Abstract

Polarization-sensitive optical coherence tomography (PS-OCT) can measure cross-sectional and volumetric images of birefringence in fibrous tissues that provides additional contrast to the intensity images. In this study, we develop polarization-sensitive swept-source OCT (PS-SS-OCT) at 1 µm for deep penetration of the sclera and lamina cribrosa in the posterior part of human eyes. A calibration method for polarization mode dispersion of a circulator, which is employed to conserve the optical power of the interferometer and achieve system sensitivity sufficient for retinal imaging is demonstrated. The A-scan rate, the axial resolution, and the sensitivity of the PS-SS-OCT are 28,000 Hz, 11.0 µm, 94.2 dB, respectively. The posterior part of the eyes of a healthy male subject are measured in vivo. Phase-retardation images show birefringence of deep sclera and lamina cribrosa and enhance the contrast which is not visible in the intensity images. In addition, unlike conventional OCT, our PS-SS-OCT showed polarization-insensitive intensity images, in which an artifact created by the birefringence of sclera has been successfully eliminated.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, "Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging," J. Opt. Soc. Am. B 9, 903-908 (1992).
    [CrossRef]
  3. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, "Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography," Opt. Lett. 22, 934-936 (1997).
    [CrossRef] [PubMed]
  4. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, "In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography," Opt. Lett. 27, 1610-1612 (2002).
    [CrossRef]
  5. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, "Thickness and Birefringence of Healthy Retinal Nerve Fiber Layer Tissue Measured with Polarization-Sensitive Optical Coherence Tomography," Invest. Ophthalmol. Vis. Sci. 45, 2606-2612 (2004).
    [CrossRef] [PubMed]
  6. M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, "Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination," J. Biomed. Opt. 12, 041205 (2007).
    [CrossRef] [PubMed]
  7. M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, "Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry," J. Biomed. Opt. 13, 014013 (2008).
    [CrossRef] [PubMed]
  8. E. Gotzinger, M. Pircher, and C. K. Hitzenberger, "High speed spectral domain polarization sensitive optical coherence tomography of the human retina," Opt. Express 13, 10217-10229 (2005). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-13-25-10217.
    [CrossRef] [PubMed]
  9. E. Gotzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, "Analysis of the origin of atypical scanning laser polarimetry patterns by polarization-sensitive optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 49, 5366-5372 (2008).
    [CrossRef] [PubMed]
  10. B. Cense, "Optical coherence tomography for retinal imaging," Ph.D. thesis, University of Twente (2005).
  11. B. Cense, M. Mujat, T. C. Chen, B. H. Park, and J. F. de Boer, "Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera," Opt. Express 15, 2421-2431 (2007). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-15-5-2421.
    [CrossRef] [PubMed]
  12. M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, "Imaging polarimetry in age-related macular degeneration," Invest. Ophthalmol. Vis. Sci. 49, 2661-2667 (2008).
    [CrossRef] [PubMed]
  13. E. G¨otzinger, M. Pircher, B. Baumann, C. Ahlers, W. Geitzenauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, "Three-dimensional polarization sensitive OCT imaging and interactive display of the human retina," Opt. Express 17, 4151-4165 (2009). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-17-5-4151.
    [CrossRef] [PubMed]
  14. M. Yamanari, S. Makita, and Y. Yasuno, "Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation," Opt. Express 16, 5892-5906 (2008). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-16-8-5892>.
    [CrossRef] [PubMed]
  15. M. Zhao and J. A. Izatt, "Single-camera sequential-scan-based polarization-sensitive SDOCT for retinal imaging," Opt. Lett. 34, 205-207 (2009).
    [CrossRef] [PubMed]
  16. Y. Yasuno, M. Yamanari, K. Kawana, T. Oshika, and M. Miura, "Investigation of post-glaucoma-surgery structures by three-dimensional and polarization sensitive anterior eye segment optical coherence tomography," Opt. Express 17, 3980-3996 (2009). URLhttp://www.opticsexpress.org/abstract.cfm?URI=oe-17-5-3980.
    [CrossRef] [PubMed]
  17. M. Pircher, E. G¨otzinger, R. Leitgeb, H. Sattmann, O. Findl, and C. Hitzenberger, "Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT," Opt. Express 12, 5940-5951 (2004). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-12-24-5940.
    [CrossRef] [PubMed]
  18. M. Pircher, E. Gotzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, "Human Macula Investigated In Vivo with Polarization-Sensitive Optical Coherence Tomography," Invest. Ophthalmol. Vis. Sci. 47, 5487-5494 (2006).
    [CrossRef] [PubMed]
  19. E. Gotzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, "Retinal pigment epithelium segmentation bypolarization sensitive optical coherencetomography," Opt. Express 16, 16416-16428 (2008). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-16-21-16410.
    [CrossRef]
  20. R. Leitgeb, C. Hitzenberger, and A. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-11-8-889.
    [CrossRef] [PubMed]
  21. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003). URL http://ol.osa.org/abstract.cfm?URI=ol-28-21-2067.
    [CrossRef] [PubMed]
  22. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
    [CrossRef] [PubMed]
  23. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography," Opt. Lett. 29, 480-482 (2004).
    [CrossRef] [PubMed]
  24. Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, "Birefringence imaging of human skin by polarizationsensitive spectral interferometric optical coherence tomography," Opt. Lett. 27, 1803-1805 (2002).
    [CrossRef]
  25. Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, "Polarizationsensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples," Appl. Phys. Lett. 85, 3023-3025 (2004).
