Abstract

Laser damage phenomena are governed by a number of different effects for the respective operation modes and pulse durations. In the ultra short pulse regime the electronic structure in the dielectric coating and the substrate material set the prerequisite for the achieved laser damage threshold of an optical component. Theoretical considerations have been done to assess the impact of contributing ionization phenomena in order to find a valid description for laser-induced damage in the femtosecond (fs) domain. Subsequently, a special set of sample has been designed to verify these considerations via ISO certified laser damage testing. Examining the theoretical and experimental data reveals the importance of multi-photon absorption for the optical breakdown. For titania, the influence of multi-photon absorption has been clearly shown by a quantized wavelength characteristic of the laser damage threshold.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Kamlage, T. Bauer, A. Ostendorf, B. N. Chichkov, "Deep drilling of metal by femtosecond laser pulses" Appl. Phys. A,  A77,307-310 (2003).
  2. T. Ditmire, J. Zweiback, V. P. Yanovsky, T. E. Cowan, G. Hays, K. B. Wharton, K. B, "Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters," Nature 383,489-492 (1999).
  3. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, "Nanosecond-to femtosecond laser induced breakdown in dielectrics" Phys. Rev. B 53,1749-1761 (1996).
    [CrossRef]
  4. L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, A. Mysyrowicz, "Femtosecond Laser-Induced Damage and Filamentary Propagation in Fused Silica," Phys. Rev. Lett. 89,(18) 186601 (2002).
  5. M. Mero, A. J. Sabbah, J. Liu, B. Clapp, J. Zeller, W. Rudolph, K. Starke, D. Ristau, "Femtosecond pulse damage behavior of oxide and fluoride dielectric thin films," Proc. SPIE 5273 (2004).
    [CrossRef]
  6. M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, "Scaling laws of femtosecond laser pulse induced breakdown in oxide films," Phys. Rev. B 71, 115109 (2005).
    [CrossRef]
  7. M. Jup, L. Jensen, M. Lappschies, K. Starke, and D. Ristau, "Improvement in laser irradiation resistance of fsdielectric optics using silica mixtures," Proc. SPIE 640364031A (2006).
    [CrossRef]
  8. K. Starke, D. Ristau, H. Welling, T. V. Amotchkina, M. Trubetskov, A. A. Tikhonravov, A. S. Chirkin, "Investigations in the non-linear behavior of dielectric coatings by using ultrashort pulses," Proc. SPIE 5273 (2004).
    [CrossRef]
  9. M. D. Feit and J. J. A. Fleck, "Effect of refraction on spot-size dependence of laser-induced breakdown," Appl. Phys. Lett. 24(4)169-172 (1974).
    [CrossRef]
  10. "ISO 11254: Optics and optical instruments. Lasers and laser related equipment. Test methods for laser induced damage threshold of optical surfaces. Part 1: 1 on 1-test, 2000, Part 2: S on 1 test, 2001, Part 3: Assurance of laser power handling capabilities 2006" International Organization of Standardisation.
  11. M. D. Feit, A. M. Rubenchik, B. W. Shore, B. C. Stuart, M. D. Perry, "Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses: II. theory," Proc. SPIE 2428,469-478 (1995).
    [CrossRef]

2006 (1)

M. Jup, L. Jensen, M. Lappschies, K. Starke, and D. Ristau, "Improvement in laser irradiation resistance of fsdielectric optics using silica mixtures," Proc. SPIE 640364031A (2006).
[CrossRef]

2005 (1)

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, "Scaling laws of femtosecond laser pulse induced breakdown in oxide films," Phys. Rev. B 71, 115109 (2005).
[CrossRef]

2003 (1)

G. Kamlage, T. Bauer, A. Ostendorf, B. N. Chichkov, "Deep drilling of metal by femtosecond laser pulses" Appl. Phys. A,  A77,307-310 (2003).

2002 (1)

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, A. Mysyrowicz, "Femtosecond Laser-Induced Damage and Filamentary Propagation in Fused Silica," Phys. Rev. Lett. 89,(18) 186601 (2002).

1999 (1)

T. Ditmire, J. Zweiback, V. P. Yanovsky, T. E. Cowan, G. Hays, K. B. Wharton, K. B, "Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters," Nature 383,489-492 (1999).

