Y. J. He, H. Z. Wang, and B. A. Malomed, “Fusion of
necklace-ring patterns into vortex and fundamental solitons in dissipative
media,” Opt. Express 15(26), 17502–17508
(2007).

[CrossRef]
[PubMed]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A.
Malomed, “Stability limits for three-dimensional vortex solitons
in the Ginzburg–Landau equation with the cubic-quintic
nonlinearity,” Phys. Rev. A 76(4), 045803 (2007).

[CrossRef]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A.
Malomed, “Stability of dissipative optical solitons in the
three-dimensional cubic-quintic Ginzburg–Landau
equation,” Phys. Rev. A 75(3), 033811 (2007).

[CrossRef]

Y. J. He, H. H. Fan, J. W. Dong, and H. Z. Wang,
“Self-trapped spatiotemporal necklace-ring solitons in the
Ginzburg-Landau equation,” Phys. Rev. E Stat. Nonlin. Soft Matter
Phys. 74(1 Pt 2), 016611 (2006).

[CrossRef]
[PubMed]

J. Burke and E. Knobloch, “Localized states in the
generalized Swift-Hohenberg equation,” Phys. Rev. E Stat. Nonlin.
Soft Matter Phys. 73(5 Pt 2), 056211 (2006).

[CrossRef]
[PubMed]

D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C.
Crasovan, L. Torner, and B. A. Malomed, “Stable vortex tori in
the three-dimensional cubic-quintic Ginzburg-Landau equation,”
Phys. Rev. Lett. 97(7), 073904 (2006).

[CrossRef]
[PubMed]

J. M. Soto-Crespo, P. Grelu, and N. Akhmediev,
“Optical bullets and ‘rockets’ in nonlinear
dissipative systems and their transformations and interactions,”
Opt. Express 14(9), 4013–4025 (2006).

[CrossRef]
[PubMed]

N. Akhmediev and A. Ankiewicz, “Dissipative
solitons in the complex Ginzburg–Landau and
Swift–Hohenberg equations,” Lect. Notes Phys. 661,
1–17 (2005).

[CrossRef]

D. Mihalache, D. Mazilu, L.-C. Crasovan, B. A. Malomed, F.
Lederer, and L. Torner, “Soliton clusters in three-dimensional
media with competing cubic and quintic nonlinearities,” J. Opt. B
Quantum Semiclassical Opt. 6(5), S333–S340
(2004).

[CrossRef]

L.-C. Crasovan, Y. V. Kartashov, D. Mihalache, L. Torner, and
V. M. Pérez-García, “Soliton
“molecules”: robust clusters of spatiotemporal optical
solitons,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(4 Pt
2), 046610 (2003).

[CrossRef]
[PubMed]

K.-I. Maruno, A. Ankiewicz, and N. Akhmediev,
“Exact soliton solutions of the one-dimensional complex
Swift–Hohenberg equation,” Physica D 176(1-2),
44–66 (2003).

[CrossRef]

J. M. Soto-Crespo and N. Akhmediev, “Composite
solitons and two-pulse generation in passively mode-locked lasers modeled by
the complex quintic Swift-Hohenberg equation,” Phys. Rev. E Stat.
Nonlin. Soft Matter Phys. 66(6 Pt 2), 066610 (2002).

[CrossRef]

J. Buceta, K. Lindenberg, and J. M. R. Parrondo,
“Stationary and oscillatory spatial patterns induced by global
periodic switching,” Phys. Rev. Lett. 88(2), 024103
(2002).

[CrossRef]
[PubMed]

I. S. Aranson and L. Kramer, “The world of the
complex Ginzburg–Landau equation,” Rev. Mod. Phys.
74(1), 99–143 (2002).

[CrossRef]

A. G. Vladimirov, J. M. McSloy, D. V. Skryabin, and W. J.
Firth, “Two-dimensional clusters of solitary structures in driven
optical cavities,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.
65(44 Pt 2B), 046606 (2002).

[CrossRef]
[PubMed]

D. V. Skryabin and A. G. Vladimirov, “Vortex
induced rotation of clusters of localized states in the complex
Ginzburg-Landau equation,” Phys. Rev. Lett. 89(4), 044101
(2002).

