Abstract

An image slicing spectrometer (ISS) for microscopy applications is presented. Its principle is based on the redirecting of image zones by specially organized thin mirrors within a custom fabricated component termed an image slicer. The demonstrated prototype can simultaneously acquire a 140nm spectral range within its 2D field of view from a single image. The spectral resolution of the system is 5.6nm. The FOV and spatial resolution of the ISS depend on the selected microscope objective and for the results presented is 45 × 45µm2 and 0.45µm respectively. This proof-of-concept system can be easily improved in the future for higher (both spectral and spatial) resolution imaging. The system requires no scanning and minimal post data processing. In addition, the reflective nature of the image slicer and use of prisms for spectral dispersion make the system light efficient. Both of the above features are highly valuable for real time fluorescent-spectral imaging in biological and diagnostic applications.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. S. Belmont, “Visualizing chromosome dynamics with GFP,” Trends Cell Biol. 11(6), 250–257 (2001).
    [CrossRef] [PubMed]
  2. S. M. Janicki, T. Tsukamoto, S. E. Salghetti, W. P. Tansey, R. Sachidanandam, K. V. Prasanth, T. Ried, Y. Shav-Tal, E. Bertrand, R. H. Singer, and D. L. Spector, “From silencing to gene expression: real-time analysis in single cells,” Cell 116(5), 683–698 (2004).
    [CrossRef] [PubMed]
  3. M. A. Rizzo, and D. W. Piston, “Fluorescent Protein Tracking and Detection in Live Cells,” in Live Cell Imaging: A Laboratory Manual, D. Spector and R. Goldman, eds. (Cold Spring Harbor Lab Press, Cold Spring Harbor, NY, 2004).
  4. F. A. Kruse, “Visible-Infrared Sensors and Case Studies,” in Remote Sensing for the Earth Science: Manual of Remote Sensing (3 rd ed.), Renz and N. Andrew, eds. (John Wiley & Sons, NY, 1999).
  5. D. Landgrebe, “Information Extraction Principles and Methods for Multispectral and Hyperspectral Image Data,” in Information Processing for Remote Sensing, C. H. Chen, ed. (World Scientific Publishing Company, River Edge, NY, 1999).
  6. T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett. 546(1), 87–92 (2003).
    [CrossRef] [PubMed]
  7. Y. Hiraoka, T. Shimi, and T. Haraguchi, “Multispectral imaging fluorescence microscopy for living cells,” Cell Struct. Funct. 27(5), 367–374 (2002).
    [CrossRef] [PubMed]
  8. V. L. Sutherland, J. A. Timlin, L. T. Nieman, J. F. Guzowski, M. K. Chawla, P. F. Worley, B. Roysam, B. L. McNaughton, M. B. Sinclair, and C. A. Barnes, “Advanced imaging of multiple mRNAs in brain tissue using a custom hyperspectral imager and multivariate curve resolution,” J. Neurosci. Methods 160(1), 144–148 (2007).
    [CrossRef]
  9. W. F. J. Vermaas, J. A. Timlin, H. D. T. Jones, M. B. Sinclair, L. T. Nieman, S. W. Hamad, D. K. Melgaard, and D. M. Haaland, “In vivo hyperspectral confocal fluorescence imaging to determine pigment localization and distribution in cyanobacterial cells,” Proc. Natl. Acad. Sci. U.S.A. 105(10), 4050–4055 (2008).
    [CrossRef] [PubMed]
  10. D. M. Haaland, J. A. Timlin, M. B. Sinclair, M. H. V. Benthem, M. J. Matinez, A. D. Aragon, and M. W. Washburne, “Multivariate curve resolution for hyperspectral image analysis: applications to microarray technology,” in Spectral Imaging: Instrumentation, Applications, and Analysis, R. M. Levenson, G. H. Bearman, and A. Mahadevan-Jensen, eds., Proc. SPIE 2959, 55–66 (2003).
  11. C. Zeiss, Germany, “LSM 510 META Product Brochure”. http://www.zeiss.com .
  12. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
    [CrossRef] [PubMed]
  13. R. Lansford, G. Bearman, and S. E. Fraser, “Resolution of multiple green fluorescent protein color variants and dyes using two-photon microscopy and imaging spectroscopy,” J. Biomed. Opt. 6(3), 311–318 (2001).
    [CrossRef] [PubMed]
  14. ChromoDynamics, Inc., Orlando, FL, “HSi-300 Hyperspectral Imaging System Data Sheet”. http://www.chromodynamics.net/ .
  15. Cambridge Research and Instrumentation, Inc., Cambridge, MA, “VARISPEC Liquid Crystal Tunable Filters Brochure”. http://www.cri-inc.com/
  16. Z. Malik, D. Cabib, R. A. Buckwald, A. Talmi, Y. Garini, and S. G. Lipson, “Fourier transform multipixel spectroscopy for quantitative cytology,” J. Microsc. 182(2), 133–140 (1996).
    [CrossRef]
  17. D. Y. Hsu, J. W. Lin, and S. Y. Shaw, “Wide-range tunable Fabry-Perot array filter for wavelength-division multiplexing applications,” Appl. Opt. 44(9), 1529–1532 (2005).
    [CrossRef] [PubMed]
  18. S. A. Mathews, “Design and fabrication of a low-cost, multispectral imaging system,” Appl. Opt. 47(28), F71–76 (2008).
    [CrossRef] [PubMed]
  19. H. Matsuoka, Y. Kosai, M. Saito, N. Takeyama, and H. Suto, “Single-cell viability assessment with a novel spectro-imaging system,” J. Biotechnol. 94(3), 299–308 (2002).
    [CrossRef] [PubMed]
  20. A. Bodkin, A. I. Sheinis, and A. Norton, “Hyperspectral imaging systems,” U. S. Patent 20060072109A1 (2006).
  21. B. K. Ford, C. E. Volin, S. M. Murphy, R. M. Lynch, and M. R. Descour, “Computed tomography-based spectral imaging for fluorescence microscopy,” Biophys. J. 80(2), 986–993 (2001).
    [CrossRef] [PubMed]
  22. M. E. Gehm, R. John, D. J. Brady, R. M. Willett, and T. J. Schulz, “Single-shot compressive spectral imaging with a dual-disperser architecture,” Opt. Express 15(21), 14013–14027 (2007).
    [CrossRef] [PubMed]
  23. A. Wagadarikar, R. John, R. Willett, and D. J. Brady, “Single disperser design for coded aperture snapshot spectral imaging,” Appl. Opt. 47(10), B44–51 (2008).
    [CrossRef] [PubMed]
  24. B. Ford, M. Descour, and R. Lynch, “Large-image-format computed tomography imaging spectrometer for fluorescence microscopy,” Opt. Express 9(9), 444–453 (2001).
    [CrossRef] [PubMed]
  25. A. A. Wagadarikar, N. P. Pitsianis, X. Sun, and D. J. Brady, “Video rate spectral imaging using a coded aperture snapshot spectral imager,” Opt. Express 17(8), 6368–6388 (2009).
    [CrossRef] [PubMed]
  26. L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, R. Genzel, L. E. Tacconi Garman, M. Cameron, and R. Genzel, “3D: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119(3), 531–546 (1996).
    [CrossRef]
  27. S. Vivès and E. Prieto, “Original image slicer designed for integral field spectroscopy with the near-infrared spectrograph for the James Webb Space Telescope,” Opt. Eng. 45(9), 093001 (2006).
    [CrossRef]
  28. F. Henault, R. Bacon, R. Content, B. Lantz, F. Laurent, J. Lemonnier, and S. Morris, “Slicing the universe at affordable cost: the quest for the MUSE image slicer,” Proc. SPIE 5249, 134–145 (2004).
    [CrossRef]
  29. J. A. Smith, “Basic principles of integral field spectroscopy,” N. Astron. Rev. 50(4-5), 244–251 (2006).
    [CrossRef]
  30. F. Laurent, F. Henault, E. Renault, R. Bacon, and J. Dubois, “Design of an Integral Field Unit for MUSE, and Results from Prototyping,” Publ. Astron. Soc. Pac. 118(849), 1564–1573 (2006).
    [CrossRef]
  31. “Mechanisms of 3D intercellular signaling in mammary epithelial cells in response to low dose, low-LET radiation: Implications for the radiation-induced bystander effect,” Biological Sciences Division Research Highlights, Pacific Northwest National Laboratory (2004). http://www.pnl.gov/
  32. W. Preuss and K. Rickens, “Precision machining of integral field units,” N. Astron. Rev. 50(4-5), 332–336 (2006).
    [CrossRef]
  33. C. M. Dubbeldam, D. J. Robertson, D. A. Ryder, and R. M. Sharples, “Prototyping of Diamond Machined Optics for the KMOS and JWST NIRSpec Integral Field Units,”, ” in Optomechanical Technologies for Astronomy, E. Atad-Ettedgui, J. Antebi, D. Lemke, eds., Proc. SPIE 6273, 62733F (2006).
  34. H. E. Bennett, J. M. Bennett, and E. J. Ashley, “Infrared Reflectance of Evaporated Aluminum Films,” J. Opt. Soc. Am. 52(11), 1245–1250 (1962).
    [CrossRef]

