1982 (2008).
[CrossRef]

Propst, S.

Ragland, S.

J.-P. Berger, P. Haguenauer, P. Kern, K. Rousselet-Perraut, F. Malbet, S. Gluck, L. Lagny, I. Schanen-Duport, E. Laurent, A. Delboulbe, E. Tatulli, W. A. Traub, N. Carleton, R. Millan-Gabet, J. D. Monnier, E. Pedretti, and S. Ragland, “An integrated-optics 3-way beam combiner for IOTA,” Proc. SPIE 4838, 1099–1106 (2003).
[CrossRef]

Rousselet-Perraut, K.

J.-P. Berger, P. Haguenauer, P. Kern, K. Rousselet-Perraut, F. Malbet, S. Gluck, L. Lagny, I. Schanen-Duport, E. Laurent, A. Delboulbe, E. Tatulli, W. A. Traub, N. Carleton, R. Millan-Gabet, J. D. Monnier, E. Pedretti, and S. Ragland, “An integrated-optics 3-way beam combiner for IOTA,” Proc. SPIE 4838, 1099–1106 (2003).
[CrossRef]

Schanen-Duport, I.

J.-P. Berger, P. Haguenauer, P. Kern, K. Rousselet-Perraut, F. Malbet, S. Gluck, L. Lagny, I. Schanen-Duport, E. Laurent, A. Delboulbe, E. Tatulli, W. A. Traub, N. Carleton, R. Millan-Gabet, J. D. Monnier, E. Pedretti, and S. Ragland, “An integrated-optics 3-way beam combiner for IOTA,” Proc. SPIE 4838, 1099–1106 (2003).
[CrossRef]

Scharf, V.

Shalem, S.

T. Lewi, S. Shalem, A. Tzun, and A. Katzir, “Silver halide single mode fiber with improved properties in the middle infrared,” Appl. Phys. Lett. 91(25), 251112 (2007).
[CrossRef]

O. Eyal, V. Scharf, S. Shalem, and A. Katzir, “Single-mode mid-infrared silver halide planar waveguides,” Opt. Lett. 21(15), 1147 (1996).
[CrossRef] [PubMed]

Tatulli, E.

J.-P. Berger, P. Haguenauer, P. Kern, K. Rousselet-Perraut, F. Malbet, S. Gluck, L. Lagny, I. Schanen-Duport, E. Laurent, A. Delboulbe, E. Tatulli, W. A. Traub, N. Carleton, R. Millan-Gabet, J. D. Monnier, E. Pedretti, and S. Ragland, “An integrated-optics 3-way beam combiner for IOTA,” Proc. SPIE 4838, 1099–1106 (2003).
[CrossRef]

Tokuda, M.

Y. Katsuyama, M. Tokuda, N. Uchida, and M. Nakahara, “New Method for measuring V-Value of a single mode optical fiber,” Electron. Lett. 12(25), 669–670 (1976).
[CrossRef]

Traub, W. A.

J.-P. Berger, P. Haguenauer, P. Kern, K. Rousselet-Perraut, F. Malbet, S. Gluck, L. Lagny, I. Schanen-Duport, E. Laurent, A. Delboulbe, E. Tatulli, W. A. Traub, N. Carleton, R. Millan-Gabet, J. D. Monnier, E. Pedretti, and S. Ragland, “An integrated-optics 3-way beam combiner for IOTA,” Proc. SPIE 4838, 1099–1106 (2003).
[CrossRef]

Tzun, A.

T. Lewi, S. Shalem, A. Tzun, and A. Katzir, “Silver halide single mode fiber with improved properties in the middle infrared,” Appl. Phys. Lett. 91(25), 251112 (2007).
[CrossRef]

Uchida, N.

Y. Katsuyama, M. Tokuda, N. Uchida, and M. Nakahara, “New Method for measuring V-Value of a single mode optical fiber,” Electron. Lett. 12(25), 669–670 (1976).
[CrossRef]

Vagos, P.

F. H. Julien, P. Vagos, J. M. Lourtioz, D. D. Yang, and R. Planel, “Novel all-optical 10_m waveguide modulator based on intersubband absorption in GaAs_A1GaAs quantum wells,” Appl. Phys. Lett. 59(21), 2645–2647 (1991).
[CrossRef]

Vigreux-Bercovici, C.