    [CrossRef]
  26. B. Povazay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. Fercher,W. Drexler, C. Schubert, P. Ahnelt, M. Mei, R. Holzwarth, W. Wadsworth, J. Knight, and P. S. J. Russell, "Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm," Opt. Express 11, 1980-1986 (2003). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-11-17-1980.
    [CrossRef] [PubMed]
  27. A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, "In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid," Opt. Express 13, 3252-3258 (2005). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-13-9-3252.
    [CrossRef] [PubMed]
  28. B. Povazay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, andW. Drexler, "Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed. Opt. 12, 041211 (2007).
    [CrossRef] [PubMed]
  29. S. Makita, T. Fabritius, and Y. Yasuno, "Full-range, high-speed, high-resolution 1m spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye," Opt. Express 16, 8406-8420 (2008). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-16-12-8406
    [CrossRef] [PubMed]
  30. P. Puvanathasan, P. Forbes, Z. Ren, D. Malchow, S. Boyd, and K. Bizheva, "High-speed, high-resolution Fourierdomain optical coherence tomography system for retinal imaging in the 1060 nm wavelength region," Opt. Lett. 33, 2479-2481 (2008). URL http://ol.osa.org/abstract.cfm?URI=ol-33-21-2479.
    [PubMed]
  31. B. Povazay, B. Hermann, B. Hofer, V. Kajic, E. Simpson, T. Bridgford, and W. Drexler, "Wide-field optical coherence tomography of the choroid in vivo," Invest. Ophthalmol. Vis. Sci. 50, 1856-1863 (2009).
    [CrossRef]
  32. B. Povaˇzay, B. Hofer, C. Torti, B. Hermann, A. R. Tumlinson, M. Esmaeelpour, C. A. Egan, A. C. Bird, and W. Drexler, "Impact of enhanced resolution, speed and penetration on threedimensional retinal optical coherence tomography," Opt. Express 17, 4134-4150 (2009). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-17-5-4134.
    [CrossRef] [PubMed]
  33. E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, "In vivo optical frequency domain imaging of human retina and choroid," Opt. Express 14, 4403-4411 (2006). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-14-10-4403.
    [CrossRef] [PubMed]
  34. Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, "In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography andscattering optical coherence angiography," Opt. Express 15, 6121-6139 (2007). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-15-10-6121.
    [CrossRef] [PubMed]
  35. R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, "Fourier domain mode locking at 1050 nm for ultrahigh- speed optical coherence tomography of the human retina at 236,000 axial scans per second," Opt. Lett. 32, 2049-2051 (2007). URL http://ol.osa.org/abstract.cfm?URI=ol-32-14-2049.
    [CrossRef] [PubMed]
  36. V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head," Invest. Ophthalmol. Vis. Sci. 49, 5103-5110 (2008).
    [CrossRef] [PubMed]
  37. M. Choma, M. Sarunic, C. Yang, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-11-18-2183.
    [CrossRef] [PubMed]
  38. S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, "High-speed optical frequency-domain imaging," Opt.Express 11, 2953-2963 (2003). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-11-22-2953.
    [CrossRef] [PubMed]
  39. B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, "Phase-resolved optical frequency domain imaging," Opt. Express 13, 5483-5493 (2005). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-13-14-5483.
    [CrossRef] [PubMed]
  40. American National Standards Institute, American national standard for safe use of lasers z136.1 (Laser Institute of America, Orlando, FL, 2000).
  41. B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, "Jones matrix analysis for a polarization-sensitive optical coherencetomography system using fiber-optic components," Opt. Lett. 29, 2512-2514 (2004).
    [CrossRef] [PubMed]
  42. R. R. Allingham, K. F. Damji, S. Freedman, S. E. Moroi, and G. Shafranov, eds., Shields’ Textbook of Glaucoma, 5th ed. (Lippincott Williams & Wilkins, 2005).
  43. J. F. de Boer and T. E. Milner, "Review of polarization sensitive optical coherence tomography and Stokes vector determination," Journal of Biomedical Optics 7, 359-371 (2002).
    [CrossRef] [PubMed]
  44. X.-R. Huang, H. Bagga, D. S. Greenfield, and R. W. Knighton, "Variation of Peripapillary Retinal Nerve Fiber Layer Birefringence in Normal Human Subjects," Invest. Ophthalmol. Vis. Sci. 45, 3073-3080 (2004).
    [CrossRef] [PubMed]
  45. M. J. Hogan, J. A. Alvarado, and J. E. Weddell, Histology of the human eye: an atlas and textbook (Saunders, 1971).
  46. Y. Chen, D. M. de Bruin, C. Kerbage, and J. F. de Boer, "Spectrally balanced detection for optical frequency domain imaging," Opt. Express 15, 16390-16399 (2007). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-15-25-16390.
    [CrossRef] [PubMed]
  47. A. M. Rollins and J. A. Izatt, "Optimal interferometer designs for optical coherence tomography," Opt. Lett. 24, 1484-1486 (1999).
    [CrossRef]
  48. S. Jiao, M. Todorovic, G. Stoica, and L. V. Wang, "Fiber-based polarization-sensitive Mueller matrix optical coherence tomography with continuous source polarization modulation," Appl. Opt. 44, 5463-5467 (2005).
    [CrossRef] [PubMed]
  49. M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, "Fiber-based polarization-sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method," Opt. Express 14, 6502-6515 (2006). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-14-14-6502
    [CrossRef] [PubMed]
  50. C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, and J. S. Nelson, "High-speed fiber based polarizationsensitive optical coherence tomography of in vivo human skin," Opt. Lett. 25, 1355-1357 (2000).
    [CrossRef]
  51. W. Oh, S. Yun, B. Vakoc, M. Shishkov, A. Desjardins, B. Park, J. de Boer, G. Tearney, and B. Bouma, "Highspeed polarization sensitive optical frequency domain imaging with frequency multiplexing," Opt. Express 16, 1096-1103 (2008). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-16-2-1096.
    [CrossRef] [PubMed]