2009 (1)

2008 (3)

A. Wagadarikar, R. John, R. Willett, and D. J. Brady, “Single disperser design for coded aperture snapshot spectral imaging,” Appl. Opt. 47(10), B44–51 (2008).
[CrossRef] [PubMed]

S. A. Mathews, “Design and fabrication of a low-cost, multispectral imaging system,” Appl. Opt. 47(28), F71–76 (2008).
[CrossRef] [PubMed]

W. F. J. Vermaas, J. A. Timlin, H. D. T. Jones, M. B. Sinclair, L. T. Nieman, S. W. Hamad, D. K. Melgaard, and D. M. Haaland, “In vivo hyperspectral confocal fluorescence imaging to determine pigment localization and distribution in cyanobacterial cells,” Proc. Natl. Acad. Sci. U.S.A. 105(10), 4050–4055 (2008).
[CrossRef] [PubMed]

2007 (2)

V. L. Sutherland, J. A. Timlin, L. T. Nieman, J. F. Guzowski, M. K. Chawla, P. F. Worley, B. Roysam, B. L. McNaughton, M. B. Sinclair, and C. A. Barnes, “Advanced imaging of multiple mRNAs in brain tissue using a custom hyperspectral imager and multivariate curve resolution,” J. Neurosci. Methods 160(1), 144–148 (2007).
[CrossRef]

M. E. Gehm, R. John, D. J. Brady, R. M. Willett, and T. J. Schulz, “Single-shot compressive spectral imaging with a dual-disperser architecture,” Opt. Express 15(21), 14013–14027 (2007).
[CrossRef] [PubMed]

2006 (4)

S. Vivès and E. Prieto, “Original image slicer designed for integral field spectroscopy with the near-infrared spectrograph for the James Webb Space Telescope,” Opt. Eng. 45(9), 093001 (2006).
[CrossRef]

J. A. Smith, “Basic principles of integral field spectroscopy,” N. Astron. Rev. 50(4-5), 244–251 (2006).
[CrossRef]

F. Laurent, F. Henault, E. Renault, R. Bacon, and J. Dubois, “Design of an Integral Field Unit for MUSE, and Results from Prototyping,” Publ. Astron. Soc. Pac. 118(849), 1564–1573 (2006).
[CrossRef]

W. Preuss and K. Rickens, “Precision machining of integral field units,” N. Astron. Rev. 50(4-5), 332–336 (2006).
[CrossRef]

2005 (2)

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[CrossRef] [PubMed]

D. Y. Hsu, J. W. Lin, and S. Y. Shaw, “Wide-range tunable Fabry-Perot array filter for wavelength-division multiplexing applications,” Appl. Opt. 44(9), 1529–1532 (2005).
[CrossRef] [PubMed]

2004 (2)

S. M. Janicki, T. Tsukamoto, S. E. Salghetti, W. P. Tansey, R. Sachidanandam, K. V. Prasanth, T. Ried, Y. Shav-Tal, E. Bertrand, R. H. Singer, and D. L. Spector, “From silencing to gene expression: real-time analysis in single cells,” Cell 116(5), 683–698 (2004).
[CrossRef] [PubMed]

F. Henault, R. Bacon, R. Content, B. Lantz, F. Laurent, J. Lemonnier, and S. Morris, “Slicing the universe at affordable cost: the quest for the MUSE image slicer,” Proc. SPIE 5249, 134–145 (2004).
[CrossRef]

2003 (1)

T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett. 546(1), 87–92 (2003).
[CrossRef] [PubMed]

2002 (2)

Y. Hiraoka, T. Shimi, and T. Haraguchi, “Multispectral imaging fluorescence microscopy for living cells,” Cell Struct. Funct. 27(5), 367–374 (2002).
[CrossRef] [PubMed]

