Abstract

We propose a “meta-screen” design, consisting of a metallic sheet patterned with a dense array of nano-sized slot antennas, for inducing sub-wavelength optical spots in the near-field. Compared to other transmission screen topologies, our design overcomes the trade-off of low throughput versus resolution of a sub-wavelength aperture by inducing resonance in the slots. In addition, the antenna array serves to effectively narrow the spot size through the superposition of spatially shifted beams produced by each slot element. Such a design offers a practical approach for extending the near-field sensing/imaging distance at optical frequencies. The effectiveness of narrowing the spot size through the array topology is demonstrated by evaluating the full-width-half-maximum (FWHM) beamwidth at a distance of 0.1λ0 away from the screen. We show that an array with just three elements improves the beamwidth by more than 30% compared to a single resonant slot element. In this paper, important issues such as the operating principle and the design process of the meta-screen, the characteristics of plasmonic slot antenna, the impact of the number of array elements, and the effect of asymmetry due to the presence of a supporting substrate are discussed.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. G. Bortchagovsky, S. Klein, U. C. Fischer, “Surface plasmon mediated tip enhanced Raman scattering,” Appl. Phys. Lett. 94(6), 063118 (2009).
    [CrossRef]
  2. N. Fang, H. Lee, C. Sun, X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
    [CrossRef] [PubMed]
  3. E. Cubukcu, E. A. Kort, K. B. Crozier, F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89(9), 093120 (2006).
    [CrossRef]
  4. E. X. Jin, X. Xu, “Plasmonic effects in near-field optical transmission enhancement through a single bowtie shaped aperture,” Appl. Phys. B 84(1-2), 3–9 (2006).
    [CrossRef]
  5. T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, N. F. van Hulst, “λ /4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28 (2007).
    [CrossRef] [PubMed]
  6. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
    [CrossRef] [PubMed]
  7. A. Grbic, L. Jiang, R. Merlin, “Near-field plates: subdiffraction focusing with patterned surfaces,” Science 320(5875), 511 (2008).
    [CrossRef] [PubMed]
  8. L. Markley, A. M. H. Wong, Y. Wang, G. V. Eleftheriades, “A spatially shifted beam approach to subwavelength focusing,” Phys. Rev. Lett. 101(11), 113901 (2008).
    [CrossRef] [PubMed]
  9. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
    [CrossRef] [PubMed]
  10. A. Alú, N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307–310 (2008).
    [CrossRef]
  11. G. V. Eleftheriades, A. M. H. Wong, “Holography-inspired screens for sub-wavelength focusing in the near field,” IEEE Microw. Wireless Compon. Lett. 18(4), 236 (2008) (Resonant version).
    [CrossRef]
  12. A. M. H. Wong, C. D. Sarris, G. V. Eleftheriades, “Metallic transmission screen for sub-wavelength focusing,” Electron. Lett. 43(25), 1402 (2007) (Non-resonant version).
    [CrossRef]

2009 (1)

E. G. Bortchagovsky, S. Klein, U. C. Fischer, “Surface plasmon mediated tip enhanced Raman scattering,” Appl. Phys. Lett. 94(6), 063118 (2009).
[CrossRef]

2008 (4)

A. Grbic, L. Jiang, R. Merlin, “Near-field plates: subdiffraction focusing with patterned surfaces,” Science 320(5875), 511 (2008).
[CrossRef] [PubMed]

L. Markley, A. M. H. Wong, Y. Wang, G. V. Eleftheriades, “A spatially shifted beam approach to subwavelength focusing,” Phys. Rev. Lett. 101(11), 113901 (2008).
[CrossRef] [PubMed]

A. Alú, N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307–310 (2008).
[CrossRef]

G. V. Eleftheriades, A. M. H. Wong, “Holography-inspired screens for sub-wavelength focusing in the near field,” IEEE Microw. Wireless Compon. Lett. 18(4), 236 (2008) (Resonant version).
[CrossRef]

2007 (3)

A. M. H. Wong, C. D. Sarris, G. V. Eleftheriades, “Metallic transmission screen for sub-wavelength focusing,” Electron. Lett. 43(25), 1402 (2007) (Non-resonant version).
[CrossRef]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[CrossRef] [PubMed]

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, N. F. van Hulst, “λ /4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28 (2007).
[CrossRef] [PubMed]

2006 (2)

E. Cubukcu, E. A. Kort, K. B. Crozier, F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89(9), 093120 (2006).
[CrossRef]

E. X. Jin, X. Xu, “Plasmonic effects in near-field optical transmission enhancement through a single bowtie shaped aperture,” Appl. Phys. B 84(1-2), 3–9 (2006).
[CrossRef]

2005 (1)

N. Fang, H. Lee, C. Sun, X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

2002 (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Alú, A.

