Abstract

Gratings with periods smaller than visible wavelengths in ambient white light will exhibit enhanced colors if the profile is designed so that resonant light interaction occurs in the visible range. Resonances have a frequency-selective influence to the grating diffraction inducing colors in transmittance and reflectance, respectively. Apart from the well-known surface-plasmon polariton excitations and cavity resonances, newly discovered resonances in TE-polarization can be exploited for colorizing wire-gratings, when simply illuminated by unpolarized white light. Colors can be laterally tuned by varying the grating profile. The capability of generating images by sub-wavelength gratings is exemplified by a metallic wire grating embedded in a plastic foil with a lateral variable modulation depth. This method for producing colored images is predestined for industrial mass production and will have ever more practical applications such as for security features.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Kinoshita and S. Yoshioka, “Structural colors in nature: the role of regularity and irregularity in the structure,” Chem. Phys. 6, 1–19 (2005).
  2. P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. Lond. B. Biol. Sci. 266, 1402–1411 (1999).
    [CrossRef]
  3. B. Gralak, G. Tayeb, and S. Enoch, “Morpho butterflies wings color modeled with lamellar grating theory,” Opt. Express 9(11), 567–578 (2001).
    [CrossRef]
  4. L. M. Liz-Marzán, “Nanometals: Formation and color,” Mater. Today 7, 26–31 (2004).
    [CrossRef]
  5. W. A. Murray and W. L. Barnes, “Plasmonic Materials,” Adv. Mater. 19(22), 3771–3782 (2007).
    [CrossRef]
  6. J. Turunen, and F. Wyrowski, Diffractive Optics for Industrial and Commercial Applications (Akademie Verlag, Berlin, 1997).
  7. L. J. Guo, “Nanoimprint Lithography: Methods and Material Requirements,” Adv. Mater. 19(4), 495–513 (2007).
    [CrossRef]
  8. S. H. Ahn and L. J. Guo, “High speed Roll-to-Roll Nanoimprint Lithography on Flexible Plastic Substrates,” Adv. Mater. 20(11), 2044–2049 (2008).
    [CrossRef]
  9. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary Optical Transmission through Sub-Wavelength Hole Arrays,” Nature 391(6668), 667–669 (1998).
    [CrossRef]
  10. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef]
  11. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [CrossRef]
  12. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
    [CrossRef]
  13. E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2(3), 161–164 (2008).
    [CrossRef]
  14. N. F. van Hulst, “Plasmonics: Sorting colors,” Nat. Photonics 2(3), 139–140 (2008).
    [CrossRef]
  15. L. Li, “Multilayer modal method for diffraction gratings of arbitrary profile, depth, and permittivity,” J. Opt. Soc. Am. A 10(12), 2581–2591 (1993).
    [CrossRef]
  16. E. D. Palik, Handbook of Optical Constants of Solids Part II (Academic, New York, 1985).
  17. H. Lochbihler and P. Predehl, “Characterization of x-ray transmission gratings,” Appl. Opt. 31(7), 964 (1992).H. Lochbihler and R. A. Depine, “Characterization of highly conducting wire gratings using an electromagnetic theory of diffraction,” Opt. Commun. 100(1-4), 231–239 (1993).
    [CrossRef]
  18. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
    [CrossRef]
  19. H. Lochbihler, “Surface Polaritons on Gold-Wire Gratings,” Phys. Rev. B 50(7), 4795–4801 (1994).
    [CrossRef]
  20. H. Räther, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer Verlag, Berlin, 1988); V. M. Agranovich and D. L. Mills, Surface Polaritons (North Holland, Amsterdam, 1982).
  21. H. Lochbihler, “Surface Polaritons on Metallic Wire Gratings studied via Power Losses,” Phys. Rev. B 53(15), 10289–10295 (1996).
    [CrossRef]
  22. T. D. Visser, “Plasmonics: Surface plasmons at work?” Nat. Phys. 2(8), 509–510 (2006).
    [CrossRef]
  23. G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys. 2(4), 262–267 (2006).
    [CrossRef]
  24. H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452(7188), 728–731 (2008).
    [CrossRef]
  25. H. Lochbihler, “Field Enhancement on Metallic Wire Gratings,” Opt. Commun. 111(5-6), 417–422 (1994).
    [CrossRef]
  26. G. A. Klein, Farbenphysik für industrielle Anwendungen (Springer-Verlag, Berlin, 2004).
    [CrossRef]
  27. http://en.wikipedia.org/wiki/Portrait_of_Dr._Gachet

2008 (4)

S. H. Ahn and L. J. Guo, “High speed Roll-to-Roll Nanoimprint Lithography on Flexible Plastic Substrates,” Adv. Mater. 20(11), 2044–2049 (2008).
[CrossRef]

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2(3), 161–164 (2008).
[CrossRef]

N. F. van Hulst, “Plasmonics: Sorting colors,” Nat. Photonics 2(3), 139–140 (2008).
[CrossRef]

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452(7188), 728–731 (2008).
[CrossRef]

2007 (3)

W. A. Murray and W. L. Barnes, “Plasmonic Materials,” Adv. Mater. 19(22), 3771–3782 (2007).
[CrossRef]

L. J. Guo, “Nanoimprint Lithography: Methods and Material Requirements,” Adv. Mater. 19(4), 495–513 (2007).
[CrossRef]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef]

2006 (3)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef]

T. D. Visser, “Plasmonics: Surface plasmons at work?” Nat. Phys. 2(8), 509–510 (2006).
[CrossRef]

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys. 2(4), 262–267 (2006).
[CrossRef]

2005 (1)

S. Kinoshita and S. Yoshioka, “Structural colors in nature: the role of regularity and irregularity in the structure,” Chem. Phys. 6, 1–19 (2005).

