Abstract

We track the path difference between interferometer arms with few-nanometer accuracy without adding optics to the beam path. We measure the interference of a helium-neon beam that copropagates through the interferometer with midinfrared pulses used for multidimensional spectroscopy. This can indicate motion, but not direction. By oscillating the path length of one arm with a mirror on a piezoelectric stack and monitoring the oscillations of the recombined helium-neon beam, the direction can be calculated, and the path delay can be continuously tracked.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. A. Michelson, "The relative motion of the Earth and the Luminiferous ether," Am. J. Sci. 22, 120-129 (1881).
  2. B. Abbott et al.(LIGO Scientific Collaboration), "Search for Gravitational-Wave Bursts from Soft Gamma Repeaters," Phys. Rev. Lett. 101, 211102 (2008).
    [CrossRef] [PubMed]
  3. D. M. Jonas, "Two-Dimensional Femtosecond Spectroscopy," Annu. Rev. Phys. Chem. 54, 425-463 (2003).
  4. L. P. DeFlores, R. A. Nicodemus, and A. Tokmakoff, "Two-dimensional Fourier transform spectroscopy in the pump-probe geometry," Opt. Lett. 32, 2966-2968 (2007).
    [CrossRef] [PubMed]
  5. M. M. Salour and C. Cohen-Tannoudji, "Observation of Ramsey’s Interference Fringes in the Profile of Doppler-Free Two-Photon Resonances," Phys. Rev. Lett. 38, 757-760 (1977).
    [CrossRef]
  6. N. F. Scherer, R. J. Carlson, A. Matro, M. Du, A. J. Ruggiero, V. Romero-Rochin, J. A. Cina, G. R. Fleming, and S. A. Rice, "Fluorescence-detected wave packet interferometry: Time resolved molecular spectroscopy with sequences of femtosecond phase-locked pulses," J. Chem. Phys. 95, 1487-1511 (1991).
    [CrossRef]
  7. T. Zhang, C. Borca, X. Li, and S. Cundiff, "Optical two-dimensional Fourier transform spectroscopy with active interferometric stabilization," Opt. Express 13, 7432-7441 (2005).
    [CrossRef] [PubMed]
  8. C. J. Buchenauer and A. R. Jacobson, "Quadrature interferometer for plasma density measurements," Rev. Sci. Instrum. 48, 769-774 (1977).
    [CrossRef]
  9. M. U. Wehner, M. H. Ulm, and M. Wegener, "Scanning interferometer stabilized by use of Pancharatnam’s phase," Opt. Lett. 22, 1455-1457 (1997).
    [CrossRef]
  10. Q1. S. Pancharatnam, "Generalized Theory of Interference and its Applications," Proc. Indian Acad. Sci. Sect. A 44, 247-262 (1956).
  11. N. Belabas and M. Joffre, "Visible-infrared two-dimensional Fourier-transform spectroscopy," Opt. Lett. 27, 2043-2045 (2002).
    [CrossRef]
  12. M. Winter, M. Wollenhaupt, and T. Baumert, "Coherent matter waves for ultrafast laser pulse characterization," Opt. Commun. 264, 285 - 292 (2006).
    [CrossRef]
  13. E. H. G. Backus, S. Garrett-Roe, and P. Hamm, "Phasing problem of heterodyne-detected two-dimensional infrared spectroscopy," Opt. Lett. 33, 2665-2667 (2008).
    [CrossRef] [PubMed]
  14. A. D. Bristow, D. Karaiskaj, X. Dai, and S. T. Cundiff, "All-optical retrieval of the global phase for two-dimensional Fourier-transform spectroscopy," Opt. Express 16, 18017-18027 (2008).
    [CrossRef] [PubMed]
  15. A. L. Besse and J. G. Kelley, "Interferometer for Shock Tube," Rev. Sci. Instrum. 37, 1497-1499 (1966).
    [CrossRef]
  16. V. Volkov, R. Shanz, and P. Hamm, "Active phase stabilization in Fourier-transform two-dimensional infrared spectroscopy," Opt. Lett. 30, 2010-2012 (2005).
    [CrossRef] [PubMed]
  17. G. D. Goodno, G. Dadusc, and R. J. D. Miller, "Ultrafast heterodyne-detected transient-grating spectroscopy using diffractive optics," J. Opt. Soc. Am. B 15, 1791-1794 (1998).
    [CrossRef]
  18. A. A. Maznev, K. A. Nelson, and J. Rogers, "Optical heterodyne detection of laser-induced gratings," Opt. Lett. 23, 1319-1321 (1998).
    [CrossRef]
  19. S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, "Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide," Proc. Natl. Acad. Sci. USA 104, 14197-14202 (2007).
    [CrossRef] [PubMed]
  20. K. Gundogdu, K. W. Stone, D. B. Turner, and K. A. Nelson, "Multidimensional coherent spectroscopy made easy," Chem. Phys. 341, 89 - 94 (2007).
    [CrossRef]
  21. U. Selig, F. Langhojer, F. Dimler, T. Löhrig, C. Schwarz, B. Gieseking, and T. Brixner, "Inherently phase-stable coherent two-dimensional spectroscopy using only conventional optics," Opt. Lett. 33, 2851-2853 (2008).
    [CrossRef] [PubMed]
  22. M. J. Nee, R. McCanne, K. J. Kubarych, and M. Joffre, "Two-dimensional infrared spectroscopy detected by chirped pulse upconversion," Opt. Lett. 32, 713-715 (2007).
    [CrossRef] [PubMed]
  23. L. Lepetit, G. Chériaux, and M. Joffre, "Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy," J. Opt. Soc. Am. B 12, 2467-2474 (1995).
    [CrossRef]
  24. K. F. Lee, K. J. Kubarych, A. Bonvalet, and M. Joffre, "Characterization of mid-infrared femtosecond pulses," J. Opt. Soc. Am. B 25, A54-A62 (2008).
    [CrossRef]