2009 (2)

M. Zhao and J. A. Izatt, "Single-camera sequential-scan-based polarization-sensitive SDOCT for retinal imaging," Opt. Lett. 34, 205-207 (2009).
[CrossRef] [PubMed]

B. Povazay, B. Hermann, B. Hofer, V. Kajic, E. Simpson, T. Bridgford, and W. Drexler, "Wide-field optical coherence tomography of the choroid in vivo," Invest. Ophthalmol. Vis. Sci. 50, 1856-1863 (2009).
[CrossRef]

2008 (4)

V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head," Invest. Ophthalmol. Vis. Sci. 49, 5103-5110 (2008).
[CrossRef] [PubMed]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, "Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry," J. Biomed. Opt. 13, 014013 (2008).
[CrossRef] [PubMed]

E. Gotzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, "Analysis of the origin of atypical scanning laser polarimetry patterns by polarization-sensitive optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 49, 5366-5372 (2008).
[CrossRef] [PubMed]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, "Imaging polarimetry in age-related macular degeneration," Invest. Ophthalmol. Vis. Sci. 49, 2661-2667 (2008).
[CrossRef] [PubMed]

2007 (2)

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, "Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination," J. Biomed. Opt. 12, 041205 (2007).
[CrossRef] [PubMed]

B. Povazay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, andW. Drexler, "Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed. Opt. 12, 041211 (2007).
[CrossRef] [PubMed]

2006 (1)

M. Pircher, E. Gotzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, "Human Macula Investigated In Vivo with Polarization-Sensitive Optical Coherence Tomography," Invest. Ophthalmol. Vis. Sci. 47, 5487-5494 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (5)

Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, "Polarizationsensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples," Appl. Phys. Lett. 85, 3023-3025 (2004).
[CrossRef]

X.-R. Huang, H. Bagga, D. S. Greenfield, and R. W. Knighton, "Variation of Peripapillary Retinal Nerve Fiber Layer Birefringence in Normal Human Subjects," Invest. Ophthalmol. Vis. Sci. 45, 3073-3080 (2004).
[CrossRef] [PubMed]

N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography," Opt. Lett. 29, 480-482 (2004).
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, "Jones matrix analysis for a polarization-sensitive optical coherencetomography system using fiber-optic components," Opt. Lett. 29, 2512-2514 (2004).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, "Thickness and Birefringence of Healthy Retinal Nerve Fiber Layer Tissue Measured with Polarization-Sensitive Optical Coherence Tomography," Invest. Ophthalmol. Vis. Sci. 45, 2606-2612 (2004).
[CrossRef] [PubMed]

2002 (4)

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, "In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography," Opt. Lett. 27, 1610-1612 (2002).
[CrossRef]

J. F. de Boer and T. E. Milner, "Review of polarization sensitive optical coherence tomography and Stokes vector determination," Journal of Biomedical Optics 7, 359-371 (2002).
[CrossRef] [PubMed]

Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, "Birefringence imaging of human skin by polarizationsensitive spectral interferometric optical coherence tomography," Opt. Lett. 27, 1803-1805 (2002).
[CrossRef]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

2000 (1)

1999 (1)

1997 (1)

1992 (1)

1991 (1)

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Adler, D. C.

V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head," Invest. Ophthalmol. Vis. Sci. 49, 5103-5110 (2008).
[CrossRef] [PubMed]

Bagga, H.

X.-R. Huang, H. Bagga, D. S. Greenfield, and R. W. Knighton, "Variation of Peripapillary Retinal Nerve Fiber Layer Birefringence in Normal Human Subjects," Invest. Ophthalmol. Vis. Sci. 45, 3073-3080 (2004).
[CrossRef] [PubMed]

Bajraszewski, T.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

Baumann, B.

E. Gotzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, "Analysis of the origin of atypical scanning laser polarimetry patterns by polarization-sensitive optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 49, 5366-5372 (2008).
[CrossRef] [PubMed]

Blinder, S.

B. Povazay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, andW. Drexler, "Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed. Opt. 12, 041211 (2007).
[CrossRef] [PubMed]

Bouma, B. E.

Bridgford, T.

B. Povazay, B. Hermann, B. Hofer, V. Kajic, E. Simpson, T. Bridgford, and W. Drexler, "Wide-field optical coherence tomography of the choroid in vivo," Invest. Ophthalmol. Vis. Sci. 50, 1856-1863 (2009).
[CrossRef]

Cense, B.

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, "Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination," J. Biomed. Opt. 12, 041205 (2007).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, "Thickness and Birefringence of Healthy Retinal Nerve Fiber Layer Tissue Measured with Polarization-Sensitive Optical Coherence Tomography," Invest. Ophthalmol. Vis. Sci. 45, 2606-2612 (2004).
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, "Jones matrix analysis for a polarization-sensitive optical coherencetomography system using fiber-optic components," Opt. Lett. 29, 2512-2514 (2004).
[CrossRef] [PubMed]

N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography," Opt. Lett. 29, 480-482 (2004).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, "In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography," Opt. Lett. 27, 1610-1612 (2002).
[CrossRef]

Chang, W.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Chen, T. C.

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, "Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination," J. Biomed. Opt. 12, 041205 (2007).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, "Thickness and Birefringence of Healthy Retinal Nerve Fiber Layer Tissue Measured with Polarization-Sensitive Optical Coherence Tomography," Invest. Ophthalmol. Vis. Sci. 45, 2606-2612 (2004).
[CrossRef] [PubMed]

N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography," Opt. Lett. 29, 480-482 (2004).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, "In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography," Opt. Lett. 27, 1610-1612 (2002).
[CrossRef]

Chen, Y.