A. Alú, N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307–310 (2008).
[CrossRef]

Bortchagovsky, E. G.

E. G. Bortchagovsky, S. Klein, U. C. Fischer, “Surface plasmon mediated tip enhanced Raman scattering,” Appl. Phys. Lett. 94(6), 063118 (2009).
[CrossRef]

Capasso, F.

E. Cubukcu, E. A. Kort, K. B. Crozier, F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89(9), 093120 (2006).
[CrossRef]

Crozier, K. B.

E. Cubukcu, E. A. Kort, K. B. Crozier, F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89(9), 093120 (2006).
[CrossRef]

Cubukcu, E.

E. Cubukcu, E. A. Kort, K. B. Crozier, F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89(9), 093120 (2006).
[CrossRef]

Degiron, A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Ebbesen, T. W.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Eleftheriades, G. V.

L. Markley, A. M. H. Wong, Y. Wang, G. V. Eleftheriades, “A spatially shifted beam approach to subwavelength focusing,” Phys. Rev. Lett. 101(11), 113901 (2008).
[CrossRef] [PubMed]

G. V. Eleftheriades, A. M. H. Wong, “Holography-inspired screens for sub-wavelength focusing in the near field,” IEEE Microw. Wireless Compon. Lett. 18(4), 236 (2008) (Resonant version).
[CrossRef]

A. M. H. Wong, C. D. Sarris, G. V. Eleftheriades, “Metallic transmission screen for sub-wavelength focusing,” Electron. Lett. 43(25), 1402 (2007) (Non-resonant version).
[CrossRef]

Engheta, N.

A. Alú, N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307–310 (2008).
[CrossRef]

Fang, N.

N. Fang, H. Lee, C. Sun, X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Fischer, U. C.

E. G. Bortchagovsky, S. Klein, U. C. Fischer, “Surface plasmon mediated tip enhanced Raman scattering,” Appl. Phys. Lett. 94(6), 063118 (2009).
[CrossRef]

Garcia-Vidal, F. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Grbic, A.

A. Grbic, L. Jiang, R. Merlin, “Near-field plates: subdiffraction focusing with patterned surfaces,” Science 320(5875), 511 (2008).
[CrossRef] [PubMed]

Jiang, L.

A. Grbic, L. Jiang, R. Merlin, “Near-field plates: subdiffraction focusing with patterned surfaces,” Science 320(5875), 511 (2008).
[CrossRef] [PubMed]

Jin, E. X.

E. X. Jin, X. Xu, “Plasmonic effects in near-field optical transmission enhancement through a single bowtie shaped aperture,” Appl. Phys. B 84(1-2), 3–9 (2006).
[CrossRef]

Klein, S.

E. G. Bortchagovsky, S. Klein, U. C. Fischer, “Surface plasmon mediated tip enhanced Raman scattering,” Appl. Phys. Lett. 94(6), 063118 (2009).
[CrossRef]

Kort, E. A.

E. Cubukcu, E. A. Kort, K. B. Crozier, F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89(9), 093120 (2006).
[CrossRef]

Kuipers, L.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, N. F. van Hulst, “λ /4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28 (2007).
[CrossRef] [PubMed]

Lee, H.

N. Fang, H. Lee, C. Sun, X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Lezec, H. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Markley, L.

L. Markley, A. M. H. Wong, Y. Wang, G. V. Eleftheriades, “A spatially shifted beam approach to subwavelength focusing,” Phys. Rev. Lett. 101(11), 113901 (2008).
[CrossRef] [PubMed]

Martin-Moreno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Merlin, R.

A. Grbic, L. Jiang, R. Merlin, “Near-field plates: subdiffraction focusing with patterned surfaces,” Science 320(5875), 511 (2008).
[CrossRef] [PubMed]

Moerland, R. J.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, N. F. van Hulst, “λ /4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28 (2007).
[CrossRef] [PubMed]

Novotny, L.

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[CrossRef] [PubMed]

Sarris, C. D.