2004 (1)

L. M. Liz-Marzán, “Nanometals: Formation and color,” Mater. Today 7, 26–31 (2004).
[CrossRef]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef]

2001 (1)

1999 (2)

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. Lond. B. Biol. Sci. 266, 1402–1411 (1999).
[CrossRef]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary Optical Transmission through Sub-Wavelength Hole Arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

1996 (1)

H. Lochbihler, “Surface Polaritons on Metallic Wire Gratings studied via Power Losses,” Phys. Rev. B 53(15), 10289–10295 (1996).
[CrossRef]

1994 (2)

H. Lochbihler, “Surface Polaritons on Gold-Wire Gratings,” Phys. Rev. B 50(7), 4795–4801 (1994).
[CrossRef]

H. Lochbihler, “Field Enhancement on Metallic Wire Gratings,” Opt. Commun. 111(5-6), 417–422 (1994).
[CrossRef]

1993 (1)

1992 (1)

Ahn, S. H.

S. H. Ahn and L. J. Guo, “High speed Roll-to-Roll Nanoimprint Lithography on Flexible Plastic Substrates,” Adv. Mater. 20(11), 2044–2049 (2008).
[CrossRef]

Alloschery, O.

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys. 2(4), 262–267 (2006).
[CrossRef]

Barnes, W. L.

W. A. Murray and W. L. Barnes, “Plasmonic Materials,” Adv. Mater. 19(22), 3771–3782 (2007).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef]

Depine, R. A.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef]

Ebbesen, T. W.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2(3), 161–164 (2008).
[CrossRef]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary Optical Transmission through Sub-Wavelength Hole Arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Enoch, S.

Garcia-Vidal, F. J.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

Gay, G.

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys. 2(4), 262–267 (2006).
[CrossRef]

Genet, C.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2(3), 161–164 (2008).
[CrossRef]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary Optical Transmission through Sub-Wavelength Hole Arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Gralak, B.

Guo, L. J.

S. H. Ahn and L. J. Guo, “High speed Roll-to-Roll Nanoimprint Lithography on Flexible Plastic Substrates,” Adv. Mater. 20(11), 2044–2049 (2008).
[CrossRef]

L. J. Guo, “Nanoimprint Lithography: Methods and Material Requirements,” Adv. Mater. 19(4), 495–513 (2007).
[CrossRef]

Kinoshita, S.

S. Kinoshita and S. Yoshioka, “Structural colors in nature: the role of regularity and irregularity in the structure,” Chem. Phys. 6, 1–19 (2005).

Lalanne, P.

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452(7188), 728–731 (2008).
[CrossRef]

Laux, E.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2(3), 161–164 (2008).
[CrossRef]

Lawrence, C. R.

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. Lond. B. Biol. Sci. 266, 1402–1411 (1999).
[CrossRef]

Lezec, H. J.

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys. 2(4), 262–267 (2006).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary Optical Transmission through Sub-Wavelength Hole Arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Li, L.

Liu, H.

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452(7188), 728–731 (2008).
[CrossRef]

Liz-Marzán, L. M.

L. M. Liz-Marzán, “Nanometals: Formation and color,” Mater. Today 7, 26–31 (2004).
[CrossRef]

Lochbihler, H.

Murray, W. A.

W. A. Murray and W. L. Barnes, “Plasmonic Materials,” Adv. Mater. 19(22), 3771–3782 (2007).
[CrossRef]

O’Dwyer, C.

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys. 2(4), 262–267 (2006).
[CrossRef]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef]

Pendry, J. B.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

Porto, J. A.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

Predehl, P.

Sambles, J. R.

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. Lond. B. Biol. Sci. 266, 1402–1411 (1999).
[CrossRef]

Skauli, T.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2(3), 161–164 (2008).
[CrossRef]

Tayeb, G.

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary Optical Transmission through Sub-Wavelength Hole Arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

van Hulst, N. F.

N. F. van Hulst, “Plasmonics: Sorting colors,” Nat. Photonics 2(3), 139–140 (2008).
[CrossRef]

Viaris de Lesegno, B.

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys. 2(4), 262–267 (2006).
[CrossRef]

Visser, T. D.

T. D. Visser, “Plasmonics: Surface plasmons at work?” Nat. Phys. 2(8), 509–510 (2006).
[CrossRef]

Vukusic, P.

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. Lond. B. Biol. Sci. 266, 1402–1411 (1999).
[CrossRef]

Weiner, J.