[CrossRef]
[PubMed]

L.-C. Crasovan, B. A. Malomed, and D. Mihalache,
“Stable vortex solitons in the two-dimensional
Ginzburg–Landau equation,” Phys. Rev. E Stat. Phys.
Plasmas Fluids Relat. Interdiscip. Topics 63(1), 016605
(2001).

[CrossRef]

M. Tlidi, “Three-dimensional crystals and localized
structures in diffractive and dispersive nonlinear ring
cavities,” J. Opt. B Quantum Semiclassical Opt. 2(3),
438–442 (2000).

[CrossRef]

M. Tlidi and P. Mandel, “Three-dimensional optical
crystals and localized structures in cavity second harmonic
generation,” Phys. Rev. Lett. 83(24), 4995–4998
(1999).

[CrossRef]

V. J. Sánchez-Morcillo and K. Staliunas,
“Stability of localized structures in the Swift-Hohenberg
equation,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat.
Interdiscip. Topics 60(55 Pt B), 6153–6156
(1999).

[CrossRef]

M. Soljačić, S. Sears, and M. Segev,
“Self-trapping of ‘necklace’ beams in
self-focusing Kerr media,” Phys. Rev. Lett. 81(22),
4851–4854 (1998).

[CrossRef]

N. N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo,
“Stable soliton pairs in optical transmission lines and fiber
lasers,” J. Opt. Soc. Am. B 15(2), 515–523
(1998).

[CrossRef]

M. F. Hilali, S. Métens, P. Borckmans, and G.
Dewel, “Pattern selection in the generalized Swift-Hohenberg
model,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat.
Interdiscip. Topics 51(3), 2046–2052 (1995).

[CrossRef]
[PubMed]

J. Lega, J. V. Moloney, and A. C. Newell,
“Swift-Hohenberg equation for lasers,” Phys. Rev.
Lett. 73(22), 2978–2981 (1994).

[CrossRef]
[PubMed]

M. Tlidi, P. Mandel, and R. Lefever, “Localized
structures and localized patterns in optical bistability,” Phys.
Rev. Lett. 73(5), 640–643 (1994).

[CrossRef]
[PubMed]

J. M. Soto-Crespo, N. Akhmediev, C. Mejia-Cortés,
and N. Devine, “Dissipative ring solitons with
vorticity,” Opt. Express 17(6), 4236–4250
(2009).

[CrossRef]
[PubMed]

J. M. Soto-Crespo, P. Grelu, and N. Akhmediev,
“Optical bullets and ‘rockets’ in nonlinear
dissipative systems and their transformations and interactions,”
Opt. Express 14(9), 4013–4025 (2006).

[CrossRef]
[PubMed]

N. Akhmediev and A. Ankiewicz, “Dissipative
solitons in the complex Ginzburg–Landau and
Swift–Hohenberg equations,” Lect. Notes Phys. 661,
1–17 (2005).

[CrossRef]

K.-I. Maruno, A. Ankiewicz, and N. Akhmediev,
“Exact soliton solutions of the one-dimensional complex
Swift–Hohenberg equation,” Physica D 176(1-2),
44–66 (2003).

[CrossRef]

J. M. Soto-Crespo and N. Akhmediev, “Composite
solitons and two-pulse generation in passively mode-locked lasers modeled by
the complex quintic Swift-Hohenberg equation,” Phys. Rev. E Stat.
Nonlin. Soft Matter Phys. 66(6 Pt 2), 066610 (2002).

[CrossRef]

N. Akhmediev and A. Ankiewicz, “Dissipative
solitons in the complex Ginzburg–Landau and
Swift–Hohenberg equations,” Lect. Notes Phys. 661,
1–17 (2005).

[CrossRef]

K.-I. Maruno, A. Ankiewicz, and N. Akhmediev,
“Exact soliton solutions of the one-dimensional complex
Swift–Hohenberg equation,” Physica D 176(1-2),
44–66 (2003).

[CrossRef]

N. N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo,
“Stable soliton pairs in optical transmission lines and fiber
lasers,” J. Opt. Soc. Am. B 15(2), 515–523
(1998).

[CrossRef]

I. S. Aranson and L. Kramer, “The world of the
complex Ginzburg–Landau equation,” Rev. Mod. Phys.
74(1), 99–143 (2002).

[CrossRef]

M. F. Hilali, S. Métens, P. Borckmans, and G.
Dewel, “Pattern selection in the generalized Swift-Hohenberg
model,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat.
Interdiscip. Topics 51(3), 2046–2052 (1995).