H. Matsuoka, Y. Kosai, M. Saito, N. Takeyama, and H. Suto, “Single-cell viability assessment with a novel spectro-imaging system,” J. Biotechnol. 94(3), 299–308 (2002).
[CrossRef] [PubMed]

2001 (4)

B. K. Ford, C. E. Volin, S. M. Murphy, R. M. Lynch, and M. R. Descour, “Computed tomography-based spectral imaging for fluorescence microscopy,” Biophys. J. 80(2), 986–993 (2001).
[CrossRef] [PubMed]

B. Ford, M. Descour, and R. Lynch, “Large-image-format computed tomography imaging spectrometer for fluorescence microscopy,” Opt. Express 9(9), 444–453 (2001).
[CrossRef] [PubMed]

A. S. Belmont, “Visualizing chromosome dynamics with GFP,” Trends Cell Biol. 11(6), 250–257 (2001).
[CrossRef] [PubMed]

R. Lansford, G. Bearman, and S. E. Fraser, “Resolution of multiple green fluorescent protein color variants and dyes using two-photon microscopy and imaging spectroscopy,” J. Biomed. Opt. 6(3), 311–318 (2001).
[CrossRef] [PubMed]

1996 (2)

Z. Malik, D. Cabib, R. A. Buckwald, A. Talmi, Y. Garini, and S. G. Lipson, “Fourier transform multipixel spectroscopy for quantitative cytology,” J. Microsc. 182(2), 133–140 (1996).
[CrossRef]

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, R. Genzel, L. E. Tacconi Garman, M. Cameron, and R. Genzel, “3D: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119(3), 531–546 (1996).
[CrossRef]

1962 (1)

Ashley, E. J.

Bacon, R.

F. Laurent, F. Henault, E. Renault, R. Bacon, and J. Dubois, “Design of an Integral Field Unit for MUSE, and Results from Prototyping,” Publ. Astron. Soc. Pac. 118(849), 1564–1573 (2006).
[CrossRef]

F. Henault, R. Bacon, R. Content, B. Lantz, F. Laurent, J. Lemonnier, and S. Morris, “Slicing the universe at affordable cost: the quest for the MUSE image slicer,” Proc. SPIE 5249, 134–145 (2004).
[CrossRef]

Barnes, C. A.

V. L. Sutherland, J. A. Timlin, L. T. Nieman, J. F. Guzowski, M. K. Chawla, P. F. Worley, B. Roysam, B. L. McNaughton, M. B. Sinclair, and C. A. Barnes, “Advanced imaging of multiple mRNAs in brain tissue using a custom hyperspectral imager and multivariate curve resolution,” J. Neurosci. Methods 160(1), 144–148 (2007).
[CrossRef]

Bearman, G.

R. Lansford, G. Bearman, and S. E. Fraser, “Resolution of multiple green fluorescent protein color variants and dyes using two-photon microscopy and imaging spectroscopy,” J. Biomed. Opt. 6(3), 311–318 (2001).
[CrossRef] [PubMed]

Belmont, A. S.

A. S. Belmont, “Visualizing chromosome dynamics with GFP,” Trends Cell Biol. 11(6), 250–257 (2001).
[CrossRef] [PubMed]

Bennett, H. E.

Bennett, J. M.

Bertrand, E.

S. M. Janicki, T. Tsukamoto, S. E. Salghetti, W. P. Tansey, R. Sachidanandam, K. V. Prasanth, T. Ried, Y. Shav-Tal, E. Bertrand, R. H. Singer, and D. L. Spector, “From silencing to gene expression: real-time analysis in single cells,” Cell 116(5), 683–698 (2004).
[CrossRef] [PubMed]

Brady, D. J.

Buckwald, R. A.

Z. Malik, D. Cabib, R. A. Buckwald, A. Talmi, Y. Garini, and S. G. Lipson, “Fourier transform multipixel spectroscopy for quantitative cytology,” J. Microsc. 182(2), 133–140 (1996).
[CrossRef]

Cabib, D.

Z. Malik, D. Cabib, R. A. Buckwald, A. Talmi, Y. Garini, and S. G. Lipson, “Fourier transform multipixel spectroscopy for quantitative cytology,” J. Microsc. 182(2), 133–140 (1996).
[CrossRef]

Cameron, M.

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, R. Genzel, L. E. Tacconi Garman, M. Cameron, and R. Genzel, “3D: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119(3), 531–546 (1996).
[CrossRef]

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, R. Genzel, L. E. Tacconi Garman, M. Cameron, and R. Genzel, “3D: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119(3), 531–546 (1996).
[CrossRef]

Chawla, M. K.

V. L. Sutherland, J. A. Timlin, L. T. Nieman, J. F. Guzowski, M. K. Chawla, P. F. Worley, B. Roysam, B. L. McNaughton, M. B. Sinclair, and C. A. Barnes, “Advanced imaging of multiple mRNAs in brain tissue using a custom hyperspectral imager and multivariate curve resolution,” J. Neurosci. Methods 160(1), 144–148 (2007).
[CrossRef]

Content, R.

F. Henault, R. Bacon, R. Content, B. Lantz, F. Laurent, J. Lemonnier, and S. Morris, “Slicing the universe at affordable cost: the quest for the MUSE image slicer,” Proc. SPIE 5249, 134–145 (2004).
[CrossRef]

Descour, M.

Descour, M. R.

B. K. Ford, C. E. Volin, S. M. Murphy, R. M. Lynch, and M. R. Descour, “Computed tomography-based spectral imaging for fluorescence microscopy,” Biophys. J. 80(2), 986–993 (2001).
[CrossRef] [PubMed]

Dubois, J.

F. Laurent, F. Henault, E. Renault, R. Bacon, and J. Dubois, “Design of an Integral Field Unit for MUSE, and Results from Prototyping,” Publ. Astron. Soc. Pac. 118(849), 1564–1573 (2006).
[CrossRef]

Ford, B.

Ford, B. K.

B. K. Ford, C. E. Volin, S. M. Murphy, R. M. Lynch, and M. R. Descour, “Computed tomography-based spectral imaging for fluorescence microscopy,” Biophys. J. 80(2), 986–993 (2001).
[CrossRef] [PubMed]

Fraser, S. E.

R. Lansford, G. Bearman, and S. E. Fraser, “Resolution of multiple green fluorescent protein color variants and dyes using two-photon microscopy and imaging spectroscopy,” J. Biomed. Opt. 6(3), 311–318 (2001).
[CrossRef] [PubMed]

Garini, Y.

