Abstract

A diffractive grating is promising for color separation to effectively replace conventional absorptive dye color filter in liquid crystal displays. In this paper, we demonstrated a color separation module consisting of an aspheric-lenticular lens array and a blazed grating to substitute for the dye color filter. Each component was designed to match the recent fabrication ability of our roll-to-roll imprinting. The measurement results of a prototype module showed a gain factor of transmission efficiency three times more than that of conventional color filters.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. V. Gunn and W. Haistead, “Diffractive color separation fabrication,” Proc. SPIE 3363, 198–208 (1998).
    [CrossRef]
  2. H. Dammann, “Color separation gratings,” Appl. Opt. 17(15), 2273–2279 (1978).
    [CrossRef] [PubMed]
  3. M. W. Farn, M. B. Stern, W. B. Veldkamp, and S. Medeiros, “Color separation by use of binary optics,” Opt. Lett. 18(15), 1214–1216 (1993).
    [CrossRef] [PubMed]
  4. R. P. Gale and G. J. Swanson, “Efficient illumination of color AMLCD projection displays using binary optical phase plates,” J. Soc. Inf. Disp. 5(4), 375–378 (1997).
    [CrossRef]
  5. C. Joubert, B. Loiseaux, A. Delboulbé, and J. P. Huignad, “Phase volume holographic optical components for high-brightness single-LCD projectors,” Appl. Opt. 36(20), 4761–4771 (1997).
    [CrossRef] [PubMed]
  6. Y. Taira, H. Numata, D. Nakano, K. Sueoka, F. Yamada, M. Suzuki, M. Noguchi, R. Singh, and E. G. Colgan, “Color filterless liquid crystal illuminated with LEDS,” SID 03 Digest 34, 1250–1253 (2003).
  7. R. Caputo, L. D. Sio, M. J. J. Jak, E. J. Hornix, D. K. G. De Boer, and H. J. Cornelissen, “Short period holographic structures for backlight display applications,” Opt. Express 15(17), 10540–10552 (2007).
    [CrossRef] [PubMed]
  8. Y. Taira, D. Nakano, H. Numata, A. Nishikai, S. Ono, F. Yamada, M. Suzuki, M. Noguchi, R. Singh, E. G. Colgan, “Low-power LCD using a novel optical system,” SID 02 Digest 33, 1313–1315 (2002).
  9. D. K. G. de Boer, R. Caputo, H. J. Cornelissen, C. M. van Heesch, E. J. Hornix, and M. J. J. Jak, “Diffractive grating structures for colour-separating backlights,” Proc. SPIE 6196, 241 (2006).
  10. H. H. Lin and M. H. Lu, “Design of Hybrid Grating for Color Filter Application in Liquid Crystal Display,” Jpn. J. Appl. Phys. 46(No. 8B), 5414–5418 (2007).
    [CrossRef]
  11. Y. Taira, F. Yamada, and A. Nishikai, U.S. Patent 6867828 B2(2005).
  12. Y. Taira, F. Yamada, and A. Nishikai, U.S. Patent 6667782 B1(2003).

2007

H. H. Lin and M. H. Lu, “Design of Hybrid Grating for Color Filter Application in Liquid Crystal Display,” Jpn. J. Appl. Phys. 46(No. 8B), 5414–5418 (2007).
[CrossRef]

R. Caputo, L. D. Sio, M. J. J. Jak, E. J. Hornix, D. K. G. De Boer, and H. J. Cornelissen, “Short period holographic structures for backlight display applications,” Opt. Express 15(17), 10540–10552 (2007).
[CrossRef] [PubMed]

2006

D. K. G. de Boer, R. Caputo, H. J. Cornelissen, C. M. van Heesch, E. J. Hornix, and M. J. J. Jak, “Diffractive grating structures for colour-separating backlights,” Proc. SPIE 6196, 241 (2006).

1998

T. V. Gunn and W. Haistead, “Diffractive color separation fabrication,” Proc. SPIE 3363, 198–208 (1998).
[CrossRef]

1997

R. P. Gale and G. J. Swanson, “Efficient illumination of color AMLCD projection displays using binary optical phase plates,” J. Soc. Inf. Disp. 5(4), 375–378 (1997).
[CrossRef]

C. Joubert, B. Loiseaux, A. Delboulbé, and J. P. Huignad, “Phase volume holographic optical components for high-brightness single-LCD projectors,” Appl. Opt. 36(20), 4761–4771 (1997).
[CrossRef] [PubMed]

1993

1978

Caputo, R.