[CrossRef]
[PubMed]

J. Buceta, K. Lindenberg, and J. M. R. Parrondo,
“Stationary and oscillatory spatial patterns induced by global
periodic switching,” Phys. Rev. Lett. 88(2), 024103
(2002).

[CrossRef]
[PubMed]

J. Burke and E. Knobloch, “Localized states in the
generalized Swift-Hohenberg equation,” Phys. Rev. E Stat. Nonlin.
Soft Matter Phys. 73(5 Pt 2), 056211 (2006).

[CrossRef]
[PubMed]

D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C.
Crasovan, L. Torner, and B. A. Malomed, “Stable vortex tori in
the three-dimensional cubic-quintic Ginzburg-Landau equation,”
Phys. Rev. Lett. 97(7), 073904 (2006).

[CrossRef]
[PubMed]

D. Mihalache, D. Mazilu, L.-C. Crasovan, B. A. Malomed, F.
Lederer, and L. Torner, “Soliton clusters in three-dimensional
media with competing cubic and quintic nonlinearities,” J. Opt. B
Quantum Semiclassical Opt. 6(5), S333–S340
(2004).

[CrossRef]

L.-C. Crasovan, Y. V. Kartashov, D. Mihalache, L. Torner, and
V. M. Pérez-García, “Soliton
“molecules”: robust clusters of spatiotemporal optical
solitons,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(4 Pt
2), 046610 (2003).

[CrossRef]
[PubMed]

L.-C. Crasovan, B. A. Malomed, and D. Mihalache,
“Stable vortex solitons in the two-dimensional
Ginzburg–Landau equation,” Phys. Rev. E Stat. Phys.
Plasmas Fluids Relat. Interdiscip. Topics 63(1), 016605
(2001).

[CrossRef]

M. F. Hilali, S. Métens, P. Borckmans, and G.
Dewel, “Pattern selection in the generalized Swift-Hohenberg
model,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat.
Interdiscip. Topics 51(3), 2046–2052 (1995).

[CrossRef]
[PubMed]

Y. J. He, H. H. Fan, J. W. Dong, and H. Z. Wang,
“Self-trapped spatiotemporal necklace-ring solitons in the
Ginzburg-Landau equation,” Phys. Rev. E Stat. Nonlin. Soft Matter
Phys. 74(1 Pt 2), 016611 (2006).

[CrossRef]
[PubMed]

Y. J. He, H. H. Fan, J. W. Dong, and H. Z. Wang,
“Self-trapped spatiotemporal necklace-ring solitons in the
Ginzburg-Landau equation,” Phys. Rev. E Stat. Nonlin. Soft Matter
Phys. 74(1 Pt 2), 016611 (2006).

[CrossRef]
[PubMed]

A. G. Vladimirov, J. M. McSloy, D. V. Skryabin, and W. J.
Firth, “Two-dimensional clusters of solitary structures in driven
optical cavities,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.
65(44 Pt 2B), 046606 (2002).

[CrossRef]
[PubMed]

Y. J. He, H. Z. Wang, and B. A. Malomed, “Fusion of
necklace-ring patterns into vortex and fundamental solitons in dissipative
media,” Opt. Express 15(26), 17502–17508
(2007).

[CrossRef]
[PubMed]

Y. J. He, H. H. Fan, J. W. Dong, and H. Z. Wang,
“Self-trapped spatiotemporal necklace-ring solitons in the
Ginzburg-Landau equation,” Phys. Rev. E Stat. Nonlin. Soft Matter
Phys. 74(1 Pt 2), 016611 (2006).

[CrossRef]
[PubMed]

M. F. Hilali, S. Métens, P. Borckmans, and G.
Dewel, “Pattern selection in the generalized Swift-Hohenberg
model,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat.
Interdiscip. Topics 51(3), 2046–2052 (1995).

[CrossRef]
[PubMed]

D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C.
Crasovan, L. Torner, and B. A. Malomed, “Stable vortex tori in
the three-dimensional cubic-quintic Ginzburg-Landau equation,”
Phys. Rev. Lett. 97(7), 073904 (2006).

