Abstract

We have used Laser Speckle Contrast Imaging (LSCI) to investigate the statistical properties of dynamic speckle reflected from an obscuring scattering surface in order to reveal drawings that are hidden beneath. Here we explore the limitations of this method used with various algorithms when applied to a selection of paper samples. These samples consist of a sketch executed in an assortment of media laid on a base surface that are then hidden beneath a subsequent top layer. The ability to resolve gray scale images was examined as well as the contrast surface temperature relationship. A book with glued pages was investigated in order to demonstrate the technique’s applicability to the non-destructive examination of cultural materials. While being shown as a useful tool in revealing obscured drawings the scattering properties of the surface layer present a limitation in its general applicability.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Briers, “Short Communication,” Opt. Quantum Electron. 7, 422–424 (1975).
    [CrossRef]
  2. A. Fercher and J. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37(5), 326–330 (1981).
    [CrossRef]
  3. Y. Aizu and T. Asakura, “Bio-speckle phenomena and their application to the evaluation of blood-flow,” Opt. Laser Technol. 23(4), 205–219 (1991).
    [CrossRef]
  4. R. Nothdurft and G. Yao, “Imaging obscured subsurface inhomogeneity using laser speckle,” Opt. Express 13(25), 10034–10039 (2005).
    [CrossRef] [PubMed]
  5. I. Jaeger, L. Zhang, J. Stiens, H. Sahli, and R. Vounckx, “Millimeter wave inspection of concealed objects,” Microw. Opt. Technol. Lett. 27(11), 2733–2737 (2007).
    [CrossRef]
  6. T. Fricke-Begemann, G. Gülker, K. D. Hinsch, and K. Wolff, “Corrosion monitoring with speckle correlation,” Appl. Opt. 38(28), 5948–5955 (1999).
    [CrossRef]
  7. M. Sjödahl and L. Larsson, “Monitoring microstructural material changes in paper through microscopic speckle correlation rate measurements,” Opt. Lasers Eng. 42(2), 193–201 (2004).
    [CrossRef]
  8. J. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a non-scanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
    [CrossRef]
  9. H. Fujii, K. Nohira, Y. Yamamoto, H. Ikawa, and T. Ohura, “Evaluation Of Blood-Flow By Laser Speckle Image Sensing,” Appl. Opt. 26(24), 5321–5325 (1987).
    [CrossRef] [PubMed]
  10. R. Arizaga, N. L. Cap, H. Rabal, and M. Trivi, “Display of local activity using dynamical speckle patterns,” Opt. Eng. 41(2), 287–294 (2002).
    [CrossRef]
  11. D. A. Gregory, “Speckle photography in engineering applications,” in The Engineering Uses of Coherent Optics: Proceedings and Edited Discussion, Elliot R. Robertson ed. (Cambridge University Press, 1976), pp. 263–282.

2007

I. Jaeger, L. Zhang, J. Stiens, H. Sahli, and R. Vounckx, “Millimeter wave inspection of concealed objects,” Microw. Opt. Technol. Lett. 27(11), 2733–2737 (2007).
[CrossRef]

2005

2004

M. Sjödahl and L. Larsson, “Monitoring microstructural material changes in paper through microscopic speckle correlation rate measurements,” Opt. Lasers Eng. 42(2), 193–201 (2004).
[CrossRef]

2002

R. Arizaga, N. L. Cap, H. Rabal, and M. Trivi, “Display of local activity using dynamical speckle patterns,” Opt. Eng. 41(2), 287–294 (2002).
[CrossRef]

1999

1996

J. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a non-scanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
[CrossRef]

1991

Y. Aizu and T. Asakura, “Bio-speckle phenomena and their application to the evaluation of blood-flow,” Opt. Laser Technol. 23(4), 205–219 (1991).
[CrossRef]

1987

1981

A. Fercher and J. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37(5), 326–330 (1981).
[CrossRef]

1975

J. D. Briers, “Short Communication,” Opt. Quantum Electron. 7, 422–424 (1975).
[CrossRef]

Aizu, Y.

Y. Aizu and T. Asakura, “Bio-speckle phenomena and their application to the evaluation of blood-flow,” Opt. Laser Technol. 23(4), 205–219 (1991).
[CrossRef]

Arizaga, R.

R. Arizaga, N. L. Cap, H. Rabal, and M. Trivi, “Display of local activity using dynamical speckle patterns,” Opt. Eng. 41(2), 287–294 (2002).
[CrossRef]

Asakura, T.

Y. Aizu and T. Asakura, “Bio-speckle phenomena and their application to the evaluation of blood-flow,” Opt. Laser Technol. 23(4), 205–219 (1991).
[CrossRef]

Briers, J.

J. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a non-scanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
[CrossRef]

A. Fercher and J. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37(5), 326–330 (1981).
[CrossRef]

Briers, J. D.

J. D. Briers, “Short Communication,” Opt. Quantum Electron. 7, 422–424 (1975).
[CrossRef]

Cap, N. L.

R. Arizaga, N. L. Cap, H. Rabal, and M. Trivi, “Display of local activity using dynamical speckle patterns,” Opt. Eng. 41(2), 287–294 (2002).
[CrossRef]

Fercher, A.