Z. Malik, D. Cabib, R. A. Buckwald, A. Talmi, Y. Garini, and S. G. Lipson, “Fourier transform multipixel spectroscopy for quantitative cytology,” J. Microsc. 182(2), 133–140 (1996).
[CrossRef]

Gehm, M. E.

Genzel, R.

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, R. Genzel, L. E. Tacconi Garman, M. Cameron, and R. Genzel, “3D: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119(3), 531–546 (1996).
[CrossRef]

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, R. Genzel, L. E. Tacconi Garman, M. Cameron, and R. Genzel, “3D: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119(3), 531–546 (1996).
[CrossRef]

Guzowski, J. F.

V. L. Sutherland, J. A. Timlin, L. T. Nieman, J. F. Guzowski, M. K. Chawla, P. F. Worley, B. Roysam, B. L. McNaughton, M. B. Sinclair, and C. A. Barnes, “Advanced imaging of multiple mRNAs in brain tissue using a custom hyperspectral imager and multivariate curve resolution,” J. Neurosci. Methods 160(1), 144–148 (2007).
[CrossRef]

Haaland, D. M.

W. F. J. Vermaas, J. A. Timlin, H. D. T. Jones, M. B. Sinclair, L. T. Nieman, S. W. Hamad, D. K. Melgaard, and D. M. Haaland, “In vivo hyperspectral confocal fluorescence imaging to determine pigment localization and distribution in cyanobacterial cells,” Proc. Natl. Acad. Sci. U.S.A. 105(10), 4050–4055 (2008).
[CrossRef] [PubMed]

Hamad, S. W.

W. F. J. Vermaas, J. A. Timlin, H. D. T. Jones, M. B. Sinclair, L. T. Nieman, S. W. Hamad, D. K. Melgaard, and D. M. Haaland, “In vivo hyperspectral confocal fluorescence imaging to determine pigment localization and distribution in cyanobacterial cells,” Proc. Natl. Acad. Sci. U.S.A. 105(10), 4050–4055 (2008).
[CrossRef] [PubMed]

Haraguchi, T.

Y. Hiraoka, T. Shimi, and T. Haraguchi, “Multispectral imaging fluorescence microscopy for living cells,” Cell Struct. Funct. 27(5), 367–374 (2002).
[CrossRef] [PubMed]

Henault, F.

F. Laurent, F. Henault, E. Renault, R. Bacon, and J. Dubois, “Design of an Integral Field Unit for MUSE, and Results from Prototyping,” Publ. Astron. Soc. Pac. 118(849), 1564–1573 (2006).
[CrossRef]

F. Henault, R. Bacon, R. Content, B. Lantz, F. Laurent, J. Lemonnier, and S. Morris, “Slicing the universe at affordable cost: the quest for the MUSE image slicer,” Proc. SPIE 5249, 134–145 (2004).
[CrossRef]

Hiraoka, Y.

Y. Hiraoka, T. Shimi, and T. Haraguchi, “Multispectral imaging fluorescence microscopy for living cells,” Cell Struct. Funct. 27(5), 367–374 (2002).
[CrossRef] [PubMed]

Hsu, D. Y.

Janicki, S. M.

S. M. Janicki, T. Tsukamoto, S. E. Salghetti, W. P. Tansey, R. Sachidanandam, K. V. Prasanth, T. Ried, Y. Shav-Tal, E. Bertrand, R. H. Singer, and D. L. Spector, “From silencing to gene expression: real-time analysis in single cells,” Cell 116(5), 683–698 (2004).
[CrossRef] [PubMed]

John, R.

Jones, H. D. T.

W. F. J. Vermaas, J. A. Timlin, H. D. T. Jones, M. B. Sinclair, L. T. Nieman, S. W. Hamad, D. K. Melgaard, and D. M. Haaland, “In vivo hyperspectral confocal fluorescence imaging to determine pigment localization and distribution in cyanobacterial cells,” Proc. Natl. Acad. Sci. U.S.A. 105(10), 4050–4055 (2008).
[CrossRef] [PubMed]

Kosai, Y.

H. Matsuoka, Y. Kosai, M. Saito, N. Takeyama, and H. Suto, “Single-cell viability assessment with a novel spectro-imaging system,” J. Biotechnol. 94(3), 299–308 (2002).
[CrossRef] [PubMed]

Krabbe, A.

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, R. Genzel, L. E. Tacconi Garman, M. Cameron, and R. Genzel, “3D: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119(3), 531–546 (1996).
[CrossRef]

Kroker, H.

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, R. Genzel, L. E. Tacconi Garman, M. Cameron, and R. Genzel, “3D: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119(3), 531–546 (1996).
[CrossRef]

Lansford, R.

R. Lansford, G. Bearman, and S. E. Fraser, “Resolution of multiple green fluorescent protein color variants and dyes using two-photon microscopy and imaging spectroscopy,” J. Biomed. Opt. 6(3), 311–318 (2001).
[CrossRef] [PubMed]

Lantz, B.

F. Henault, R. Bacon, R. Content, B. Lantz, F. Laurent, J. Lemonnier, and S. Morris, “Slicing the universe at affordable cost: the quest for the MUSE image slicer,” Proc. SPIE 5249, 134–145 (2004).
[CrossRef]

Laurent, F.

F. Laurent, F. Henault, E. Renault, R. Bacon, and J. Dubois, “Design of an Integral Field Unit for MUSE, and Results from Prototyping,” Publ. Astron. Soc. Pac. 118(849), 1564–1573 (2006).
[CrossRef]

F. Henault, R. Bacon, R. Content, B. Lantz, F. Laurent, J. Lemonnier, and S. Morris, “Slicing the universe at affordable cost: the quest for the MUSE image slicer,” Proc. SPIE 5249, 134–145 (2004).
[CrossRef]

Lemonnier, J.

F. Henault, R. Bacon, R. Content, B. Lantz, F. Laurent, J. Lemonnier, and S. Morris, “Slicing the universe at affordable cost: the quest for the MUSE image slicer,” Proc. SPIE 5249, 134–145 (2004).
[CrossRef]

Lin, J. W.

Lipson, S. G.

Z. Malik, D. Cabib, R. A. Buckwald, A. Talmi, Y. Garini, and S. G. Lipson, “Fourier transform multipixel spectroscopy for quantitative cytology,” J. Microsc. 182(2), 133–140 (1996).
[CrossRef]

Lynch, R.

Lynch, R. M.