[CrossRef]
[PubMed]

L.-C. Crasovan, Y. V. Kartashov, D. Mihalache, L. Torner, and
V. M. Pérez-García, “Soliton
“molecules”: robust clusters of spatiotemporal optical
solitons,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(4 Pt
2), 046610 (2003).

[CrossRef]
[PubMed]

J. Burke and E. Knobloch, “Localized states in the
generalized Swift-Hohenberg equation,” Phys. Rev. E Stat. Nonlin.
Soft Matter Phys. 73(5 Pt 2), 056211 (2006).

[CrossRef]
[PubMed]

I. S. Aranson and L. Kramer, “The world of the
complex Ginzburg–Landau equation,” Rev. Mod. Phys.
74(1), 99–143 (2002).

[CrossRef]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A.
Malomed, “Stability limits for three-dimensional vortex solitons
in the Ginzburg–Landau equation with the cubic-quintic
nonlinearity,” Phys. Rev. A 76(4), 045803 (2007).

[CrossRef]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A.
Malomed, “Stability of dissipative optical solitons in the
three-dimensional cubic-quintic Ginzburg–Landau
equation,” Phys. Rev. A 75(3), 033811 (2007).

[CrossRef]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A.
Malomed, “Stability of dissipative optical solitons in the
three-dimensional cubic-quintic Ginzburg–Landau
equation,” Phys. Rev. A 75(3), 033811 (2007).

[CrossRef]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A.
Malomed, “Stability limits for three-dimensional vortex solitons
in the Ginzburg–Landau equation with the cubic-quintic
nonlinearity,” Phys. Rev. A 76(4), 045803 (2007).

[CrossRef]

D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C.
Crasovan, L. Torner, and B. A. Malomed, “Stable vortex tori in
the three-dimensional cubic-quintic Ginzburg-Landau equation,”
Phys. Rev. Lett. 97(7), 073904 (2006).

[CrossRef]
[PubMed]

D. Mihalache, D. Mazilu, L.-C. Crasovan, B. A. Malomed, F.
Lederer, and L. Torner, “Soliton clusters in three-dimensional
media with competing cubic and quintic nonlinearities,” J. Opt. B
Quantum Semiclassical Opt. 6(5), S333–S340
(2004).

[CrossRef]

M. Tlidi, P. Mandel, and R. Lefever, “Localized
structures and localized patterns in optical bistability,” Phys.
Rev. Lett. 73(5), 640–643 (1994).

[CrossRef]
[PubMed]

J. Lega, J. V. Moloney, and A. C. Newell,
“Swift-Hohenberg equation for lasers,” Phys. Rev.
Lett. 73(22), 2978–2981 (1994).

[CrossRef]
[PubMed]

J. Buceta, K. Lindenberg, and J. M. R. Parrondo,
“Stationary and oscillatory spatial patterns induced by global
periodic switching,” Phys. Rev. Lett. 88(2), 024103
(2002).

[CrossRef]
[PubMed]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A.
Malomed, “Stability of dissipative optical solitons in the
three-dimensional cubic-quintic Ginzburg–Landau
equation,” Phys. Rev. A 75(3), 033811 (2007).

[CrossRef]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A.
Malomed, “Stability limits for three-dimensional vortex solitons
in the Ginzburg–Landau equation with the cubic-quintic
nonlinearity,” Phys. Rev. A 76(4), 045803 (2007).

[CrossRef]

Y. J. He, H. Z. Wang, and B. A. Malomed, “Fusion of
necklace-ring patterns into vortex and fundamental solitons in dissipative
media,” Opt. Express 15(26), 17502–17508
(2007).

[CrossRef]
[PubMed]

D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C.
Crasovan, L. Torner, and B. A. Malomed, “Stable vortex tori in
the three-dimensional cubic-quintic Ginzburg-Landau equation,”
Phys. Rev. Lett. 97(7), 073904 (2006).

[CrossRef]
[PubMed]

D. Mihalache, D. Mazilu, L.-C. Crasovan, B. A. Malomed, F.
Lederer, and L. Torner, “Soliton clusters in three-dimensional
media with competing cubic and quintic nonlinearities,” J. Opt. B
Quantum Semiclassical Opt. 6(5), S333–S340
(2004).

[CrossRef]

L.-C. Crasovan, B. A. Malomed, and D. Mihalache,
“Stable vortex solitons in the two-dimensional
Ginzburg–Landau equation,” Phys. Rev. E Stat. Phys.
Plasmas Fluids Relat. Interdiscip. Topics 63(1), 016605
(2001).