2008 (5)

2007 (4)

M. J. Nee, R. McCanne, K. J. Kubarych, and M. Joffre, "Two-dimensional infrared spectroscopy detected by chirped pulse upconversion," Opt. Lett. 32, 713-715 (2007).
[CrossRef] [PubMed]

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, "Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide," Proc. Natl. Acad. Sci. USA 104, 14197-14202 (2007).
[CrossRef] [PubMed]

K. Gundogdu, K. W. Stone, D. B. Turner, and K. A. Nelson, "Multidimensional coherent spectroscopy made easy," Chem. Phys. 341, 89 - 94 (2007).
[CrossRef]

L. P. DeFlores, R. A. Nicodemus, and A. Tokmakoff, "Two-dimensional Fourier transform spectroscopy in the pump-probe geometry," Opt. Lett. 32, 2966-2968 (2007).
[CrossRef] [PubMed]

2006 (1)

M. Winter, M. Wollenhaupt, and T. Baumert, "Coherent matter waves for ultrafast laser pulse characterization," Opt. Commun. 264, 285 - 292 (2006).
[CrossRef]

2005 (2)

2003 (1)

D. M. Jonas, "Two-Dimensional Femtosecond Spectroscopy," Annu. Rev. Phys. Chem. 54, 425-463 (2003).

2002 (1)

1998 (2)

1997 (1)

1995 (1)

1991 (1)

N. F. Scherer, R. J. Carlson, A. Matro, M. Du, A. J. Ruggiero, V. Romero-Rochin, J. A. Cina, G. R. Fleming, and S. A. Rice, "Fluorescence-detected wave packet interferometry: Time resolved molecular spectroscopy with sequences of femtosecond phase-locked pulses," J. Chem. Phys. 95, 1487-1511 (1991).
[CrossRef]

1977 (2)

C. J. Buchenauer and A. R. Jacobson, "Quadrature interferometer for plasma density measurements," Rev. Sci. Instrum. 48, 769-774 (1977).
[CrossRef]

M. M. Salour and C. Cohen-Tannoudji, "Observation of Ramsey’s Interference Fringes in the Profile of Doppler-Free Two-Photon Resonances," Phys. Rev. Lett. 38, 757-760 (1977).
[CrossRef]

1966 (1)

A. L. Besse and J. G. Kelley, "Interferometer for Shock Tube," Rev. Sci. Instrum. 37, 1497-1499 (1966).
[CrossRef]

1956 (1)

Q1. S. Pancharatnam, "Generalized Theory of Interference and its Applications," Proc. Indian Acad. Sci. Sect. A 44, 247-262 (1956).

1881 (1)

A. A. Michelson, "The relative motion of the Earth and the Luminiferous ether," Am. J. Sci. 22, 120-129 (1881).

Abbott, B.