V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head," Invest. Ophthalmol. Vis. Sci. 49, 5103-5110 (2008).
[CrossRef] [PubMed]

Chen, Z.

de Boer, J. F.

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, "Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination," J. Biomed. Opt. 12, 041205 (2007).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, "Thickness and Birefringence of Healthy Retinal Nerve Fiber Layer Tissue Measured with Polarization-Sensitive Optical Coherence Tomography," Invest. Ophthalmol. Vis. Sci. 45, 2606-2612 (2004).
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, "Jones matrix analysis for a polarization-sensitive optical coherencetomography system using fiber-optic components," Opt. Lett. 29, 2512-2514 (2004).
[CrossRef] [PubMed]

N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography," Opt. Lett. 29, 480-482 (2004).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, "In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography," Opt. Lett. 27, 1610-1612 (2002).
[CrossRef]

J. F. de Boer and T. E. Milner, "Review of polarization sensitive optical coherence tomography and Stokes vector determination," Journal of Biomedical Optics 7, 359-371 (2002).
[CrossRef] [PubMed]

C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, and J. S. Nelson, "High-speed fiber based polarizationsensitive optical coherence tomography of in vivo human skin," Opt. Lett. 25, 1355-1357 (2000).
[CrossRef]

J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, "Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography," Opt. Lett. 22, 934-936 (1997).
[CrossRef] [PubMed]

Drexler, W.

B. Povazay, B. Hermann, B. Hofer, V. Kajic, E. Simpson, T. Bridgford, and W. Drexler, "Wide-field optical coherence tomography of the choroid in vivo," Invest. Ophthalmol. Vis. Sci. 50, 1856-1863 (2009).
[CrossRef]

Duker, J. S.

V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head," Invest. Ophthalmol. Vis. Sci. 49, 5103-5110 (2008).
[CrossRef] [PubMed]

Elsner, A. E.

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, "Imaging polarimetry in age-related macular degeneration," Invest. Ophthalmol. Vis. Sci. 49, 2661-2667 (2008).
[CrossRef] [PubMed]

Endo, T.

Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, "Polarizationsensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples," Appl. Phys. Lett. 85, 3023-3025 (2004).
[CrossRef]

Falkner-Radler, C.

B. Povazay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, andW. Drexler, "Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed. Opt. 12, 041211 (2007).
[CrossRef] [PubMed]

Fercher, A. F.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

Findl, O.

M. Pircher, E. Gotzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, "Human Macula Investigated In Vivo with Polarization-Sensitive Optical Coherence Tomography," Invest. Ophthalmol. Vis. Sci. 47, 5487-5494 (2006).
[CrossRef] [PubMed]

Flotte, T.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head," Invest. Ophthalmol. Vis. Sci. 49, 5103-5110 (2008).
[CrossRef] [PubMed]

M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, "Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging," J. Opt. Soc. Am. B 9, 903-908 (1992).
[CrossRef]

Geitzenauer, W.

M. Pircher, E. Gotzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, "Human Macula Investigated In Vivo with Polarization-Sensitive Optical Coherence Tomography," Invest. Ophthalmol. Vis. Sci. 47, 5487-5494 (2006).
[CrossRef] [PubMed]

Glittenberg, C.

B. Povazay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, andW. Drexler, "Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed. Opt. 12, 041211 (2007).
[CrossRef] [PubMed]

Gorczynska, I.

V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head," Invest. Ophthalmol. Vis. Sci. 49, 5103-5110 (2008).
[CrossRef] [PubMed]

Gotzinger, E.

E. Gotzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, "Analysis of the origin of atypical scanning laser polarimetry patterns by polarization-sensitive optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 49, 5366-5372 (2008).
[CrossRef] [PubMed]

M. Pircher, E. Gotzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, "Human Macula Investigated In Vivo with Polarization-Sensitive Optical Coherence Tomography," Invest. Ophthalmol. Vis. Sci. 47, 5487-5494 (2006).
[CrossRef] [PubMed]

Greenfield, D. S.

X.-R. Huang, H. Bagga, D. S. Greenfield, and R. W. Knighton, "Variation of Peripapillary Retinal Nerve Fiber Layer Birefringence in Normal Human Subjects," Invest. Ophthalmol. Vis. Sci. 45, 3073-3080 (2004).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hee, M.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hee, M. R.

Hermann, B.

B. Povazay, B. Hermann, B. Hofer, V. Kajic, E. Simpson, T. Bridgford, and W. Drexler, "Wide-field optical coherence tomography of the choroid in vivo," Invest. Ophthalmol. Vis. Sci. 50, 1856-1863 (2009).
[CrossRef]

B. Povazay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, andW. Drexler, "Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed. Opt. 12, 041211 (2007).
[CrossRef] [PubMed]

Hirn, C.

E. Gotzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, "Analysis of the origin of atypical scanning laser polarimetry patterns by polarization-sensitive optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 49, 5366-5372 (2008).
[CrossRef] [PubMed]

Hitzenberger, C. K.

E. Gotzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, "Analysis of the origin of atypical scanning laser polarimetry patterns by polarization-sensitive optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 49, 5366-5372 (2008).
[CrossRef] [PubMed]

M. Pircher, E. Gotzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, "Human Macula Investigated In Vivo with Polarization-Sensitive Optical Coherence Tomography," Invest. Ophthalmol. Vis. Sci. 47, 5487-5494 (2006).
[CrossRef] [PubMed]

Hofer, B.