[CrossRef]

M. Tlidi and P. Mandel, “Three-dimensional optical
crystals and localized structures in cavity second harmonic
generation,” Phys. Rev. Lett. 83(24), 4995–4998
(1999).

[CrossRef]

M. Tlidi, P. Mandel, and R. Lefever, “Localized
structures and localized patterns in optical bistability,” Phys.
Rev. Lett. 73(5), 640–643 (1994).

[CrossRef]
[PubMed]

K.-I. Maruno, A. Ankiewicz, and N. Akhmediev,
“Exact soliton solutions of the one-dimensional complex
Swift–Hohenberg equation,” Physica D 176(1-2),
44–66 (2003).

[CrossRef]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A.
Malomed, “Stability limits for three-dimensional vortex solitons
in the Ginzburg–Landau equation with the cubic-quintic
nonlinearity,” Phys. Rev. A 76(4), 045803 (2007).

[CrossRef]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A.
Malomed, “Stability of dissipative optical solitons in the
three-dimensional cubic-quintic Ginzburg–Landau
equation,” Phys. Rev. A 75(3), 033811 (2007).

[CrossRef]

D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C.
Crasovan, L. Torner, and B. A. Malomed, “Stable vortex tori in
the three-dimensional cubic-quintic Ginzburg-Landau equation,”
Phys. Rev. Lett. 97(7), 073904 (2006).

[CrossRef]
[PubMed]

D. Mihalache, D. Mazilu, L.-C. Crasovan, B. A. Malomed, F.
Lederer, and L. Torner, “Soliton clusters in three-dimensional
media with competing cubic and quintic nonlinearities,” J. Opt. B
Quantum Semiclassical Opt. 6(5), S333–S340
(2004).

[CrossRef]

A. G. Vladimirov, J. M. McSloy, D. V. Skryabin, and W. J.
Firth, “Two-dimensional clusters of solitary structures in driven
optical cavities,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.
65(44 Pt 2B), 046606 (2002).

[CrossRef]
[PubMed]

M. F. Hilali, S. Métens, P. Borckmans, and G.
Dewel, “Pattern selection in the generalized Swift-Hohenberg
model,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat.
Interdiscip. Topics 51(3), 2046–2052 (1995).

[CrossRef]
[PubMed]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A.
Malomed, “Stability of dissipative optical solitons in the
three-dimensional cubic-quintic Ginzburg–Landau
equation,” Phys. Rev. A 75(3), 033811 (2007).

[CrossRef]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A.
Malomed, “Stability limits for three-dimensional vortex solitons
in the Ginzburg–Landau equation with the cubic-quintic
nonlinearity,” Phys. Rev. A 76(4), 045803 (2007).

[CrossRef]

D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C.
Crasovan, L. Torner, and B. A. Malomed, “Stable vortex tori in
the three-dimensional cubic-quintic Ginzburg-Landau equation,”
Phys. Rev. Lett. 97(7), 073904 (2006).

[CrossRef]
[PubMed]

D. Mihalache, D. Mazilu, L.-C. Crasovan, B. A. Malomed, F.
Lederer, and L. Torner, “Soliton clusters in three-dimensional
media with competing cubic and quintic nonlinearities,” J. Opt. B
Quantum Semiclassical Opt. 6(5), S333–S340
(2004).

[CrossRef]

L.-C. Crasovan, Y. V. Kartashov, D. Mihalache, L. Torner, and
V. M. Pérez-García, “Soliton
“molecules”: robust clusters of spatiotemporal optical
solitons,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(4 Pt
2), 046610 (2003).

[CrossRef]
[PubMed]

L.-C. Crasovan, B. A. Malomed, and D. Mihalache,
“Stable vortex solitons in the two-dimensional
Ginzburg–Landau equation,” Phys. Rev. E Stat. Phys.
Plasmas Fluids Relat. Interdiscip. Topics 63(1), 016605
(2001).

[CrossRef]

J. Lega, J. V. Moloney, and A. C. Newell,
“Swift-Hohenberg equation for lasers,” Phys. Rev.
Lett. 73(22), 2978–2981 (1994).

[CrossRef]
[PubMed]

J. Lega, J. V. Moloney, and A. C. Newell,
“Swift-Hohenberg equation for lasers,” Phys. Rev.
Lett. 73(22), 2978–2981 (1994).