1996 (1)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, "Nanosecond-to femtosecond laser induced breakdown in dielectrics" Phys. Rev. B 53,1749-1761 (1996).
[CrossRef]

1995 (1)

M. D. Feit, A. M. Rubenchik, B. W. Shore, B. C. Stuart, M. D. Perry, "Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses: II. theory," Proc. SPIE 2428,469-478 (1995).
[CrossRef]

1974 (1)

M. D. Feit and J. J. A. Fleck, "Effect of refraction on spot-size dependence of laser-induced breakdown," Appl. Phys. Lett. 24(4)169-172 (1974).
[CrossRef]

Bauer, T.

G. Kamlage, T. Bauer, A. Ostendorf, B. N. Chichkov, "Deep drilling of metal by femtosecond laser pulses" Appl. Phys. A,  A77,307-310 (2003).

Chichkov, B. N.

G. Kamlage, T. Bauer, A. Ostendorf, B. N. Chichkov, "Deep drilling of metal by femtosecond laser pulses" Appl. Phys. A,  A77,307-310 (2003).

Couairon, A.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, A. Mysyrowicz, "Femtosecond Laser-Induced Damage and Filamentary Propagation in Fused Silica," Phys. Rev. Lett. 89,(18) 186601 (2002).

Cowan, T. E.

T. Ditmire, J. Zweiback, V. P. Yanovsky, T. E. Cowan, G. Hays, K. B. Wharton, K. B, "Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters," Nature 383,489-492 (1999).

Ditmire, T.

T. Ditmire, J. Zweiback, V. P. Yanovsky, T. E. Cowan, G. Hays, K. B. Wharton, K. B, "Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters," Nature 383,489-492 (1999).

Feit, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, "Nanosecond-to femtosecond laser induced breakdown in dielectrics" Phys. Rev. B 53,1749-1761 (1996).
[CrossRef]

M. D. Feit, A. M. Rubenchik, B. W. Shore, B. C. Stuart, M. D. Perry, "Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses: II. theory," Proc. SPIE 2428,469-478 (1995).
[CrossRef]

M. D. Feit and J. J. A. Fleck, "Effect of refraction on spot-size dependence of laser-induced breakdown," Appl. Phys. Lett. 24(4)169-172 (1974).
[CrossRef]

Fleck, J. J. A.

M. D. Feit and J. J. A. Fleck, "Effect of refraction on spot-size dependence of laser-induced breakdown," Appl. Phys. Lett. 24(4)169-172 (1974).
[CrossRef]

Franco, M.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, A. Mysyrowicz, "Femtosecond Laser-Induced Damage and Filamentary Propagation in Fused Silica," Phys. Rev. Lett. 89,(18) 186601 (2002).

Hays, G.

T. Ditmire, J. Zweiback, V. P. Yanovsky, T. E. Cowan, G. Hays, K. B. Wharton, K. B, "Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters," Nature 383,489-492 (1999).

Herman, S.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, "Nanosecond-to femtosecond laser induced breakdown in dielectrics" Phys. Rev. B 53,1749-1761 (1996).
[CrossRef]

Jensen, L.

M. Jup, L. Jensen, M. Lappschies, K. Starke, and D. Ristau, "Improvement in laser irradiation resistance of fsdielectric optics using silica mixtures," Proc. SPIE 640364031A (2006).
[CrossRef]

Jup, M.

M. Jup, L. Jensen, M. Lappschies, K. Starke, and D. Ristau, "Improvement in laser irradiation resistance of fsdielectric optics using silica mixtures," Proc. SPIE 640364031A (2006).
[CrossRef]

Kamlage, G.

G. Kamlage, T. Bauer, A. Ostendorf, B. N. Chichkov, "Deep drilling of metal by femtosecond laser pulses" Appl. Phys. A,  A77,307-310 (2003).

Lamouroux, B.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, A. Mysyrowicz, "Femtosecond Laser-Induced Damage and Filamentary Propagation in Fused Silica," Phys. Rev. Lett. 89,(18) 186601 (2002).

Lappschies, M.

M. Jup, L. Jensen, M. Lappschies, K. Starke, and D. Ristau, "Improvement in laser irradiation resistance of fsdielectric optics using silica mixtures," Proc. SPIE 640364031A (2006).
[CrossRef]

Liu, J.

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, "Scaling laws of femtosecond laser pulse induced breakdown in oxide films," Phys. Rev. B 71, 115109 (2005).
[CrossRef]

Mero, M.