A. Fercher and J. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37(5), 326–330 (1981).
[CrossRef]

Fricke-Begemann, T.

Fujii, H.

Gülker, G.

Hinsch, K. D.

Ikawa, H.

Jaeger, I.

I. Jaeger, L. Zhang, J. Stiens, H. Sahli, and R. Vounckx, “Millimeter wave inspection of concealed objects,” Microw. Opt. Technol. Lett. 27(11), 2733–2737 (2007).
[CrossRef]

Larsson, L.

M. Sjödahl and L. Larsson, “Monitoring microstructural material changes in paper through microscopic speckle correlation rate measurements,” Opt. Lasers Eng. 42(2), 193–201 (2004).
[CrossRef]

Nohira, K.

Nothdurft, R.

Ohura, T.

Rabal, H.

R. Arizaga, N. L. Cap, H. Rabal, and M. Trivi, “Display of local activity using dynamical speckle patterns,” Opt. Eng. 41(2), 287–294 (2002).
[CrossRef]

Sahli, H.

I. Jaeger, L. Zhang, J. Stiens, H. Sahli, and R. Vounckx, “Millimeter wave inspection of concealed objects,” Microw. Opt. Technol. Lett. 27(11), 2733–2737 (2007).
[CrossRef]

Sjödahl, M.

M. Sjödahl and L. Larsson, “Monitoring microstructural material changes in paper through microscopic speckle correlation rate measurements,” Opt. Lasers Eng. 42(2), 193–201 (2004).
[CrossRef]

Stiens, J.

I. Jaeger, L. Zhang, J. Stiens, H. Sahli, and R. Vounckx, “Millimeter wave inspection of concealed objects,” Microw. Opt. Technol. Lett. 27(11), 2733–2737 (2007).
[CrossRef]

Trivi, M.

R. Arizaga, N. L. Cap, H. Rabal, and M. Trivi, “Display of local activity using dynamical speckle patterns,” Opt. Eng. 41(2), 287–294 (2002).
[CrossRef]

Vounckx, R.

I. Jaeger, L. Zhang, J. Stiens, H. Sahli, and R. Vounckx, “Millimeter wave inspection of concealed objects,” Microw. Opt. Technol. Lett. 27(11), 2733–2737 (2007).
[CrossRef]

Webster, S.

J. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a non-scanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
[CrossRef]

Wolff, K.

Yamamoto, Y.

Yao, G.

Zhang, L.

I. Jaeger, L. Zhang, J. Stiens, H. Sahli, and R. Vounckx, “Millimeter wave inspection of concealed objects,” Microw. Opt. Technol. Lett. 27(11), 2733–2737 (2007).
[CrossRef]

Appl. Opt.

J. Biomed. Opt.

J. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a non-scanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1(2), 174–179 (1996).
[CrossRef]

Microw. Opt. Technol. Lett.

I. Jaeger, L. Zhang, J. Stiens, H. Sahli, and R. Vounckx, “Millimeter wave inspection of concealed objects,” Microw. Opt. Technol. Lett. 27(11), 2733–2737 (2007).
[CrossRef]

Opt. Commun.

A. Fercher and J. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37(5), 326–330 (1981).
[CrossRef]

Opt. Eng.

R. Arizaga, N. L. Cap, H. Rabal, and M. Trivi, “Display of local activity using dynamical speckle patterns,” Opt. Eng. 41(2), 287–294 (2002).
[CrossRef]

Opt. Express

Opt. Laser Technol.

Y. Aizu and T. Asakura, “Bio-speckle phenomena and their application to the evaluation of blood-flow,” Opt. Laser Technol. 23(4), 205–219 (1991).
[CrossRef]

Opt. Lasers Eng.

M. Sjödahl and L. Larsson, “Monitoring microstructural material changes in paper through microscopic speckle correlation rate measurements,” Opt. Lasers Eng. 42(2), 193–201 (2004).
[CrossRef]

Opt. Quantum Electron.

J. D. Briers, “Short Communication,” Opt. Quantum Electron. 7, 422–424 (1975).
[CrossRef]

Other

D. A. Gregory, “Speckle photography in engineering applications,” in The Engineering Uses of Coherent Optics: Proceedings and Edited Discussion, Elliot R. Robertson ed. (Cambridge University Press, 1976), pp. 263–282.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of experimental setup

Fig. 2
Fig. 2

The three analysis techniques compared side by side (a) Original Image (b) Temporal (c) Fujii (d) Arizaga.

Fig. 3
Fig. 3

Arizaga result from the gray scale image that shows variations in the shading.

Fig. 4
Fig. 4

Contrast as a function of temperature.

Fig. 5
Fig. 5

White light images of book sample.

Fig. 6
Fig. 6

(a) Reversed white light close u up of recycled paper (b) Reversed LSCI result revealing text beneath the table.

Tables (1)

Tables Icon

Table 1 Contrast results for each analytical method applied to the various samples.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Ii,j=1Nk=1NIi,jk
σi,j=1N1k=1N(Ii,jkIi,j)2
Ti,j=σi,jIi,j
Fi,j=k=1N1|Ii,jkIi,jk+1Ii,jk+Ii,jk+1|
Ai,j=k=1Nl=1Nk|Ii,jkIi,jk+1|ρ(l)
|OBO+B|

Metrics