[CrossRef]
[PubMed]

J. Buceta, K. Lindenberg, and J. M. R. Parrondo,
“Stationary and oscillatory spatial patterns induced by global
periodic switching,” Phys. Rev. Lett. 88(2), 024103
(2002).

[CrossRef]
[PubMed]

L.-C. Crasovan, Y. V. Kartashov, D. Mihalache, L. Torner, and
V. M. Pérez-García, “Soliton
“molecules”: robust clusters of spatiotemporal optical
solitons,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(4 Pt
2), 046610 (2003).

[CrossRef]
[PubMed]

V. J. Sánchez-Morcillo and K. Staliunas,
“Stability of localized structures in the Swift-Hohenberg
equation,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat.
Interdiscip. Topics 60(55 Pt B), 6153–6156
(1999).

[CrossRef]

M. Soljačić, S. Sears, and M. Segev,
“Self-trapping of ‘necklace’ beams in
self-focusing Kerr media,” Phys. Rev. Lett. 81(22),
4851–4854 (1998).

[CrossRef]

M. Soljačić, S. Sears, and M. Segev,
“Self-trapping of ‘necklace’ beams in
self-focusing Kerr media,” Phys. Rev. Lett. 81(22),
4851–4854 (1998).

[CrossRef]

A. G. Vladimirov, J. M. McSloy, D. V. Skryabin, and W. J.
Firth, “Two-dimensional clusters of solitary structures in driven
optical cavities,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.
65(44 Pt 2B), 046606 (2002).

[CrossRef]
[PubMed]

D. V. Skryabin and A. G. Vladimirov, “Vortex
induced rotation of clusters of localized states in the complex
Ginzburg-Landau equation,” Phys. Rev. Lett. 89(4), 044101
(2002).

[CrossRef]
[PubMed]

M. Soljačić, S. Sears, and M. Segev,
“Self-trapping of ‘necklace’ beams in
self-focusing Kerr media,” Phys. Rev. Lett. 81(22),
4851–4854 (1998).

[CrossRef]

J. M. Soto-Crespo, N. Akhmediev, C. Mejia-Cortés,
and N. Devine, “Dissipative ring solitons with
vorticity,” Opt. Express 17(6), 4236–4250
(2009).

[CrossRef]
[PubMed]

J. M. Soto-Crespo, P. Grelu, and N. Akhmediev,
“Optical bullets and ‘rockets’ in nonlinear
dissipative systems and their transformations and interactions,”
Opt. Express 14(9), 4013–4025 (2006).

[CrossRef]
[PubMed]

J. M. Soto-Crespo and N. Akhmediev, “Composite
solitons and two-pulse generation in passively mode-locked lasers modeled by
the complex quintic Swift-Hohenberg equation,” Phys. Rev. E Stat.
Nonlin. Soft Matter Phys. 66(6 Pt 2), 066610 (2002).

[CrossRef]

N. N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo,
“Stable soliton pairs in optical transmission lines and fiber
lasers,” J. Opt. Soc. Am. B 15(2), 515–523
(1998).

[CrossRef]

V. J. Sánchez-Morcillo and K. Staliunas,
“Stability of localized structures in the Swift-Hohenberg
equation,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat.
Interdiscip. Topics 60(55 Pt B), 6153–6156
(1999).

[CrossRef]

M. Tlidi, “Three-dimensional crystals and localized
structures in diffractive and dispersive nonlinear ring
cavities,” J. Opt. B Quantum Semiclassical Opt. 2(3),
438–442 (2000).

[CrossRef]

M. Tlidi and P. Mandel, “Three-dimensional optical
crystals and localized structures in cavity second harmonic
generation,” Phys. Rev. Lett. 83(24), 4995–4998
(1999).

[CrossRef]

M. Tlidi, P. Mandel, and R. Lefever, “Localized
structures and localized patterns in optical bistability,” Phys.
Rev. Lett. 73(5), 640–643 (1994).

[CrossRef]
[PubMed]

D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C.
Crasovan, L. Torner, and B. A. Malomed, “Stable vortex tori in
the three-dimensional cubic-quintic Ginzburg-Landau equation,”
Phys. Rev. Lett. 97(7), 073904 (2006).