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, "Scaling laws of femtosecond laser pulse induced breakdown in oxide films," Phys. Rev. B 71, 115109 (2005).
[CrossRef]

Mysyrowicz, A.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, A. Mysyrowicz, "Femtosecond Laser-Induced Damage and Filamentary Propagation in Fused Silica," Phys. Rev. Lett. 89,(18) 186601 (2002).

Ostendorf, A.

G. Kamlage, T. Bauer, A. Ostendorf, B. N. Chichkov, "Deep drilling of metal by femtosecond laser pulses" Appl. Phys. A,  A77,307-310 (2003).

Perry, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, "Nanosecond-to femtosecond laser induced breakdown in dielectrics" Phys. Rev. B 53,1749-1761 (1996).
[CrossRef]

M. D. Feit, A. M. Rubenchik, B. W. Shore, B. C. Stuart, M. D. Perry, "Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses: II. theory," Proc. SPIE 2428,469-478 (1995).
[CrossRef]

Prade, B.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, A. Mysyrowicz, "Femtosecond Laser-Induced Damage and Filamentary Propagation in Fused Silica," Phys. Rev. Lett. 89,(18) 186601 (2002).

Ristau, D.

M. Jup, L. Jensen, M. Lappschies, K. Starke, and D. Ristau, "Improvement in laser irradiation resistance of fsdielectric optics using silica mixtures," Proc. SPIE 640364031A (2006).
[CrossRef]

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, "Scaling laws of femtosecond laser pulse induced breakdown in oxide films," Phys. Rev. B 71, 115109 (2005).
[CrossRef]

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, "Nanosecond-to femtosecond laser induced breakdown in dielectrics" Phys. Rev. B 53,1749-1761 (1996).
[CrossRef]

M. D. Feit, A. M. Rubenchik, B. W. Shore, B. C. Stuart, M. D. Perry, "Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses: II. theory," Proc. SPIE 2428,469-478 (1995).
[CrossRef]

Rudolph, W.

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, "Scaling laws of femtosecond laser pulse induced breakdown in oxide films," Phys. Rev. B 71, 115109 (2005).
[CrossRef]

Shore, B. W.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, "Nanosecond-to femtosecond laser induced breakdown in dielectrics" Phys. Rev. B 53,1749-1761 (1996).
[CrossRef]

M. D. Feit, A. M. Rubenchik, B. W. Shore, B. C. Stuart, M. D. Perry, "Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses: II. theory," Proc. SPIE 2428,469-478 (1995).
[CrossRef]

Starke, K.

M. Jup, L. Jensen, M. Lappschies, K. Starke, and D. Ristau, "Improvement in laser irradiation resistance of fsdielectric optics using silica mixtures," Proc. SPIE 640364031A (2006).
[CrossRef]

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, "Scaling laws of femtosecond laser pulse induced breakdown in oxide films," Phys. Rev. B 71, 115109 (2005).
[CrossRef]

Stuart, B. C.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, "Nanosecond-to femtosecond laser induced breakdown in dielectrics" Phys. Rev. B 53,1749-1761 (1996).
[CrossRef]

M. D. Feit, A. M. Rubenchik, B. W. Shore, B. C. Stuart, M. D. Perry, "Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses: II. theory," Proc. SPIE 2428,469-478 (1995).
[CrossRef]

Sudrie, L.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, A. Mysyrowicz, "Femtosecond Laser-Induced Damage and Filamentary Propagation in Fused Silica," Phys. Rev. Lett. 89,(18) 186601 (2002).

Tzortzakis, S.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, A. Mysyrowicz, "Femtosecond Laser-Induced Damage and Filamentary Propagation in Fused Silica," Phys. Rev. Lett. 89,(18) 186601 (2002).

Wharton, K. B.

T. Ditmire, J. Zweiback, V. P. Yanovsky, T. E. Cowan, G. Hays, K. B. Wharton, K. B, "Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters," Nature 383,489-492 (1999).

Yanovsky, V. P.

T. Ditmire, J. Zweiback, V. P. Yanovsky, T. E. Cowan, G. Hays, K. B. Wharton, K. B, "Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters," Nature 383,489-492 (1999).

Zweiback, J.

T. Ditmire, J. Zweiback, V. P. Yanovsky, T. E. Cowan, G. Hays, K. B. Wharton, K. B, "Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters," Nature 383,489-492 (1999).

Appl. Phys. A (1)

G. Kamlage, T. Bauer, A. Ostendorf, B. N. Chichkov, "Deep drilling of metal by femtosecond laser pulses" Appl. Phys. A,  A77,307-310 (2003).