B. Povazay, B. Hermann, B. Hofer, V. Kajic, E. Simpson, T. Bridgford, and W. Drexler, "Wide-field optical coherence tomography of the choroid in vivo," Invest. Ophthalmol. Vis. Sci. 50, 1856-1863 (2009).
[CrossRef]

B. Povazay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, andW. Drexler, "Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed. Opt. 12, 041211 (2007).
[CrossRef] [PubMed]

Huang, D.

M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, "Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging," J. Opt. Soc. Am. B 9, 903-908 (1992).
[CrossRef]

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Huang, X.-R.

X.-R. Huang, H. Bagga, D. S. Greenfield, and R. W. Knighton, "Variation of Peripapillary Retinal Nerve Fiber Layer Birefringence in Normal Human Subjects," Invest. Ophthalmol. Vis. Sci. 45, 3073-3080 (2004).
[CrossRef] [PubMed]

Huber, R.

V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head," Invest. Ophthalmol. Vis. Sci. 49, 5103-5110 (2008).
[CrossRef] [PubMed]

Itoh, M.

Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, "Polarizationsensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples," Appl. Phys. Lett. 85, 3023-3025 (2004).
[CrossRef]

Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, "Birefringence imaging of human skin by polarizationsensitive spectral interferometric optical coherence tomography," Opt. Lett. 27, 1803-1805 (2002).
[CrossRef]

Iwasaki, T.

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, "Imaging polarimetry in age-related macular degeneration," Invest. Ophthalmol. Vis. Sci. 49, 2661-2667 (2008).
[CrossRef] [PubMed]

Izatt, J. A.

Jiao, S.

Kajic, V.

B. Povazay, B. Hermann, B. Hofer, V. Kajic, E. Simpson, T. Bridgford, and W. Drexler, "Wide-field optical coherence tomography of the choroid in vivo," Invest. Ophthalmol. Vis. Sci. 50, 1856-1863 (2009).
[CrossRef]

Katada, C.

Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, "Polarizationsensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples," Appl. Phys. Lett. 85, 3023-3025 (2004).
[CrossRef]

Knighton, R. W.

X.-R. Huang, H. Bagga, D. S. Greenfield, and R. W. Knighton, "Variation of Peripapillary Retinal Nerve Fiber Layer Birefringence in Normal Human Subjects," Invest. Ophthalmol. Vis. Sci. 45, 3073-3080 (2004).
[CrossRef] [PubMed]

Kowalczyk, A.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

Leitgeb, R.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

Leydolt, C.

M. Pircher, E. Gotzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, "Human Macula Investigated In Vivo with Polarization-Sensitive Optical Coherence Tomography," Invest. Ophthalmol. Vis. Sci. 47, 5487-5494 (2006).
[CrossRef] [PubMed]

Lin, C.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Makita, S.

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, "Imaging polarimetry in age-related macular degeneration," Invest. Ophthalmol. Vis. Sci. 49, 2661-2667 (2008).
[CrossRef] [PubMed]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, "Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry," J. Biomed. Opt. 13, 014013 (2008).
[CrossRef] [PubMed]

Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, "Polarizationsensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples," Appl. Phys. Lett. 85, 3023-3025 (2004).
[CrossRef]

Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, "Birefringence imaging of human skin by polarizationsensitive spectral interferometric optical coherence tomography," Opt. Lett. 27, 1803-1805 (2002).
[CrossRef]

Michels, S.

M. Pircher, E. Gotzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, "Human Macula Investigated In Vivo with Polarization-Sensitive Optical Coherence Tomography," Invest. Ophthalmol. Vis. Sci. 47, 5487-5494 (2006).
[CrossRef] [PubMed]

Milner, T. E.

J. F. de Boer and T. E. Milner, "Review of polarization sensitive optical coherence tomography and Stokes vector determination," Journal of Biomedical Optics 7, 359-371 (2002).
[CrossRef] [PubMed]

J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, "Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography," Opt. Lett. 22, 934-936 (1997).
[CrossRef] [PubMed]

Miura, M.

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, "Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry," J. Biomed. Opt. 13, 014013 (2008).
[CrossRef] [PubMed]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, "Imaging polarimetry in age-related macular degeneration," Invest. Ophthalmol. Vis. Sci. 49, 2661-2667 (2008).
[CrossRef] [PubMed]

Morgan, J. E.

B. Povazay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, andW. Drexler, "Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed. Opt. 12, 041211 (2007).
[CrossRef] [PubMed]

Mujat, M.

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, "Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination," J. Biomed. Opt. 12, 041205 (2007).
[CrossRef] [PubMed]

Mutoh, M.

Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, "Polarizationsensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples," Appl. Phys. Lett. 85, 3023-3025 (2004).
[CrossRef]

Nassif, N.

Nelson, J. S.

Park, B. H.

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, "Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination," J. Biomed. Opt. 12, 041205 (2007).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, "Thickness and Birefringence of Healthy Retinal Nerve Fiber Layer Tissue Measured with Polarization-Sensitive Optical Coherence Tomography," Invest. Ophthalmol. Vis. Sci. 45, 2606-2612 (2004).
[CrossRef] [PubMed]

N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography," Opt. Lett. 29, 480-482 (2004).
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, "Jones matrix analysis for a polarization-sensitive optical coherencetomography system using fiber-optic components," Opt. Lett. 29, 2512-2514 (2004).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, "In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography," Opt. Lett. 27, 1610-1612 (2002).
[CrossRef]

C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, and J. S. Nelson, "High-speed fiber based polarizationsensitive optical coherence tomography of in vivo human skin," Opt. Lett. 25, 1355-1357 (2000).
[CrossRef]

Pierce, M. C.

Pircher, M.

E. Gotzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, "Analysis of the origin of atypical scanning laser polarimetry patterns by polarization-sensitive optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 49, 5366-5372 (2008).
[CrossRef] [PubMed]

M. Pircher, E. Gotzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, "Human Macula Investigated In Vivo with Polarization-Sensitive Optical Coherence Tomography," Invest. Ophthalmol. Vis. Sci. 47, 5487-5494 (2006).
[CrossRef] [PubMed]

Povazay, B.

B. Povazay, B. Hermann, B. Hofer, V. Kajic, E. Simpson, T. Bridgford, and W. Drexler, "Wide-field optical coherence tomography of the choroid in vivo," Invest. Ophthalmol. Vis. Sci. 50, 1856-1863 (2009).
[CrossRef]

B. Povazay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, andW. Drexler, "Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed. Opt. 12, 041211 (2007).
[CrossRef] [PubMed]

Puliafito, C.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Rollins, A. M.

Sattmann, H.

B. Povazay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, andW. Drexler, "Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed. Opt. 12, 041211 (2007).
[CrossRef] [PubMed]

Saxer, C. E.

Schmidt-Erfurth, U.

M. Pircher, E. Gotzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, "Human Macula Investigated In Vivo with Polarization-Sensitive Optical Coherence Tomography," Invest. Ophthalmol. Vis. Sci. 47, 5487-5494 (2006).
[CrossRef] [PubMed]

Schuman, J.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Schuman, J. S.

V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head," Invest. Ophthalmol. Vis. Sci. 49, 5103-5110 (2008).
[CrossRef] [PubMed]

Simpson, E.

B. Povazay, B. Hermann, B. Hofer, V. Kajic, E. Simpson, T. Bridgford, and W. Drexler, "Wide-field optical coherence tomography of the choroid in vivo," Invest. Ophthalmol. Vis. Sci. 50, 1856-1863 (2009).
[CrossRef]

Srinivasan, V. J.

V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head," Invest. Ophthalmol. Vis. Sci. 49, 5103-5110 (2008).
[CrossRef] [PubMed]

Stinson, W.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Stoica, G.

Sutoh, Y.

Swanson, E.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

Takahashi, M.

Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, "Polarizationsensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples," Appl. Phys. Lett. 85, 3023-3025 (2004).
[CrossRef]

Tearney, G. J.

Todorovic, M.

Unterhuber, A.

B. Povazay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, andW. Drexler, "Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed. Opt. 12, 041211 (2007).
[CrossRef] [PubMed]

van Gemert, M. J. C.

Vass, C.

E. Gotzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, "Analysis of the origin of atypical scanning laser polarimetry patterns by polarization-sensitive optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 49, 5366-5372 (2008).
[CrossRef] [PubMed]

Wang, L. V.

Wojtkowski, M.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

Yamanari, M.

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, "Imaging polarimetry in age-related macular degeneration," Invest. Ophthalmol. Vis. Sci. 49, 2661-2667 (2008).
[CrossRef] [PubMed]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, "Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry," J. Biomed. Opt. 13, 014013 (2008).
[CrossRef] [PubMed]

Yasuno, Y.

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, "Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry," J. Biomed. Opt. 13, 014013 (2008).
[CrossRef] [PubMed]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, "Imaging polarimetry in age-related macular degeneration," Invest. Ophthalmol. Vis. Sci. 49, 2661-2667 (2008).
[CrossRef] [PubMed]

Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, "Polarizationsensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples," Appl. Phys. Lett. 85, 3023-3025 (2004).
[CrossRef]

Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, "Birefringence imaging of human skin by polarizationsensitive spectral interferometric optical coherence tomography," Opt. Lett. 27, 1803-1805 (2002).
[CrossRef]

Yatagai, T.

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, "Imaging polarimetry in age-related macular degeneration," Invest. Ophthalmol. Vis. Sci. 49, 2661-2667 (2008).
[CrossRef] [PubMed]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, "Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry," J. Biomed. Opt. 13, 014013 (2008).
[CrossRef] [PubMed]

Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, "Polarizationsensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples," Appl. Phys. Lett. 85, 3023-3025 (2004).
[CrossRef]

Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, "Birefringence imaging of human skin by polarizationsensitive spectral interferometric optical coherence tomography," Opt. Lett. 27, 1803-1805 (2002).
[CrossRef]

Yun, S. H.

Zeiler, F.

B. Povazay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, andW. Drexler, "Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed. Opt. 12, 041211 (2007).
[CrossRef] [PubMed]

Zhao, M.

Zhao, Y.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Y. Yasuno, S. Makita, T. Endo, M. Itoh, T. Yatagai, M. Takahashi, C. Katada, and M. Mutoh, "Polarizationsensitive complex Fourier domain optical coherence tomography for Jones matrix imaging of biological samples," Appl. Phys. Lett. 85, 3023-3025 (2004).
[CrossRef]

Invest. Ophthalmol. Vis. Sci. (7)

B. Povazay, B. Hermann, B. Hofer, V. Kajic, E. Simpson, T. Bridgford, and W. Drexler, "Wide-field optical coherence tomography of the choroid in vivo," Invest. Ophthalmol. Vis. Sci. 50, 1856-1863 (2009).
[CrossRef]

V. J. Srinivasan, D. C. Adler, Y. Chen, I. Gorczynska, R. Huber, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head," Invest. Ophthalmol. Vis. Sci. 49, 5103-5110 (2008).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, "Thickness and Birefringence of Healthy Retinal Nerve Fiber Layer Tissue Measured with Polarization-Sensitive Optical Coherence Tomography," Invest. Ophthalmol. Vis. Sci. 45, 2606-2612 (2004).
[CrossRef] [PubMed]

E. Gotzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, "Analysis of the origin of atypical scanning laser polarimetry patterns by polarization-sensitive optical coherence tomography," Invest. Ophthalmol. Vis. Sci. 49, 5366-5372 (2008).
[CrossRef] [PubMed]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, "Imaging polarimetry in age-related macular degeneration," Invest. Ophthalmol. Vis. Sci. 49, 2661-2667 (2008).
[CrossRef] [PubMed]