[CrossRef]
[PubMed]

D. Mihalache, D. Mazilu, L.-C. Crasovan, B. A. Malomed, F.
Lederer, and L. Torner, “Soliton clusters in three-dimensional
media with competing cubic and quintic nonlinearities,” J. Opt. B
Quantum Semiclassical Opt. 6(5), S333–S340
(2004).

[CrossRef]

L.-C. Crasovan, Y. V. Kartashov, D. Mihalache, L. Torner, and
V. M. Pérez-García, “Soliton
“molecules”: robust clusters of spatiotemporal optical
solitons,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(4 Pt
2), 046610 (2003).

[CrossRef]
[PubMed]

A. G. Vladimirov, J. M. McSloy, D. V. Skryabin, and W. J.
Firth, “Two-dimensional clusters of solitary structures in driven
optical cavities,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.
65(44 Pt 2B), 046606 (2002).

[CrossRef]
[PubMed]

D. V. Skryabin and A. G. Vladimirov, “Vortex
induced rotation of clusters of localized states in the complex
Ginzburg-Landau equation,” Phys. Rev. Lett. 89(4), 044101
(2002).

[CrossRef]
[PubMed]

Y. J. He, H. Z. Wang, and B. A. Malomed, “Fusion of
necklace-ring patterns into vortex and fundamental solitons in dissipative
media,” Opt. Express 15(26), 17502–17508
(2007).

[CrossRef]
[PubMed]

Y. J. He, H. H. Fan, J. W. Dong, and H. Z. Wang,
“Self-trapped spatiotemporal necklace-ring solitons in the
Ginzburg-Landau equation,” Phys. Rev. E Stat. Nonlin. Soft Matter
Phys. 74(1 Pt 2), 016611 (2006).

[CrossRef]
[PubMed]

M. Tlidi, “Three-dimensional crystals and localized
structures in diffractive and dispersive nonlinear ring
cavities,” J. Opt. B Quantum Semiclassical Opt. 2(3),
438–442 (2000).

[CrossRef]

D. Mihalache, D. Mazilu, L.-C. Crasovan, B. A. Malomed, F.
Lederer, and L. Torner, “Soliton clusters in three-dimensional
media with competing cubic and quintic nonlinearities,” J. Opt. B
Quantum Semiclassical Opt. 6(5), S333–S340
(2004).

[CrossRef]

N. Akhmediev and A. Ankiewicz, “Dissipative
solitons in the complex Ginzburg–Landau and
Swift–Hohenberg equations,” Lect. Notes Phys. 661,
1–17 (2005).

[CrossRef]

J. M. Soto-Crespo, P. Grelu, and N. Akhmediev,
“Optical bullets and ‘rockets’ in nonlinear
dissipative systems and their transformations and interactions,”
Opt. Express 14(9), 4013–4025 (2006).

[CrossRef]
[PubMed]

Y. J. He, H. Z. Wang, and B. A. Malomed, “Fusion of
necklace-ring patterns into vortex and fundamental solitons in dissipative
media,” Opt. Express 15(26), 17502–17508
(2007).

[CrossRef]
[PubMed]

J. M. Soto-Crespo, N. Akhmediev, C. Mejia-Cortés,
and N. Devine, “Dissipative ring solitons with
vorticity,” Opt. Express 17(6), 4236–4250
(2009).

[CrossRef]
[PubMed]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A.
Malomed, “Stability limits for three-dimensional vortex solitons
in the Ginzburg–Landau equation with the cubic-quintic
nonlinearity,” Phys. Rev. A 76(4), 045803 (2007).

[CrossRef]

D. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A.
Malomed, “Stability of dissipative optical solitons in the
three-dimensional cubic-quintic Ginzburg–Landau
equation,” Phys. Rev. A 75(3), 033811 (2007).

[CrossRef]

Y. J. He, H. H. Fan, J. W. Dong, and H. Z. Wang,
“Self-trapped spatiotemporal necklace-ring solitons in the
Ginzburg-Landau equation,” Phys. Rev. E Stat. Nonlin. Soft Matter
Phys. 74(1 Pt 2), 016611 (2006).

[CrossRef]
[PubMed]

J. Burke and E. Knobloch, “Localized states in the
generalized Swift-Hohenberg equation,” Phys. Rev. E Stat. Nonlin.
Soft Matter Phys. 73(5 Pt 2), 056211 (2006).