B. K. Ford, C. E. Volin, S. M. Murphy, R. M. Lynch, and M. R. Descour, “Computed tomography-based spectral imaging for fluorescence microscopy,” Biophys. J. 80(2), 986–993 (2001).
[CrossRef] [PubMed]

Malik, Z.

Z. Malik, D. Cabib, R. A. Buckwald, A. Talmi, Y. Garini, and S. G. Lipson, “Fourier transform multipixel spectroscopy for quantitative cytology,” J. Microsc. 182(2), 133–140 (1996).
[CrossRef]

Mathews, S. A.

Matsuoka, H.

H. Matsuoka, Y. Kosai, M. Saito, N. Takeyama, and H. Suto, “Single-cell viability assessment with a novel spectro-imaging system,” J. Biotechnol. 94(3), 299–308 (2002).
[CrossRef] [PubMed]

McNaughton, B. L.

V. L. Sutherland, J. A. Timlin, L. T. Nieman, J. F. Guzowski, M. K. Chawla, P. F. Worley, B. Roysam, B. L. McNaughton, M. B. Sinclair, and C. A. Barnes, “Advanced imaging of multiple mRNAs in brain tissue using a custom hyperspectral imager and multivariate curve resolution,” J. Neurosci. Methods 160(1), 144–148 (2007).
[CrossRef]

Melgaard, D. K.

W. F. J. Vermaas, J. A. Timlin, H. D. T. Jones, M. B. Sinclair, L. T. Nieman, S. W. Hamad, D. K. Melgaard, and D. M. Haaland, “In vivo hyperspectral confocal fluorescence imaging to determine pigment localization and distribution in cyanobacterial cells,” Proc. Natl. Acad. Sci. U.S.A. 105(10), 4050–4055 (2008).
[CrossRef] [PubMed]

Morris, S.

F. Henault, R. Bacon, R. Content, B. Lantz, F. Laurent, J. Lemonnier, and S. Morris, “Slicing the universe at affordable cost: the quest for the MUSE image slicer,” Proc. SPIE 5249, 134–145 (2004).
[CrossRef]

Murphy, S. M.

B. K. Ford, C. E. Volin, S. M. Murphy, R. M. Lynch, and M. R. Descour, “Computed tomography-based spectral imaging for fluorescence microscopy,” Biophys. J. 80(2), 986–993 (2001).
[CrossRef] [PubMed]

Nieman, L. T.

W. F. J. Vermaas, J. A. Timlin, H. D. T. Jones, M. B. Sinclair, L. T. Nieman, S. W. Hamad, D. K. Melgaard, and D. M. Haaland, “In vivo hyperspectral confocal fluorescence imaging to determine pigment localization and distribution in cyanobacterial cells,” Proc. Natl. Acad. Sci. U.S.A. 105(10), 4050–4055 (2008).
[CrossRef] [PubMed]

V. L. Sutherland, J. A. Timlin, L. T. Nieman, J. F. Guzowski, M. K. Chawla, P. F. Worley, B. Roysam, B. L. McNaughton, M. B. Sinclair, and C. A. Barnes, “Advanced imaging of multiple mRNAs in brain tissue using a custom hyperspectral imager and multivariate curve resolution,” J. Neurosci. Methods 160(1), 144–148 (2007).
[CrossRef]

Ntziachristos, V.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[CrossRef] [PubMed]

Pepperkok, R.

T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett. 546(1), 87–92 (2003).
[CrossRef] [PubMed]

Pitsianis, N. P.

Prasanth, K. V.

S. M. Janicki, T. Tsukamoto, S. E. Salghetti, W. P. Tansey, R. Sachidanandam, K. V. Prasanth, T. Ried, Y. Shav-Tal, E. Bertrand, R. H. Singer, and D. L. Spector, “From silencing to gene expression: real-time analysis in single cells,” Cell 116(5), 683–698 (2004).
[CrossRef] [PubMed]

Preuss, W.

W. Preuss and K. Rickens, “Precision machining of integral field units,” N. Astron. Rev. 50(4-5), 332–336 (2006).
[CrossRef]

Prieto, E.

S. Vivès and E. Prieto, “Original image slicer designed for integral field spectroscopy with the near-infrared spectrograph for the James Webb Space Telescope,” Opt. Eng. 45(9), 093001 (2006).
[CrossRef]

Renault, E.

F. Laurent, F. Henault, E. Renault, R. Bacon, and J. Dubois, “Design of an Integral Field Unit for MUSE, and Results from Prototyping,” Publ. Astron. Soc. Pac. 118(849), 1564–1573 (2006).
[CrossRef]

Rickens, K.

W. Preuss and K. Rickens, “Precision machining of integral field units,” N. Astron. Rev. 50(4-5), 332–336 (2006).
[CrossRef]

Ried, T.

S. M. Janicki, T. Tsukamoto, S. E. Salghetti, W. P. Tansey, R. Sachidanandam, K. V. Prasanth, T. Ried, Y. Shav-Tal, E. Bertrand, R. H. Singer, and D. L. Spector, “From silencing to gene expression: real-time analysis in single cells,” Cell 116(5), 683–698 (2004).
[CrossRef] [PubMed]

Rietdorf, J.

T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett. 546(1), 87–92 (2003).
[CrossRef] [PubMed]

Ripoll, J.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[CrossRef] [PubMed]

Roysam, B.

V. L. Sutherland, J. A. Timlin, L. T. Nieman, J. F. Guzowski, M. K. Chawla, P. F. Worley, B. Roysam, B. L. McNaughton, M. B. Sinclair, and C. A. Barnes, “Advanced imaging of multiple mRNAs in brain tissue using a custom hyperspectral imager and multivariate curve resolution,” J. Neurosci. Methods 160(1), 144–148 (2007).
[CrossRef]

Sachidanandam, R.

S. M. Janicki, T. Tsukamoto, S. E. Salghetti, W. P. Tansey, R. Sachidanandam, K. V. Prasanth, T. Ried, Y. Shav-Tal, E. Bertrand, R. H. Singer, and D. L. Spector, “From silencing to gene expression: real-time analysis in single cells,” Cell 116(5), 683–698 (2004).
[CrossRef] [PubMed]

Saito, M.

H. Matsuoka, Y. Kosai, M. Saito, N. Takeyama, and H. Suto, “Single-cell viability assessment with a novel spectro-imaging system,” J. Biotechnol. 94(3), 299–308 (2002).
[CrossRef] [PubMed]

Salghetti, S. E.