R. Caputo, L. D. Sio, M. J. J. Jak, E. J. Hornix, D. K. G. De Boer, and H. J. Cornelissen, “Short period holographic structures for backlight display applications,” Opt. Express 15(17), 10540–10552 (2007).
[CrossRef] [PubMed]

D. K. G. de Boer, R. Caputo, H. J. Cornelissen, C. M. van Heesch, E. J. Hornix, and M. J. J. Jak, “Diffractive grating structures for colour-separating backlights,” Proc. SPIE 6196, 241 (2006).

Cornelissen, H. J.

R. Caputo, L. D. Sio, M. J. J. Jak, E. J. Hornix, D. K. G. De Boer, and H. J. Cornelissen, “Short period holographic structures for backlight display applications,” Opt. Express 15(17), 10540–10552 (2007).
[CrossRef] [PubMed]

D. K. G. de Boer, R. Caputo, H. J. Cornelissen, C. M. van Heesch, E. J. Hornix, and M. J. J. Jak, “Diffractive grating structures for colour-separating backlights,” Proc. SPIE 6196, 241 (2006).

Dammann, H.

De Boer, D. K. G.

R. Caputo, L. D. Sio, M. J. J. Jak, E. J. Hornix, D. K. G. De Boer, and H. J. Cornelissen, “Short period holographic structures for backlight display applications,” Opt. Express 15(17), 10540–10552 (2007).
[CrossRef] [PubMed]

D. K. G. de Boer, R. Caputo, H. J. Cornelissen, C. M. van Heesch, E. J. Hornix, and M. J. J. Jak, “Diffractive grating structures for colour-separating backlights,” Proc. SPIE 6196, 241 (2006).

Delboulbé, A.

Farn, M. W.

Gale, R. P.

R. P. Gale and G. J. Swanson, “Efficient illumination of color AMLCD projection displays using binary optical phase plates,” J. Soc. Inf. Disp. 5(4), 375–378 (1997).
[CrossRef]

Gunn, T. V.

T. V. Gunn and W. Haistead, “Diffractive color separation fabrication,” Proc. SPIE 3363, 198–208 (1998).
[CrossRef]

Haistead, W.

T. V. Gunn and W. Haistead, “Diffractive color separation fabrication,” Proc. SPIE 3363, 198–208 (1998).
[CrossRef]

Hornix, E. J.

R. Caputo, L. D. Sio, M. J. J. Jak, E. J. Hornix, D. K. G. De Boer, and H. J. Cornelissen, “Short period holographic structures for backlight display applications,” Opt. Express 15(17), 10540–10552 (2007).
[CrossRef] [PubMed]

D. K. G. de Boer, R. Caputo, H. J. Cornelissen, C. M. van Heesch, E. J. Hornix, and M. J. J. Jak, “Diffractive grating structures for colour-separating backlights,” Proc. SPIE 6196, 241 (2006).

Huignad, J. P.

Jak, M. J. J.

R. Caputo, L. D. Sio, M. J. J. Jak, E. J. Hornix, D. K. G. De Boer, and H. J. Cornelissen, “Short period holographic structures for backlight display applications,” Opt. Express 15(17), 10540–10552 (2007).
[CrossRef] [PubMed]

D. K. G. de Boer, R. Caputo, H. J. Cornelissen, C. M. van Heesch, E. J. Hornix, and M. J. J. Jak, “Diffractive grating structures for colour-separating backlights,” Proc. SPIE 6196, 241 (2006).

Joubert, C.

Lin, H. H.

H. H. Lin and M. H. Lu, “Design of Hybrid Grating for Color Filter Application in Liquid Crystal Display,” Jpn. J. Appl. Phys. 46(No. 8B), 5414–5418 (2007).
[CrossRef]

Loiseaux, B.

Lu, M. H.

H. H. Lin and M. H. Lu, “Design of Hybrid Grating for Color Filter Application in Liquid Crystal Display,” Jpn. J. Appl. Phys. 46(No. 8B), 5414–5418 (2007).
[CrossRef]

Medeiros, S.

Sio, L. D.

Stern, M. B.

Swanson, G. J.

R. P. Gale and G. J. Swanson, “Efficient illumination of color AMLCD projection displays using binary optical phase plates,” J. Soc. Inf. Disp. 5(4), 375–378 (1997).
[CrossRef]

van Heesch, C. M.