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys. 2(4), 262–267 (2006).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary Optical Transmission through Sub-Wavelength Hole Arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Wootton, R. J.

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. Lond. B. Biol. Sci. 266, 1402–1411 (1999).
[CrossRef]

Yoshioka, S.

S. Kinoshita and S. Yoshioka, “Structural colors in nature: the role of regularity and irregularity in the structure,” Chem. Phys. 6, 1–19 (2005).

Adv. Mater. (3)

L. J. Guo, “Nanoimprint Lithography: Methods and Material Requirements,” Adv. Mater. 19(4), 495–513 (2007).
[CrossRef]

S. H. Ahn and L. J. Guo, “High speed Roll-to-Roll Nanoimprint Lithography on Flexible Plastic Substrates,” Adv. Mater. 20(11), 2044–2049 (2008).
[CrossRef]

W. A. Murray and W. L. Barnes, “Plasmonic Materials,” Adv. Mater. 19(22), 3771–3782 (2007).
[CrossRef]

Appl. Opt. (1)

Chem. Phys. (1)

S. Kinoshita and S. Yoshioka, “Structural colors in nature: the role of regularity and irregularity in the structure,” Chem. Phys. 6, 1–19 (2005).

J. Opt. Soc. Am. A (1)

Mater. Today (1)

L. M. Liz-Marzán, “Nanometals: Formation and color,” Mater. Today 7, 26–31 (2004).
[CrossRef]

Nat. Photonics (2)

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2(3), 161–164 (2008).
[CrossRef]

N. F. van Hulst, “Plasmonics: Sorting colors,” Nat. Photonics 2(3), 139–140 (2008).
[CrossRef]

Nat. Phys. (2)

T. D. Visser, “Plasmonics: Surface plasmons at work?” Nat. Phys. 2(8), 509–510 (2006).
[CrossRef]

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys. 2(4), 262–267 (2006).
[CrossRef]

Nature (4)

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452(7188), 728–731 (2008).
[CrossRef]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary Optical Transmission through Sub-Wavelength Hole Arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef]

Opt. Commun. (1)

H. Lochbihler, “Field Enhancement on Metallic Wire Gratings,” Opt. Commun. 111(5-6), 417–422 (1994).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (2)

H. Lochbihler, “Surface Polaritons on Metallic Wire Gratings studied via Power Losses,” Phys. Rev. B 53(15), 10289–10295 (1996).
[CrossRef]

H. Lochbihler, “Surface Polaritons on Gold-Wire Gratings,” Phys. Rev. B 50(7), 4795–4801 (1994).
[CrossRef]

Phys. Rev. Lett. (1)

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

Proc. R. Soc. Lond. B. Biol. Sci. (1)

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. Lond. B. Biol. Sci. 266, 1402–1411 (1999).
[CrossRef]

Science (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef]

Other (5)

J. Turunen, and F. Wyrowski, Diffractive Optics for Industrial and Commercial Applications (Akademie Verlag, Berlin, 1997).

H. Räther, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer Verlag, Berlin, 1988); V. M. Agranovich and D. L. Mills, Surface Polaritons (North Holland, Amsterdam, 1982).

G. A. Klein, Farbenphysik für industrielle Anwendungen (Springer-Verlag, Berlin, 2004).
[CrossRef]

http://en.wikipedia.org/wiki/Portrait_of_Dr._Gachet

E. D. Palik, Handbook of Optical Constants of Solids Part II (Academic, New York, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Wire grating with “Z” shaped metallic wire profile with period d=330 nm, film thickness t=60 nm, and width b=130 nm evaporated by an angle Q=20° and embedded in a dielectric. (a) Sketch of the wire profile for the modulation depths h1=100 nm and h2=250 nm, respectively. Light diffraction is illustrated by black arrows. The hollow arrows indicate the evaporation process. (b) Electron-micrograph of an embedded aluminium wire grating manufactured by tilted evaporation having a modulation depth h=280 nm.

Fig. 2.
Fig. 2.

Calculated transmittance and power losses as a function of wavelength for (a) TM polarization and various modulation depths h at normal incidence, (b) TM polarization and various angles of incidence Θ0, (c) TE polarization and various modulation depths h at normal incidence, and (d) TE polarization and various angles of incidence Θ0.

Fig. 3.
Fig. 3.

(a) Transmitted colors of a grating with modulation depths from 70 nm up to 250 nm plotted as a trajectory (red line) into the CIE-1931 chromaticity diagram. (b) Master image and (c) and calculated coloring in transmittance of a grating with laterally variable modulation. The distribution of color pixels of the master image is shown as black points in the chromaticity diagram.

Fig. 4.
Fig. 4.

Light transmission of a manufactured grating replica embedded in a plastic foil with laterally variable modulation depth according to the design from Fig. 3(c). The size of this sample is 20.8 mm×25.0 mm.

Fig. 5.
Fig. 5.

Transmission of grating replica from Fig. 4 illuminated by polarized incident light: (a) TM-polarization, (b) TE-polarization, and (c) polarization conversion effect, when the grating lies between two crossed polarizers.

Metrics