A. M. H. Wong, C. D. Sarris, G. V. Eleftheriades, “Metallic transmission screen for sub-wavelength focusing,” Electron. Lett. 43(25), 1402 (2007) (Non-resonant version).
[CrossRef]

Segerink, F. B.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, N. F. van Hulst, “λ /4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28 (2007).
[CrossRef] [PubMed]

Sun, C.

N. Fang, H. Lee, C. Sun, X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Taminiau, T. H.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, N. F. van Hulst, “λ /4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28 (2007).
[CrossRef] [PubMed]

van Hulst, N. F.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, N. F. van Hulst, “λ /4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28 (2007).
[CrossRef] [PubMed]

Wang, Y.

L. Markley, A. M. H. Wong, Y. Wang, G. V. Eleftheriades, “A spatially shifted beam approach to subwavelength focusing,” Phys. Rev. Lett. 101(11), 113901 (2008).
[CrossRef] [PubMed]

Wong, A. M. H.

L. Markley, A. M. H. Wong, Y. Wang, G. V. Eleftheriades, “A spatially shifted beam approach to subwavelength focusing,” Phys. Rev. Lett. 101(11), 113901 (2008).
[CrossRef] [PubMed]

G. V. Eleftheriades, A. M. H. Wong, “Holography-inspired screens for sub-wavelength focusing in the near field,” IEEE Microw. Wireless Compon. Lett. 18(4), 236 (2008) (Resonant version).
[CrossRef]

A. M. H. Wong, C. D. Sarris, G. V. Eleftheriades, “Metallic transmission screen for sub-wavelength focusing,” Electron. Lett. 43(25), 1402 (2007) (Non-resonant version).
[CrossRef]

Xu, X.

E. X. Jin, X. Xu, “Plasmonic effects in near-field optical transmission enhancement through a single bowtie shaped aperture,” Appl. Phys. B 84(1-2), 3–9 (2006).
[CrossRef]

Zhang, X.

N. Fang, H. Lee, C. Sun, X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Appl. Phys. B (1)

E. X. Jin, X. Xu, “Plasmonic effects in near-field optical transmission enhancement through a single bowtie shaped aperture,” Appl. Phys. B 84(1-2), 3–9 (2006).
[CrossRef]

Appl. Phys. Lett. (2)

E. G. Bortchagovsky, S. Klein, U. C. Fischer, “Surface plasmon mediated tip enhanced Raman scattering,” Appl. Phys. Lett. 94(6), 063118 (2009).
[CrossRef]

E. Cubukcu, E. A. Kort, K. B. Crozier, F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89(9), 093120 (2006).
[CrossRef]

Electron. Lett. (1)

A. M. H. Wong, C. D. Sarris, G. V. Eleftheriades, “Metallic transmission screen for sub-wavelength focusing,” Electron. Lett. 43(25), 1402 (2007) (Non-resonant version).
[CrossRef]

IEEE Microw. Wireless Compon. Lett. (1)

G. V. Eleftheriades, A. M. H. Wong, “Holography-inspired screens for sub-wavelength focusing in the near field,” IEEE Microw. Wireless Compon. Lett. 18(4), 236 (2008) (Resonant version).
[CrossRef]

Nano Lett. (1)

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, N. F. van Hulst, “λ /4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28 (2007).
[CrossRef] [PubMed]

Nat. Photonics (1)

A. Alú, N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307–310 (2008).
[CrossRef]

Phys. Rev. Lett. (2)

L. Markley, A. M. H. Wong, Y. Wang, G. V. Eleftheriades, “A spatially shifted beam approach to subwavelength focusing,” Phys. Rev. Lett. 101(11), 113901 (2008).
[CrossRef] [PubMed]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[CrossRef] [PubMed]

Science (3)

N. Fang, H. Lee, C. Sun, X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

A. Grbic, L. Jiang, R. Merlin, “Near-field plates: subdiffraction focusing with patterned surfaces,” Science 320(5875), 511 (2008).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Field transmission for a plasmonic slot antenna when subjected to a plane wave incidence with magnitude of 1V/m and λ0 = 830nm. Light passes through the slot and a diffracted beam is formed on the other side. The width of the beam changes depending on the location of the image plane. The slot width and the metal screen thickness are both 40nm in our analysis. (a) The operation of a plasmonic slot antenna. (b) The transmitted field through the slot antennas of various lengths. (c) The magnitude of Ex vs. the slot length at the image plane located at 0.1λ0 away from the transmission screen.