Appl. Phys. Lett. (1)

M. D. Feit and J. J. A. Fleck, "Effect of refraction on spot-size dependence of laser-induced breakdown," Appl. Phys. Lett. 24(4)169-172 (1974).
[CrossRef]

Nature (1)

T. Ditmire, J. Zweiback, V. P. Yanovsky, T. E. Cowan, G. Hays, K. B. Wharton, K. B, "Nuclear fusion from explosions of femtosecond laser-heated deuterium clusters," Nature 383,489-492 (1999).

Phys. Rev. B (2)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, "Nanosecond-to femtosecond laser induced breakdown in dielectrics" Phys. Rev. B 53,1749-1761 (1996).
[CrossRef]

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, "Scaling laws of femtosecond laser pulse induced breakdown in oxide films," Phys. Rev. B 71, 115109 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, A. Mysyrowicz, "Femtosecond Laser-Induced Damage and Filamentary Propagation in Fused Silica," Phys. Rev. Lett. 89,(18) 186601 (2002).

Proc. SPIE (2)

M. Jup, L. Jensen, M. Lappschies, K. Starke, and D. Ristau, "Improvement in laser irradiation resistance of fsdielectric optics using silica mixtures," Proc. SPIE 640364031A (2006).
[CrossRef]

M. D. Feit, A. M. Rubenchik, B. W. Shore, B. C. Stuart, M. D. Perry, "Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses: II. theory," Proc. SPIE 2428,469-478 (1995).
[CrossRef]

Other (3)

K. Starke, D. Ristau, H. Welling, T. V. Amotchkina, M. Trubetskov, A. A. Tikhonravov, A. S. Chirkin, "Investigations in the non-linear behavior of dielectric coatings by using ultrashort pulses," Proc. SPIE 5273 (2004).
[CrossRef]

"ISO 11254: Optics and optical instruments. Lasers and laser related equipment. Test methods for laser induced damage threshold of optical surfaces. Part 1: 1 on 1-test, 2000, Part 2: S on 1 test, 2001, Part 3: Assurance of laser power handling capabilities 2006" International Organization of Standardisation.

M. Mero, A. J. Sabbah, J. Liu, B. Clapp, J. Zeller, W. Rudolph, K. Starke, D. Ristau, "Femtosecond pulse damage behavior of oxide and fluoride dielectric thin films," Proc. SPIE 5273 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Ionization rates in fused silica and TiO2 - top scale:W PI [Keldysh parameter] bottom scale: W PI [Intensity] (at λ=800nm)

Fig. 2.
Fig. 2.

Electron density in TiO2 during a fs-pulse (λ=670nm, H=0,290J/cm2)

Fig. 3.
Fig. 3.

Ionization steps of the applied material calculated from the total losses

Fig. 4.
Fig. 4.

Calculated ionization rate according to Keldysh’s theory. Obviously, the ionization characteristic is changed abruptly from 670nm to 680nm. This behavior indicates the step to the next MPI order.

Fig. 5.
Fig. 5.

Calculation of wavelength dependence on LIDT of TiO2 from two up to the six-photon absorption

Fig. 6.
Fig. 6.

Wavelength dependence of critical electron density and cross section of avalanche ionization rate

Fig. 7.
Fig. 7.

LIDT of TiO2 -single layer in dependence on the wavelength. Below approx. 670nm two-photon absorption is observed. At 680nm the predicted step of the LIDT towards three-photon absorption is evident.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

p(t)t =WPI (I(t)) +WAV (I(t),ρ(t))Wrel (ρ(t),t)
WPI (I(t)) =2ω09π (ω0mh̄Γ)32 Q γx exp (πK(ΓEΓ)E(ζ)) ]x+1 [
with : Q γx =π2K(ζ) n=0{exp(nπK(Γ)E(Γ)E(ζ))Φ(η(n+2μ))}
γ=ω0e mUicε0n02I
Γ = γ2γ2+1 ζ=1γ2+1
x=2Uiπh̄ω0Γ E (ζ) μ =] x+1 [ x η=π22K(ζ)E(ζ)
Φ=0zexp (y2z2) d y K (k) = 0π211k2sin2(ϕ)dϕ E (k) =0π21k2sin2ϕd ϕ
WAv(I(t),ρ(t))=σUi.ρ(t)σ=e2cε0n0mτc1+ω2τc2τc=16πε02m(Ui10)32e4ρ
Wrel =ρτrel
ρc =ε0mω0e2

Metrics