S. M. Janicki, T. Tsukamoto, S. E. Salghetti, W. P. Tansey, R. Sachidanandam, K. V. Prasanth, T. Ried, Y. Shav-Tal, E. Bertrand, R. H. Singer, and D. L. Spector, “From silencing to gene expression: real-time analysis in single cells,” Cell 116(5), 683–698 (2004).
[CrossRef] [PubMed]

Schulz, T. J.

Shav-Tal, Y.

S. M. Janicki, T. Tsukamoto, S. E. Salghetti, W. P. Tansey, R. Sachidanandam, K. V. Prasanth, T. Ried, Y. Shav-Tal, E. Bertrand, R. H. Singer, and D. L. Spector, “From silencing to gene expression: real-time analysis in single cells,” Cell 116(5), 683–698 (2004).
[CrossRef] [PubMed]

Shaw, S. Y.

Shimi, T.

Y. Hiraoka, T. Shimi, and T. Haraguchi, “Multispectral imaging fluorescence microscopy for living cells,” Cell Struct. Funct. 27(5), 367–374 (2002).
[CrossRef] [PubMed]

Sinclair, M. B.

W. F. J. Vermaas, J. A. Timlin, H. D. T. Jones, M. B. Sinclair, L. T. Nieman, S. W. Hamad, D. K. Melgaard, and D. M. Haaland, “In vivo hyperspectral confocal fluorescence imaging to determine pigment localization and distribution in cyanobacterial cells,” Proc. Natl. Acad. Sci. U.S.A. 105(10), 4050–4055 (2008).
[CrossRef] [PubMed]

V. L. Sutherland, J. A. Timlin, L. T. Nieman, J. F. Guzowski, M. K. Chawla, P. F. Worley, B. Roysam, B. L. McNaughton, M. B. Sinclair, and C. A. Barnes, “Advanced imaging of multiple mRNAs in brain tissue using a custom hyperspectral imager and multivariate curve resolution,” J. Neurosci. Methods 160(1), 144–148 (2007).
[CrossRef]

Singer, R. H.

S. M. Janicki, T. Tsukamoto, S. E. Salghetti, W. P. Tansey, R. Sachidanandam, K. V. Prasanth, T. Ried, Y. Shav-Tal, E. Bertrand, R. H. Singer, and D. L. Spector, “From silencing to gene expression: real-time analysis in single cells,” Cell 116(5), 683–698 (2004).
[CrossRef] [PubMed]

Smith, J. A.

J. A. Smith, “Basic principles of integral field spectroscopy,” N. Astron. Rev. 50(4-5), 244–251 (2006).
[CrossRef]

Spector, D. L.

S. M. Janicki, T. Tsukamoto, S. E. Salghetti, W. P. Tansey, R. Sachidanandam, K. V. Prasanth, T. Ried, Y. Shav-Tal, E. Bertrand, R. H. Singer, and D. L. Spector, “From silencing to gene expression: real-time analysis in single cells,” Cell 116(5), 683–698 (2004).
[CrossRef] [PubMed]

Sun, X.

Sutherland, V. L.

V. L. Sutherland, J. A. Timlin, L. T. Nieman, J. F. Guzowski, M. K. Chawla, P. F. Worley, B. Roysam, B. L. McNaughton, M. B. Sinclair, and C. A. Barnes, “Advanced imaging of multiple mRNAs in brain tissue using a custom hyperspectral imager and multivariate curve resolution,” J. Neurosci. Methods 160(1), 144–148 (2007).
[CrossRef]

Suto, H.

H. Matsuoka, Y. Kosai, M. Saito, N. Takeyama, and H. Suto, “Single-cell viability assessment with a novel spectro-imaging system,” J. Biotechnol. 94(3), 299–308 (2002).
[CrossRef] [PubMed]

Tacconi Garman, L. E.

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, R. Genzel, L. E. Tacconi Garman, M. Cameron, and R. Genzel, “3D: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119(3), 531–546 (1996).
[CrossRef]

Tacconi-Garman, L. E.

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, R. Genzel, L. E. Tacconi Garman, M. Cameron, and R. Genzel, “3D: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119(3), 531–546 (1996).
[CrossRef]

Takeyama, N.

H. Matsuoka, Y. Kosai, M. Saito, N. Takeyama, and H. Suto, “Single-cell viability assessment with a novel spectro-imaging system,” J. Biotechnol. 94(3), 299–308 (2002).
[CrossRef] [PubMed]

Talmi, A.

Z. Malik, D. Cabib, R. A. Buckwald, A. Talmi, Y. Garini, and S. G. Lipson, “Fourier transform multipixel spectroscopy for quantitative cytology,” J. Microsc. 182(2), 133–140 (1996).
[CrossRef]

Tansey, W. P.

S. M. Janicki, T. Tsukamoto, S. E. Salghetti, W. P. Tansey, R. Sachidanandam, K. V. Prasanth, T. Ried, Y. Shav-Tal, E. Bertrand, R. H. Singer, and D. L. Spector, “From silencing to gene expression: real-time analysis in single cells,” Cell 116(5), 683–698 (2004).
[CrossRef] [PubMed]

Thatte, N.

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, R. Genzel, L. E. Tacconi Garman, M. Cameron, and R. Genzel, “3D: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119(3), 531–546 (1996).
[CrossRef]

Timlin, J. A.

W. F. J. Vermaas, J. A. Timlin, H. D. T. Jones, M. B. Sinclair, L. T. Nieman, S. W. Hamad, D. K. Melgaard, and D. M. Haaland, “In vivo hyperspectral confocal fluorescence imaging to determine pigment localization and distribution in cyanobacterial cells,” Proc. Natl. Acad. Sci. U.S.A. 105(10), 4050–4055 (2008).
[CrossRef] [PubMed]

V. L. Sutherland, J. A. Timlin, L. T. Nieman, J. F. Guzowski, M. K. Chawla, P. F. Worley, B. Roysam, B. L. McNaughton, M. B. Sinclair, and C. A. Barnes, “Advanced imaging of multiple mRNAs in brain tissue using a custom hyperspectral imager and multivariate curve resolution,” J. Neurosci. Methods 160(1), 144–148 (2007).
[CrossRef]

Tsukamoto, T.

S. M. Janicki, T. Tsukamoto, S. E. Salghetti, W. P. Tansey, R. Sachidanandam, K. V. Prasanth, T. Ried, Y. Shav-Tal, E. Bertrand, R. H. Singer, and D. L. Spector, “From silencing to gene expression: real-time analysis in single cells,” Cell 116(5), 683–698 (2004).
[CrossRef] [PubMed]

Vermaas, W. F. J.