L. Labadie, P. Kern, P. Labeye, E. LeCoarer, C. Vigreux-Bercovici, A. Pradel, J.-E. Broquin, and V. Kirschner, “Technology challenges for space interferometry: The option of mid-infrared integrated optics,” Adv. Space Res. 41(12), 1975–1982 (2008).
[CrossRef]

Yang, D. D.

F. H. Julien, P. Vagos, J. M. Lourtioz, D. D. Yang, and R. Planel, “Novel all-optical 10_m waveguide modulator based on intersubband absorption in GaAs_A1GaAs quantum wells,” Appl. Phys. Lett. 59(21), 2645–2647 (1991).
[CrossRef]

Adv. Space Res.

L. Labadie, P. Kern, P. Labeye, E. LeCoarer, C. Vigreux-Bercovici, A. Pradel, J.-E. Broquin, and V. Kirschner, “Technology challenges for space interferometry: The option of mid-infrared integrated optics,” Adv. Space Res. 41(12), 1975–1982 (2008).
[CrossRef]

C. V. M. Fridlund, “The Darwin Mission,” Adv. Space Res. 34(3), 613–617 (2004).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

T. Lewi, S. Shalem, A. Tzun, and A. Katzir, “Silver halide single mode fiber with improved properties in the middle infrared,” Appl. Phys. Lett. 91(25), 251112 (2007).
[CrossRef]

F. H. Julien, P. Vagos, J. M. Lourtioz, D. D. Yang, and R. Planel, “Novel all-optical 10_m waveguide modulator based on intersubband absorption in GaAs_A1GaAs quantum wells,” Appl. Phys. Lett. 59(21), 2645–2647 (1991).
[CrossRef]

Electron. Lett.

Y. Katsuyama, M. Tokuda, N. Uchida, and M. Nakahara, “New Method for measuring V-Value of a single mode optical fiber,” Electron. Lett. 12(25), 669–670 (1976).
[CrossRef]

Opt. Lett.

Proc. SPIE

J.-P. Berger, P. Haguenauer, P. Kern, K. Rousselet-Perraut, F. Malbet, S. Gluck, L. Lagny, I. Schanen-Duport, E. Laurent, A. Delboulbe, E. Tatulli, W. A. Traub, N. Carleton, R. Millan-Gabet, J. D. Monnier, E. Pedretti, and S. Ragland, “An integrated-optics 3-way beam combiner for IOTA,” Proc. SPIE 4838, 1099–1106 (2003).
[CrossRef]

Other

C. A. Beichman, N. J. Woolf, and C. A. Lindensmith, eds., “The Terrestrial Planet Finder (TPF): a NASA Origins Program to search for habitable planets (Pasadena: JPL Publication 99-3, 1999).

Y. Raichlin and A. Katzir, “Fiber optic evanescent wave spectroscopy in the middle infrared,” Appl. Spect. 62, 55A–72A (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Upper part: The Extrusion of a planar waveguide. Lower part: The extruded waveguide layer is d = 43 µm ± 2µm thick while the total thickness of the sample is h = 1.1 mm.

Fig. 2
Fig. 2

The theoretical expected values for the effective refractive indices of the step-index planar waveguide. The upper and lower continuous lines represent the guiding limits (k0ng(λ) and k0ns(λ) respectively). The dashed line is the solution for fundamental mode (m = 0) and the dotted line is the solution for the first order (m = 1). Intersection of the dashed (resp. dotted) line with the lower continuous line gives the upper (resp. lower) wavelength of the single mode range.

Fig. 3
Fig. 3

The experimental set-up of the Fourier Transform Spectrometer

Fig. 4
Fig. 4

The normalized FTS spectra obtained for the signal propagated through the substrate, compared to the signal propagated through the waveguide. A drop in intensity is clearly visible around 9μm, which is the signature of the cut-off wavelength, obtained for a non polarized measurement. Note that the drop in intensity towards 3μm (resp. 13μm) is due to the sensitivity limit of the detector.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k0ngdcosθmϕsϕc=mπ
ϕs,c=arctan[(ngns,c)2ρng2sin2θmns,c2ng2ng2sin2θm]

Metrics