B. Abbott et al.(LIGO Scientific Collaboration), "Search for Gravitational-Wave Bursts from Soft Gamma Repeaters," Phys. Rev. Lett. 101, 211102 (2008).
[CrossRef] [PubMed]

Backus, E. H. G.

Baumert, T.

M. Winter, M. Wollenhaupt, and T. Baumert, "Coherent matter waves for ultrafast laser pulse characterization," Opt. Commun. 264, 285 - 292 (2006).
[CrossRef]

Belabas, N.

Besse, A. L.

A. L. Besse and J. G. Kelley, "Interferometer for Shock Tube," Rev. Sci. Instrum. 37, 1497-1499 (1966).
[CrossRef]

Bonvalet, A.

Borca, C.

Bristow, A. D.

Brixner, T.

Buchenauer, C. J.

C. J. Buchenauer and A. R. Jacobson, "Quadrature interferometer for plasma density measurements," Rev. Sci. Instrum. 48, 769-774 (1977).
[CrossRef]

Carlson, R. J.

N. F. Scherer, R. J. Carlson, A. Matro, M. Du, A. J. Ruggiero, V. Romero-Rochin, J. A. Cina, G. R. Fleming, and S. A. Rice, "Fluorescence-detected wave packet interferometry: Time resolved molecular spectroscopy with sequences of femtosecond phase-locked pulses," J. Chem. Phys. 95, 1487-1511 (1991).
[CrossRef]

Chériaux, G.

Cina, J. A.

N. F. Scherer, R. J. Carlson, A. Matro, M. Du, A. J. Ruggiero, V. Romero-Rochin, J. A. Cina, G. R. Fleming, and S. A. Rice, "Fluorescence-detected wave packet interferometry: Time resolved molecular spectroscopy with sequences of femtosecond phase-locked pulses," J. Chem. Phys. 95, 1487-1511 (1991).
[CrossRef]

Cohen-Tannoudji, C.

M. M. Salour and C. Cohen-Tannoudji, "Observation of Ramsey’s Interference Fringes in the Profile of Doppler-Free Two-Photon Resonances," Phys. Rev. Lett. 38, 757-760 (1977).
[CrossRef]

Cundiff, S.

Cundiff, S. T.

Dadusc, G.

Dai, X.

DeFlores, L. P.

Dimler, F.

Du, M.

N. F. Scherer, R. J. Carlson, A. Matro, M. Du, A. J. Ruggiero, V. Romero-Rochin, J. A. Cina, G. R. Fleming, and S. A. Rice, "Fluorescence-detected wave packet interferometry: Time resolved molecular spectroscopy with sequences of femtosecond phase-locked pulses," J. Chem. Phys. 95, 1487-1511 (1991).
[CrossRef]

Fleming, G. R.

N. F. Scherer, R. J. Carlson, A. Matro, M. Du, A. J. Ruggiero, V. Romero-Rochin, J. A. Cina, G. R. Fleming, and S. A. Rice, "Fluorescence-detected wave packet interferometry: Time resolved molecular spectroscopy with sequences of femtosecond phase-locked pulses," J. Chem. Phys. 95, 1487-1511 (1991).
[CrossRef]

Garrett-Roe, S.

Gieseking, B.

Goodno, G. D.

Gundogdu, K.

K. Gundogdu, K. W. Stone, D. B. Turner, and K. A. Nelson, "Multidimensional coherent spectroscopy made easy," Chem. Phys. 341, 89 - 94 (2007).
[CrossRef]

Hamm, P.

Jacobson, A. R.

C. J. Buchenauer and A. R. Jacobson, "Quadrature interferometer for plasma density measurements," Rev. Sci. Instrum. 48, 769-774 (1977).
[CrossRef]

Joffre, M.

Jonas, D. M.

D. M. Jonas, "Two-Dimensional Femtosecond Spectroscopy," Annu. Rev. Phys. Chem. 54, 425-463 (2003).

Karaiskaj, D.

Kelley, J. G.

A. L. Besse and J. G. Kelley, "Interferometer for Shock Tube," Rev. Sci. Instrum. 37, 1497-1499 (1966).
[CrossRef]

Kubarych, K. J.

Langhojer, F.

Lee, K. F.

Lepetit, L.

Li, X.

Ling, Y. L.

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, "Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide," Proc. Natl. Acad. Sci. USA 104, 14197-14202 (2007).
[CrossRef] [PubMed]

Löhrig, T.

Matro, A.