W. F. J. Vermaas, J. A. Timlin, H. D. T. Jones, M. B. Sinclair, L. T. Nieman, S. W. Hamad, D. K. Melgaard, and D. M. Haaland, “In vivo hyperspectral confocal fluorescence imaging to determine pigment localization and distribution in cyanobacterial cells,” Proc. Natl. Acad. Sci. U.S.A. 105(10), 4050–4055 (2008).
[CrossRef] [PubMed]

Vivès, S.

S. Vivès and E. Prieto, “Original image slicer designed for integral field spectroscopy with the near-infrared spectrograph for the James Webb Space Telescope,” Opt. Eng. 45(9), 093001 (2006).
[CrossRef]

Volin, C. E.

B. K. Ford, C. E. Volin, S. M. Murphy, R. M. Lynch, and M. R. Descour, “Computed tomography-based spectral imaging for fluorescence microscopy,” Biophys. J. 80(2), 986–993 (2001).
[CrossRef] [PubMed]

Wagadarikar, A.

Wagadarikar, A. A.

Wang, L. V.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[CrossRef] [PubMed]

Weissleder, R.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[CrossRef] [PubMed]

Weitzel, L.

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, R. Genzel, L. E. Tacconi Garman, M. Cameron, and R. Genzel, “3D: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119(3), 531–546 (1996).
[CrossRef]

Willett, R.

Willett, R. M.

Worley, P. F.

V. L. Sutherland, J. A. Timlin, L. T. Nieman, J. F. Guzowski, M. K. Chawla, P. F. Worley, B. Roysam, B. L. McNaughton, M. B. Sinclair, and C. A. Barnes, “Advanced imaging of multiple mRNAs in brain tissue using a custom hyperspectral imager and multivariate curve resolution,” J. Neurosci. Methods 160(1), 144–148 (2007).
[CrossRef]

Zimmermann, T.

T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett. 546(1), 87–92 (2003).
[CrossRef] [PubMed]

Appl. Opt. (3)

Astron. Astrophys. Suppl. Ser. (1)

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, R. Genzel, L. E. Tacconi Garman, M. Cameron, and R. Genzel, “3D: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119(3), 531–546 (1996).
[CrossRef]

Biophys. J. (1)

B. K. Ford, C. E. Volin, S. M. Murphy, R. M. Lynch, and M. R. Descour, “Computed tomography-based spectral imaging for fluorescence microscopy,” Biophys. J. 80(2), 986–993 (2001).
[CrossRef] [PubMed]

Cell (1)

S. M. Janicki, T. Tsukamoto, S. E. Salghetti, W. P. Tansey, R. Sachidanandam, K. V. Prasanth, T. Ried, Y. Shav-Tal, E. Bertrand, R. H. Singer, and D. L. Spector, “From silencing to gene expression: real-time analysis in single cells,” Cell 116(5), 683–698 (2004).
[CrossRef] [PubMed]

Cell Struct. Funct. (1)

Y. Hiraoka, T. Shimi, and T. Haraguchi, “Multispectral imaging fluorescence microscopy for living cells,” Cell Struct. Funct. 27(5), 367–374 (2002).
[CrossRef] [PubMed]

FEBS Lett. (1)

T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett. 546(1), 87–92 (2003).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

R. Lansford, G. Bearman, and S. E. Fraser, “Resolution of multiple green fluorescent protein color variants and dyes using two-photon microscopy and imaging spectroscopy,” J. Biomed. Opt. 6(3), 311–318 (2001).
[CrossRef] [PubMed]

J. Biotechnol. (1)

H. Matsuoka, Y. Kosai, M. Saito, N. Takeyama, and H. Suto, “Single-cell viability assessment with a novel spectro-imaging system,” J. Biotechnol. 94(3), 299–308 (2002).
[CrossRef] [PubMed]

J. Microsc. (1)

Z. Malik, D. Cabib, R. A. Buckwald, A. Talmi, Y. Garini, and S. G. Lipson, “Fourier transform multipixel spectroscopy for quantitative cytology,” J. Microsc. 182(2), 133–140 (1996).
[CrossRef]

J. Neurosci. Methods (1)

V. L. Sutherland, J. A. Timlin, L. T. Nieman, J. F. Guzowski, M. K. Chawla, P. F. Worley, B. Roysam, B. L. McNaughton, M. B. Sinclair, and C. A. Barnes, “Advanced imaging of multiple mRNAs in brain tissue using a custom hyperspectral imager and multivariate curve resolution,” J. Neurosci. Methods 160(1), 144–148 (2007).
[CrossRef]

J. Opt. Soc. Am. (1)

N. Astron. Rev. (2)

J. A. Smith, “Basic principles of integral field spectroscopy,” N. Astron. Rev. 50(4-5), 244–251 (2006).
[CrossRef]

W. Preuss and K. Rickens, “Precision machining of integral field units,” N. Astron. Rev. 50(4-5), 332–336 (2006).
[CrossRef]

Nat. Biotechnol. (1)

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[CrossRef] [PubMed]

Opt. Eng. (1)

S. Vivès and E. Prieto, “Original image slicer designed for integral field spectroscopy with the near-infrared spectrograph for the James Webb Space Telescope,” Opt. Eng. 45(9), 093001 (2006).
[CrossRef]

Opt. Express (3)

Proc. Natl. Acad. Sci. U.S.A. (1)

W. F. J. Vermaas, J. A. Timlin, H. D. T. Jones, M. B. Sinclair, L. T. Nieman, S. W. Hamad, D. K. Melgaard, and D. M. Haaland, “In vivo hyperspectral confocal fluorescence imaging to determine pigment localization and distribution in cyanobacterial cells,” Proc. Natl. Acad. Sci. U.S.A. 105(10), 4050–4055 (2008).
[CrossRef] [PubMed]

Proc. SPIE (1)

F. Henault, R. Bacon, R. Content, B. Lantz, F. Laurent, J. Lemonnier, and S. Morris, “Slicing the universe at affordable cost: the quest for the MUSE image slicer,” Proc. SPIE 5249, 134–145 (2004).
[CrossRef]

Publ. Astron. Soc. Pac. (1)

F. Laurent, F. Henault, E. Renault, R. Bacon, and J. Dubois, “Design of an Integral Field Unit for MUSE, and Results from Prototyping,” Publ. Astron. Soc. Pac. 118(849), 1564–1573 (2006).
[CrossRef]

Trends Cell Biol. (1)

A. S. Belmont, “Visualizing chromosome dynamics with GFP,” Trends Cell Biol. 11(6), 250–257 (2001).
[CrossRef] [PubMed]

Other (10)

ChromoDynamics, Inc., Orlando, FL, “HSi-300 Hyperspectral Imaging System Data Sheet”. http://www.chromodynamics.net/ .