M. Pircher, E. Gotzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, "Human Macula Investigated In Vivo with Polarization-Sensitive Optical Coherence Tomography," Invest. Ophthalmol. Vis. Sci. 47, 5487-5494 (2006).
[CrossRef] [PubMed]

X.-R. Huang, H. Bagga, D. S. Greenfield, and R. W. Knighton, "Variation of Peripapillary Retinal Nerve Fiber Layer Birefringence in Normal Human Subjects," Invest. Ophthalmol. Vis. Sci. 45, 3073-3080 (2004).
[CrossRef] [PubMed]

J. Biomed. Opt. (4)

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, "Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination," J. Biomed. Opt. 12, 041205 (2007).
[CrossRef] [PubMed]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, "Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry," J. Biomed. Opt. 13, 014013 (2008).
[CrossRef] [PubMed]

B. Povazay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, andW. Drexler, "Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients," J. Biomed. Opt. 12, 041211 (2007).
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Journal of Biomedical Optics (1)

J. F. de Boer and T. E. Milner, "Review of polarization sensitive optical coherence tomography and Stokes vector determination," Journal of Biomedical Optics 7, 359-371 (2002).
[CrossRef] [PubMed]

Opt. Lett. (8)

C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, and J. S. Nelson, "High-speed fiber based polarizationsensitive optical coherence tomography of in vivo human skin," Opt. Lett. 25, 1355-1357 (2000).
[CrossRef]

A. M. Rollins and J. A. Izatt, "Optimal interferometer designs for optical coherence tomography," Opt. Lett. 24, 1484-1486 (1999).
[CrossRef]

J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, "Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography," Opt. Lett. 22, 934-936 (1997).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, "In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography," Opt. Lett. 27, 1610-1612 (2002).
[CrossRef]

M. Zhao and J. A. Izatt, "Single-camera sequential-scan-based polarization-sensitive SDOCT for retinal imaging," Opt. Lett. 34, 205-207 (2009).
[CrossRef] [PubMed]

N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography," Opt. Lett. 29, 480-482 (2004).
[CrossRef] [PubMed]

Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, "Birefringence imaging of human skin by polarizationsensitive spectral interferometric optical coherence tomography," Opt. Lett. 27, 1803-1805 (2002).
[CrossRef]

B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, "Jones matrix analysis for a polarization-sensitive optical coherencetomography system using fiber-optic components," Opt. Lett. 29, 2512-2514 (2004).
[CrossRef] [PubMed]

Science (1)

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Other (27)

M. J. Hogan, J. A. Alvarado, and J. E. Weddell, Histology of the human eye: an atlas and textbook (Saunders, 1971).

Y. Chen, D. M. de Bruin, C. Kerbage, and J. F. de Boer, "Spectrally balanced detection for optical frequency domain imaging," Opt. Express 15, 16390-16399 (2007). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-15-25-16390.
[CrossRef] [PubMed]

W. Oh, S. Yun, B. Vakoc, M. Shishkov, A. Desjardins, B. Park, J. de Boer, G. Tearney, and B. Bouma, "Highspeed polarization sensitive optical frequency domain imaging with frequency multiplexing," Opt. Express 16, 1096-1103 (2008). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-16-2-1096.
[CrossRef] [PubMed]

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, "Fiber-based polarization-sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method," Opt. Express 14, 6502-6515 (2006). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-14-14-6502
[CrossRef] [PubMed]

R. R. Allingham, K. F. Damji, S. Freedman, S. E. Moroi, and G. Shafranov, eds., Shields’ Textbook of Glaucoma, 5th ed. (Lippincott Williams & Wilkins, 2005).

S. Makita, T. Fabritius, and Y. Yasuno, "Full-range, high-speed, high-resolution 1m spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye," Opt. Express 16, 8406-8420 (2008). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-16-12-8406
[CrossRef] [PubMed]

P. Puvanathasan, P. Forbes, Z. Ren, D. Malchow, S. Boyd, and K. Bizheva, "High-speed, high-resolution Fourierdomain optical coherence tomography system for retinal imaging in the 1060 nm wavelength region," Opt. Lett. 33, 2479-2481 (2008). URL http://ol.osa.org/abstract.cfm?URI=ol-33-21-2479.
[PubMed]

M. Choma, M. Sarunic, C. Yang, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-11-18-2183.
[CrossRef] [PubMed]

S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, "High-speed optical frequency-domain imaging," Opt.Express 11, 2953-2963 (2003). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-11-22-2953.
[CrossRef] [PubMed]

B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, "Phase-resolved optical frequency domain imaging," Opt. Express 13, 5483-5493 (2005). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-13-14-5483.
[CrossRef] [PubMed]

American National Standards Institute, American national standard for safe use of lasers z136.1 (Laser Institute of America, Orlando, FL, 2000).