[CrossRef]
[PubMed]

J. M. Soto-Crespo and N. Akhmediev, “Composite
solitons and two-pulse generation in passively mode-locked lasers modeled by
the complex quintic Swift-Hohenberg equation,” Phys. Rev. E Stat.
Nonlin. Soft Matter Phys. 66(6 Pt 2), 066610 (2002).

[CrossRef]

L.-C. Crasovan, Y. V. Kartashov, D. Mihalache, L. Torner, and
V. M. Pérez-García, “Soliton
“molecules”: robust clusters of spatiotemporal optical
solitons,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(4 Pt
2), 046610 (2003).

[CrossRef]
[PubMed]

A. G. Vladimirov, J. M. McSloy, D. V. Skryabin, and W. J.
Firth, “Two-dimensional clusters of solitary structures in driven
optical cavities,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.
65(44 Pt 2B), 046606 (2002).

[CrossRef]
[PubMed]

L.-C. Crasovan, B. A. Malomed, and D. Mihalache,
“Stable vortex solitons in the two-dimensional
Ginzburg–Landau equation,” Phys. Rev. E Stat. Phys.
Plasmas Fluids Relat. Interdiscip. Topics 63(1), 016605
(2001).

[CrossRef]

M. F. Hilali, S. Métens, P. Borckmans, and G.
Dewel, “Pattern selection in the generalized Swift-Hohenberg
model,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat.
Interdiscip. Topics 51(3), 2046–2052 (1995).

[CrossRef]
[PubMed]

V. J. Sánchez-Morcillo and K. Staliunas,
“Stability of localized structures in the Swift-Hohenberg
equation,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat.
Interdiscip. Topics 60(55 Pt B), 6153–6156
(1999).

[CrossRef]

M. Tlidi, P. Mandel, and R. Lefever, “Localized
structures and localized patterns in optical bistability,” Phys.
Rev. Lett. 73(5), 640–643 (1994).

[CrossRef]
[PubMed]

J. Lega, J. V. Moloney, and A. C. Newell,
“Swift-Hohenberg equation for lasers,” Phys. Rev.
Lett. 73(22), 2978–2981 (1994).

[CrossRef]
[PubMed]

J. Buceta, K. Lindenberg, and J. M. R. Parrondo,
“Stationary and oscillatory spatial patterns induced by global
periodic switching,” Phys. Rev. Lett. 88(2), 024103
(2002).

[CrossRef]
[PubMed]

M. Soljačić, S. Sears, and M. Segev,
“Self-trapping of ‘necklace’ beams in
self-focusing Kerr media,” Phys. Rev. Lett. 81(22),
4851–4854 (1998).

[CrossRef]

D. Mihalache, D. Mazilu, F. Lederer, Y. V. Kartashov, L.-C.
Crasovan, L. Torner, and B. A. Malomed, “Stable vortex tori in
the three-dimensional cubic-quintic Ginzburg-Landau equation,”
Phys. Rev. Lett. 97(7), 073904 (2006).

[CrossRef]
[PubMed]

M. Tlidi and P. Mandel, “Three-dimensional optical
crystals and localized structures in cavity second harmonic
generation,” Phys. Rev. Lett. 83(24), 4995–4998
(1999).

[CrossRef]

D. V. Skryabin and A. G. Vladimirov, “Vortex
induced rotation of clusters of localized states in the complex
Ginzburg-Landau equation,” Phys. Rev. Lett. 89(4), 044101
(2002).

[CrossRef]
[PubMed]

K.-I. Maruno, A. Ankiewicz, and N. Akhmediev,
“Exact soliton solutions of the one-dimensional complex
Swift–Hohenberg equation,” Physica D 176(1-2),
44–66 (2003).

[CrossRef]

I. S. Aranson and L. Kramer, “The world of the
complex Ginzburg–Landau equation,” Rev. Mod. Phys.
74(1), 99–143 (2002).

[CrossRef]

B. A. Malomed, “Complex Ginzburg–Landau
equation,” in Encyclopedia of Nonlinear Science, A. Scott, ed.
(Routledge, 2005), pp. 157–160.

Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence,
(Springer, 1984).

Y. S. Kivshar, and G. P. Agrawal, Optical Solitons: From
Fibers to Photonic Crystals (Academic, 2003).