Fig. 2
Fig. 2

Comparison of the normalized diffraction patterns at the image plane (0.1λ0 away from the plasmonic screen) due to a single slot antenna on a perfect-electric-conductor (PEC) and a plasmonic screen. The slot has a width of 40nm. The PEC screen is infinitesimally thin and the plasmonic screen has a thickness of 40nm. The standing wave pattern observed for the plasmonic slot antenna is due to the interference of the plane-wave leakage and the slot radiation.

Fig. 3
Fig. 3

The effect of varying the incidence and the transmission media on the resonance wavelength of the slot antenna. (a) Operation of a slot antenna in various incidence and transmission media. (b) The effective resonance wavelengths (i.e. double of the slot lengths) for the three scenarios above are 230nm, 320nm and 400nm respectively.

Fig. 4
Fig. 4

The operation of the meta-screen. The meta-screen is a thin metallic screen with a series of slots of varying geometries. The separation distance between the slots is subwavelength, and in this case, it is fixed at 0.1λ0. A plane wave is incident from one side of the meta-screen and a diffracted beam is formed on the other side. The slot patterns are designed to produce a desired (sub-wavelength) beam pattern on the image plane located in the near-field.

Fig. 5
Fig. 5

Comparison of the field transmission for a meta-screen with single and triple-slot antennas. This is the top-view of the field strength (in logarithmic scale) in the transmission half-plane, where the weighted 3-slot array provides more confinement of the light beam. In these simulations, the plasmonic screen is 40nm thick and the antennas are all 40nm wide. The length of the single resonant antenna in (a) and the central slot antenna in (b) is 200nm. The satellite antennas in (b) have a length of 130nm. The wavelength of excitation is 830nm and the separation distance between the slots is 83nm.

Fig. 6
Fig. 6

The effect of the number of slots on the approximation of a desired beamwidth. (a) The FWHM is 0.12λ0 for the 3-slot array when the image plane is at z = 0.1λ0. (b) The FWHM is 0.14λ0 for the 9-slot array, and 0.22λ0 for the 3-slot array when the image plane is at z = 0.25λ0.

Fig. 7
Fig. 7

An example of a given target beam at the image plane and the derived corresponding transmission field pattern. (a) Target field. (b) Transmission field. The target field is a point source with a truncated spectrum that contains up to 5k 0, and a FWHM of 0.12λ0. The image plane is 0.1λ0 away from the transmission screen.

Fig. 8
Fig. 8

Beamwidth reduction utilizing a meta-screen. (a) Theoretical beamwidth reduction at 0.1λ0 away for a PEC transmission screen. The FWHM of the target beamwidth and the diffraction of a single slot antenna are 0.12λ0 and 0.2 λ0 respectively. We expect a 40% improvement for this best case scenario, which can be achieved with an infinite number of slots. (b) Simulated beamwidth reduction at 0.1λ0 away for a plasmonic transmission screen. The corresponding beamwidths due to a weighted 3-slot array of unequal lengths, a single plasmonic antenna, and an unweighted 3-slot array of equal lengths are 0.115λ0, 0.182λ0, and 0.33λ0 respectively. The beamwidth reduction is due to the destructive interference from the satellite slots. Therefore, the weighted 3-slot array that produced opposite phase in successive array elements shows 37% improvement from a single slot. On the other hand, the array with three elements of equal length (200nm) produces fields that are in phase in all slots, which in turn widens the beamwidth even further.

Fig. 9
Fig. 9

Comparison of a triple-slot plasmonic meta-screen and a single resonant slot antenna. (a) Diffracted beamwidths away from the transmission screen at various image plane locations. (b) Comparison of the field transmission for a single resonant slot antenna and a triple-slot antenna array (x, y = 0).

Fig. 10
Fig. 10

Comparison of a triple-slot meta-screen and a single sub-wavelength circular aperture of various diameters. (a) Comparison of the beamwidth for a sub-wavelength circular aperture and a triple-slot array. (b) Comparison of the transmitted field strength for a sub-wavelength circular aperture and a triple-slot array.

Fig. 11
Fig. 11

Simulated beamwidth at 0.1λ0 away from the transmission screen for the silver meta-screen deposited on silica glass substrate. The FWHMs are 0.123λ0 and 0.183λ0 respectively.

Metrics