N. F. Scherer, R. J. Carlson, A. Matro, M. Du, A. J. Ruggiero, V. Romero-Rochin, J. A. Cina, G. R. Fleming, and S. A. Rice, "Fluorescence-detected wave packet interferometry: Time resolved molecular spectroscopy with sequences of femtosecond phase-locked pulses," J. Chem. Phys. 95, 1487-1511 (1991).
[CrossRef]

Maznev, A. A.

McCanne, R.

Michelson, A. A.

A. A. Michelson, "The relative motion of the Earth and the Luminiferous ether," Am. J. Sci. 22, 120-129 (1881).

Miller, R. J. D.

Nee, M. J.

Nelson, K. A.

K. Gundogdu, K. W. Stone, D. B. Turner, and K. A. Nelson, "Multidimensional coherent spectroscopy made easy," Chem. Phys. 341, 89 - 94 (2007).
[CrossRef]

A. A. Maznev, K. A. Nelson, and J. Rogers, "Optical heterodyne detection of laser-induced gratings," Opt. Lett. 23, 1319-1321 (1998).
[CrossRef]

Nicodemus, R. A.

Pancharatnam, S.

Q1. S. Pancharatnam, "Generalized Theory of Interference and its Applications," Proc. Indian Acad. Sci. Sect. A 44, 247-262 (1956).

Rice, S. A.

N. F. Scherer, R. J. Carlson, A. Matro, M. Du, A. J. Ruggiero, V. Romero-Rochin, J. A. Cina, G. R. Fleming, and S. A. Rice, "Fluorescence-detected wave packet interferometry: Time resolved molecular spectroscopy with sequences of femtosecond phase-locked pulses," J. Chem. Phys. 95, 1487-1511 (1991).
[CrossRef]

Rogers, J.

Romero-Rochin, V.

N. F. Scherer, R. J. Carlson, A. Matro, M. Du, A. J. Ruggiero, V. Romero-Rochin, J. A. Cina, G. R. Fleming, and S. A. Rice, "Fluorescence-detected wave packet interferometry: Time resolved molecular spectroscopy with sequences of femtosecond phase-locked pulses," J. Chem. Phys. 95, 1487-1511 (1991).
[CrossRef]

Ruggiero, A. J.

N. F. Scherer, R. J. Carlson, A. Matro, M. Du, A. J. Ruggiero, V. Romero-Rochin, J. A. Cina, G. R. Fleming, and S. A. Rice, "Fluorescence-detected wave packet interferometry: Time resolved molecular spectroscopy with sequences of femtosecond phase-locked pulses," J. Chem. Phys. 95, 1487-1511 (1991).
[CrossRef]

Salour, M. M.

M. M. Salour and C. Cohen-Tannoudji, "Observation of Ramsey’s Interference Fringes in the Profile of Doppler-Free Two-Photon Resonances," Phys. Rev. Lett. 38, 757-760 (1977).
[CrossRef]

Scherer, N. F.

N. F. Scherer, R. J. Carlson, A. Matro, M. Du, A. J. Ruggiero, V. Romero-Rochin, J. A. Cina, G. R. Fleming, and S. A. Rice, "Fluorescence-detected wave packet interferometry: Time resolved molecular spectroscopy with sequences of femtosecond phase-locked pulses," J. Chem. Phys. 95, 1487-1511 (1991).
[CrossRef]

Schwarz, C.

Selig, U.

Shanz, R.

Shim, S.-H.

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, "Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide," Proc. Natl. Acad. Sci. USA 104, 14197-14202 (2007).
[CrossRef] [PubMed]

Stone, K. W.

K. Gundogdu, K. W. Stone, D. B. Turner, and K. A. Nelson, "Multidimensional coherent spectroscopy made easy," Chem. Phys. 341, 89 - 94 (2007).
[CrossRef]

Strasfeld, D. B.

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, "Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide," Proc. Natl. Acad. Sci. USA 104, 14197-14202 (2007).
[CrossRef] [PubMed]

Tokmakoff, A.

Turner, D. B.

K. Gundogdu, K. W. Stone, D. B. Turner, and K. A. Nelson, "Multidimensional coherent spectroscopy made easy," Chem. Phys. 341, 89 - 94 (2007).
[CrossRef]

Ulm, M. H.

Volkov, V.

Wegener, M.

Wehner, M. U.

Winter, M.