B. Povazay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. Fercher,W. Drexler, C. Schubert, P. Ahnelt, M. Mei, R. Holzwarth, W. Wadsworth, J. Knight, and P. S. J. Russell, "Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm," Opt. Express 11, 1980-1986 (2003). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-11-17-1980.
[CrossRef] [PubMed]

A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, "In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid," Opt. Express 13, 3252-3258 (2005). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-13-9-3252.
[CrossRef] [PubMed]

B. Povaˇzay, B. Hofer, C. Torti, B. Hermann, A. R. Tumlinson, M. Esmaeelpour, C. A. Egan, A. C. Bird, and W. Drexler, "Impact of enhanced resolution, speed and penetration on threedimensional retinal optical coherence tomography," Opt. Express 17, 4134-4150 (2009). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-17-5-4134.
[CrossRef] [PubMed]

E. C. Lee, J. F. de Boer, M. Mujat, H. Lim, and S. H. Yun, "In vivo optical frequency domain imaging of human retina and choroid," Opt. Express 14, 4403-4411 (2006). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-14-10-4403.
[CrossRef] [PubMed]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, "In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography andscattering optical coherence angiography," Opt. Express 15, 6121-6139 (2007). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-15-10-6121.
[CrossRef] [PubMed]

R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, "Fourier domain mode locking at 1050 nm for ultrahigh- speed optical coherence tomography of the human retina at 236,000 axial scans per second," Opt. Lett. 32, 2049-2051 (2007). URL http://ol.osa.org/abstract.cfm?URI=ol-32-14-2049.
[CrossRef] [PubMed]

Y. Yasuno, M. Yamanari, K. Kawana, T. Oshika, and M. Miura, "Investigation of post-glaucoma-surgery structures by three-dimensional and polarization sensitive anterior eye segment optical coherence tomography," Opt. Express 17, 3980-3996 (2009). URLhttp://www.opticsexpress.org/abstract.cfm?URI=oe-17-5-3980.
[CrossRef] [PubMed]

M. Pircher, E. G¨otzinger, R. Leitgeb, H. Sattmann, O. Findl, and C. Hitzenberger, "Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT," Opt. Express 12, 5940-5951 (2004). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-12-24-5940.
[CrossRef] [PubMed]

E. G¨otzinger, M. Pircher, B. Baumann, C. Ahlers, W. Geitzenauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, "Three-dimensional polarization sensitive OCT imaging and interactive display of the human retina," Opt. Express 17, 4151-4165 (2009). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-17-5-4151.
[CrossRef] [PubMed]

M. Yamanari, S. Makita, and Y. Yasuno, "Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation," Opt. Express 16, 5892-5906 (2008). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-16-8-5892>.
[CrossRef] [PubMed]

E. Gotzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, "Retinal pigment epithelium segmentation bypolarization sensitive optical coherencetomography," Opt. Express 16, 16416-16428 (2008). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-16-21-16410.
[CrossRef]

R. Leitgeb, C. Hitzenberger, and A. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-11-8-889.
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003). URL http://ol.osa.org/abstract.cfm?URI=ol-28-21-2067.
[CrossRef] [PubMed]

B. Cense, "Optical coherence tomography for retinal imaging," Ph.D. thesis, University of Twente (2005).

B. Cense, M. Mujat, T. C. Chen, B. H. Park, and J. F. de Boer, "Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera," Opt. Express 15, 2421-2431 (2007). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-15-5-2421.
[CrossRef] [PubMed]

E. Gotzinger, M. Pircher, and C. K. Hitzenberger, "High speed spectral domain polarization sensitive optical coherence tomography of the human retina," Opt. Express 13, 10217-10229 (2005). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-13-25-10217.
[CrossRef] [PubMed]

Supplementary Material (4)

» Media 1: AVI (3820 KB)     
» Media 2: AVI (13718 KB)     
» Media 3: AVI (3844 KB)     
» Media 4: AVI (13978 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic diagram of PS-SS-OCT system; SS: frequency-swept laser source, PC: polarization controller, LP: linear polarizer, EOM: electro-optic modulator, BS: beamsplitter, PBS: polarizing beamsplitter, and H ch. and V ch.: balanced photoreceivers for horizontally and vertically polarized signals, respectively.

Fig. 2.
Fig. 2.

Diagram of the signal frequency. Red and blue lines show the positive and conjugate signals, respectively. Orange and green windows show the measurable frequency range below the Nyquist frequency (50 MHz) and the extracted region in the demodulation process, respectively.

Fig. 3.
Fig. 3.

Retinal images of healthy eye between fovea and ONH indicated in the white box on the fundus photograph (a). The subject’s eye was scanned by PS-SS-OCT; scanning range was 5.4 mm×5.4 mm. (b) and (c): B-scans of single-channel intensity images, (d) and (e): polarization-insensitive intensity images, and (f) and (g): phase-retardation images. The red and blue lines on (a) represent the scanning positions of (b), (d), and (f) and (c), (e), and (g), respectively. The image size of the B-scans is 5.4 mm (x) ×1.96 mm (z). The artificial structures due to birefringence of the sclera are indicated by green arrows in (b) and (c). The blood vessels in the sclera and short ciliary artery are indicated by red arrows in (d), (e), and (g), respectively. A movie of the polarization-insensitive intensity and phase-retardation images scanned from inferior to superior regions and its high-quality version are available (Media 1 and Media 2).

Fig. 4.
Fig. 4.

Polarization-insensitive intensity (left) and phase retardation (center) images of ONH. The image size is 2.7 mm (x) ×1.89 mm (z). The red line in the fundus photograph (right) shows the position of the B-scan. The white box indicates the scanned region to obtain the volumetric data shown in Fig. 5.

Fig. 5.
Fig. 5.

Images of en face intensity (upper) and phase retardation (lower) volumes of ONH. The image size is 2.7 mm×2.7 mm. The volumes are sliced at depth positions of 52 µm (left), 170 µm (center), and 319 µm (right) from the bottom of the ONH. A movie of the en face slices of the volumetric data from anterior to posterior regions and its high-quality version are available (Media 3 and Media 4).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Jmeasured=(I˜h0*+I˜h1*J1(A0))I˜h0*I˜h1*J1(A0)(I˜v0*+I˜v1*J1(A0))I˜v0*I˜v1*J1(A0) ,
JmeasuredJsurface1=JU(p1(iη2)00p2(iη2))JU1 ,

Metrics