Cambridge Research and Instrumentation, Inc., Cambridge, MA, “VARISPEC Liquid Crystal Tunable Filters Brochure”. http://www.cri-inc.com/

D. M. Haaland, J. A. Timlin, M. B. Sinclair, M. H. V. Benthem, M. J. Matinez, A. D. Aragon, and M. W. Washburne, “Multivariate curve resolution for hyperspectral image analysis: applications to microarray technology,” in Spectral Imaging: Instrumentation, Applications, and Analysis, R. M. Levenson, G. H. Bearman, and A. Mahadevan-Jensen, eds., Proc. SPIE 2959, 55–66 (2003).

C. Zeiss, Germany, “LSM 510 META Product Brochure”. http://www.zeiss.com .

M. A. Rizzo, and D. W. Piston, “Fluorescent Protein Tracking and Detection in Live Cells,” in Live Cell Imaging: A Laboratory Manual, D. Spector and R. Goldman, eds. (Cold Spring Harbor Lab Press, Cold Spring Harbor, NY, 2004).

F. A. Kruse, “Visible-Infrared Sensors and Case Studies,” in Remote Sensing for the Earth Science: Manual of Remote Sensing (3 rd ed.), Renz and N. Andrew, eds. (John Wiley & Sons, NY, 1999).

D. Landgrebe, “Information Extraction Principles and Methods for Multispectral and Hyperspectral Image Data,” in Information Processing for Remote Sensing, C. H. Chen, ed. (World Scientific Publishing Company, River Edge, NY, 1999).

“Mechanisms of 3D intercellular signaling in mammary epithelial cells in response to low dose, low-LET radiation: Implications for the radiation-induced bystander effect,” Biological Sciences Division Research Highlights, Pacific Northwest National Laboratory (2004). http://www.pnl.gov/

C. M. Dubbeldam, D. J. Robertson, D. A. Ryder, and R. M. Sharples, “Prototyping of Diamond Machined Optics for the KMOS and JWST NIRSpec Integral Field Units,”, ” in Optomechanical Technologies for Astronomy, E. Atad-Ettedgui, J. Antebi, D. Lemke, eds., Proc. SPIE 6273, 62733F (2006).

A. Bodkin, A. I. Sheinis, and A. Norton, “Hyperspectral imaging systems,” U. S. Patent 20060072109A1 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

The operating principle of the ISS system

Fig. 2
Fig. 2

ISS system setup. Fig. (a) is a photograph of the system. A switchable dual-port image relay is mounted on the microscope side port. One port is connected to the ISS system. The other can be used as a direct imaging port to provide a standard image or reference spectrum. Fig. (b) is the schematic layout. Light rays reflected from different tilted slicing components are labeled with different colors. Note that only tilts with respect to the y-axis are shown in the Fig..

Fig. 3
Fig. 3

Pupil selection principle. Fig. (a) shows one of the image slicer’s repeating blocks, and Fig. (b) shows the corresponding pupil plane. In (a) the arrow in each slicing component represents the tilt direction (there is no arrow on slicing component 13 because it has no tilt) and the sequential number represents the slicing component index. Light reflected from each slicing component in this block will enter the corresponding pupil in (b). The dimensions of slicing components in the Fig. are scaled to show their features. In the prototype, the slicing component is 16mm in length (Y direction), and 160µm in width (X direction).

Fig. 4
Fig. 4

Raster flycutting on Nanotech 250UPL. Red coordinate arrows indicate the X, Y, and Z axes of the machine. C axis is not used in raster flycutting mode.

Fig. 5
Fig. 5

The profile of image slicer. Fig. (a) and (b) are photographic pictures. In (a), the sliced Rice logo letters can be directly seen in the reflection direction. In (b), a quarter is placed as the reference to show the size of the image slicer (16mm × 16mm). Fig. (c) is a three dimensional picture of a portion of the image slicer obtained by Zygo white light interferometer.

Fig. 6
Fig. 6

Slicing component surface height profile. The roughness data is obtained by the removal tilt. Surface roughness RMS value = 6 nm.

Fig. 7
Fig. 7

Reimaging lenses and mount. Fig. (a) shows the photographic picture of the whole piece. There are 25 tubes inside this mount. Each tube holds a reimaging lens set. Fig. (b) gives the cross section view of a single tube. 60mm F.L. achromatic doublets are mounted at the back of the tube (facing the pupil), while −12.5mm F.L. achromatic doublets are mounted at the front of tube (facing the image plane). The F.L. of this reimaging lens set is 350mm.

Fig. 8
Fig. 8

Overlap of the FOVs on the CCD camera. Each reimaging lens set images the corresponding pupil in the pupil plane (see Fig. 3(b)). The FOVs of adjacent reimaging lens are overlapping to fully utilize the CCD area. The image slicer itself creates a field stop allowing the overlap.

Fig. 9
Fig. 9

A 1951 USAF target undispersed image. The raw image (a) is obtained using a 16-bit camera without binning (pixel size = 9µm). Fig. (b) is the reconstructed image. For comparison purposes, an image of the same bars is captured at the microscope side port directly using a monochromatic camera. The imaging result is shown in Fig. (c). The top bars in the FOV belong to Group 7, Element 6 (bar width = 2.19 µm).

Fig. 10
Fig. 10

The PSF of a single slice from an undispersed image. The camera pixel size equals 9µm. The x and y positions indicate the location of this slice image in the CCD camera’s global coordinates.

Fig. 11
Fig. 11

ISS images of green fluorescent beads. The raw image is obtained using a 16-bit CCD camera with 6s integration time. The bead’s spectrum is obtained from point A in the re-constructed image.

Fig. 12
Fig. 12

ISS images of red and yellow fluorescent beads. The raw image is obtained using a 16-bit CCD camera with 2s integration time. The yellow bead’s spectrum is from point B in the re-constructed image and the red bead’s spectrum is from point C in the re-constructed image.

Tables (2)

Tables Icon

Table 1 Fabrication parameters for image slicer

Tables Icon

Table 2 Slicing component tilt angle measurement

Metrics