M. Winter, M. Wollenhaupt, and T. Baumert, "Coherent matter waves for ultrafast laser pulse characterization," Opt. Commun. 264, 285 - 292 (2006).
[CrossRef]

Wollenhaupt, M.

M. Winter, M. Wollenhaupt, and T. Baumert, "Coherent matter waves for ultrafast laser pulse characterization," Opt. Commun. 264, 285 - 292 (2006).
[CrossRef]

Zanni, M. T.

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, "Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide," Proc. Natl. Acad. Sci. USA 104, 14197-14202 (2007).
[CrossRef] [PubMed]

Zhang, T.

Am. J. Sci. (1)

A. A. Michelson, "The relative motion of the Earth and the Luminiferous ether," Am. J. Sci. 22, 120-129 (1881).

Annu. Rev. Phys. Chem. (1)

D. M. Jonas, "Two-Dimensional Femtosecond Spectroscopy," Annu. Rev. Phys. Chem. 54, 425-463 (2003).

Chem. Phys. (1)

K. Gundogdu, K. W. Stone, D. B. Turner, and K. A. Nelson, "Multidimensional coherent spectroscopy made easy," Chem. Phys. 341, 89 - 94 (2007).
[CrossRef]

J. Chem. Phys. (1)

N. F. Scherer, R. J. Carlson, A. Matro, M. Du, A. J. Ruggiero, V. Romero-Rochin, J. A. Cina, G. R. Fleming, and S. A. Rice, "Fluorescence-detected wave packet interferometry: Time resolved molecular spectroscopy with sequences of femtosecond phase-locked pulses," J. Chem. Phys. 95, 1487-1511 (1991).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Commun. (1)

M. Winter, M. Wollenhaupt, and T. Baumert, "Coherent matter waves for ultrafast laser pulse characterization," Opt. Commun. 264, 285 - 292 (2006).
[CrossRef]

Opt. Express (2)

Opt. Lett. (8)

Phys. Rev. Lett. (2)

M. M. Salour and C. Cohen-Tannoudji, "Observation of Ramsey’s Interference Fringes in the Profile of Doppler-Free Two-Photon Resonances," Phys. Rev. Lett. 38, 757-760 (1977).
[CrossRef]

B. Abbott et al.(LIGO Scientific Collaboration), "Search for Gravitational-Wave Bursts from Soft Gamma Repeaters," Phys. Rev. Lett. 101, 211102 (2008).
[CrossRef] [PubMed]

Proc. Indian Acad. Sci. Sect. A (1)

Q1. S. Pancharatnam, "Generalized Theory of Interference and its Applications," Proc. Indian Acad. Sci. Sect. A 44, 247-262 (1956).

Proc. Natl. Acad. Sci. USA (1)

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, "Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide," Proc. Natl. Acad. Sci. USA 104, 14197-14202 (2007).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (2)

A. L. Besse and J. G. Kelley, "Interferometer for Shock Tube," Rev. Sci. Instrum. 37, 1497-1499 (1966).
[CrossRef]

C. J. Buchenauer and A. R. Jacobson, "Quadrature interferometer for plasma density measurements," Rev. Sci. Instrum. 48, 769-774 (1977).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Illustration of a midinfrared interferometer with HeNe tracking by path length oscillation. Other than the piezo, the interferometer is unchanged when adding tracking.

Fig. 2.
Fig. 2.

On the left is a schematic of the piezo oscillation in time. Points on the curve indicate acquisition times. Hollow circles and squares show two groupings for calculating quadratures. The two plots on the right show data points in complex space. The real component is the scaled diode measurement. The imaginary component is the calculated quadrature.

Fig. 3.
Fig. 3.

The upper plots show the optical path delay as measured by the Ti:Sapphire fringes (small points on left, small line on right), and HeNe tracking (large points on left, large line on right). The lower plots show the difference between the two measurements. The plots on the left correspond to tapping of the optical table. The plots on the right correspond to scanning of the delay by motor. The two measurement types agree to within 20 nm.

Fig. 4.
Fig. 4.

A color map of the real part of the 2D midIR spectrum of HbCO. The left spectrum was made with position information from the motor encoder. The spectrum on the right uses positions reported by HeNe tracking. The motor encoder is sufficiently inaccurate that the 2D spectrum vanishes. The axes labeled CCD are the measured wavelengths from the spectrometer, and the FT axes are obtained by Fourier transformation of the scanned time delay. The dashed lines indicate the location of the diagonal.

Metrics