D. K. G. de Boer, R. Caputo, H. J. Cornelissen, C. M. van Heesch, E. J. Hornix, and M. J. J. Jak, “Diffractive grating structures for colour-separating backlights,” Proc. SPIE 6196, 241 (2006).

Veldkamp, W. B.

Appl. Opt.

J. Soc. Inf. Disp.

R. P. Gale and G. J. Swanson, “Efficient illumination of color AMLCD projection displays using binary optical phase plates,” J. Soc. Inf. Disp. 5(4), 375–378 (1997).
[CrossRef]

Jpn. J. Appl. Phys.

H. H. Lin and M. H. Lu, “Design of Hybrid Grating for Color Filter Application in Liquid Crystal Display,” Jpn. J. Appl. Phys. 46(No. 8B), 5414–5418 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

T. V. Gunn and W. Haistead, “Diffractive color separation fabrication,” Proc. SPIE 3363, 198–208 (1998).
[CrossRef]

D. K. G. de Boer, R. Caputo, H. J. Cornelissen, C. M. van Heesch, E. J. Hornix, and M. J. J. Jak, “Diffractive grating structures for colour-separating backlights,” Proc. SPIE 6196, 241 (2006).

Other

Y. Taira, D. Nakano, H. Numata, A. Nishikai, S. Ono, F. Yamada, M. Suzuki, M. Noguchi, R. Singh, E. G. Colgan, “Low-power LCD using a novel optical system,” SID 02 Digest 33, 1313–1315 (2002).

Y. Taira, F. Yamada, and A. Nishikai, U.S. Patent 6867828 B2(2005).

Y. Taira, F. Yamada, and A. Nishikai, U.S. Patent 6667782 B1(2003).

Y. Taira, H. Numata, D. Nakano, K. Sueoka, F. Yamada, M. Suzuki, M. Noguchi, R. Singh, and E. G. Colgan, “Color filterless liquid crystal illuminated with LEDS,” SID 03 Digest 34, 1250–1253 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Schematic representation of a color display with the BCSG. The aspheric-lenticular lens array on top of the grating deflects and converges the incident light. A blazed grating separates the colors in different direction onto the appropriate pixels.

Fig. 2
Fig. 2

Configuration of the blazed grating. θ' is designed as 0. θr , θg and θb are the first-order diffraction angles at λr , λg and λb .

Fig. 3
Fig. 3

Variation of the first-order diffraction angle versus the grating period.

Fig. 4
Fig. 4

Geometry of the blazed transmission grating.

Fig. 5
Fig. 5

The relationship between the grating depth h and the average diffraction efficiency of blue spectra (465nm), green spectra (525nm) and red spectra (625nm) under different cp values.

Fig. 6
Fig. 6

Illustration of the simulation results. Light from a high collimation backlight module is dispersed by the BCSG, and then deflected and converged by the aspheric-lenticular lens array to generate color separation.

Fig. 7
Fig. 7

Variation of edge radius of the diamond bite (a) before and (b) after a cutting distance.

Fig. 8
Fig. 8

Calculated diffraction efficiencies of blazed gratings replicated from an imprinting Cu roller, which was cut using various edge radiuses of the diamond bite.

Fig. 9
Fig. 9

To make the BCSG and the aspheric-lenticular lens array on a PET film, a mechanically grooved structure was first formed on an imprinting roller by using a diamond tool with the designed profile, as shown in (a).Then the UV resin was dispensed on the PET film, imprinted by the roller, and cured with UV source, as shown in (b).

Fig. 10
Fig. 10

Pictures of (a) our home-made drum roll lathe and (b) the roller for imprinting the BCSG.

Fig. 11
Fig. 11

(a)A SEM of the BCSG. (b) A SEM of the aspheric-lenticular-lens array.

Fig. 12
Fig. 12

Optical measurement system for color separation by a module consisting of an aspheric-lenticular lens array and a BCSG.

Fig. 13
Fig. 13

(a) Color separation patterns of the module consisting of an aspheric-lenticular lens array and a BCSG by making use of RGB LEDs. (b)Color points in CIE xy space, created by sampling the line pattern shown in (a).

Fig. 14
Fig. 14

Normalized intensity distribution of the line pattern generated by the module consisting of the BCSG and the aspheric-lenticular lens array by making use of RGB LEDs.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

nsinθ=n'sinθ'+mλp.
y=42502(x193)24245.60.265×(x386).

Metrics