Abstract

Gratings with periods smaller than visible wavelengths in ambient white light will exhibit enhanced colors if the profile is designed so that resonant light interaction occurs in the visible range. Resonances have a frequency-selective influence to the grating diffraction inducing colors in transmittance and reflectance, respectively. Apart from the well-known surface-plasmon polariton excitations and cavity resonances, newly discovered resonances in TE-polarization can be exploited for colorizing wire-gratings, when simply illuminated by unpolarized white light. Colors can be laterally tuned by varying the grating profile. The capability of generating images by sub-wavelength gratings is exemplified by a metallic wire grating embedded in a plastic foil with a lateral variable modulation depth. This method for producing colored images is predestined for industrial mass production and will have ever more practical applications such as for security features.

© 2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Reflective colored image based on metal–dielectric–metal-coated gratings

Hans Lochbihler
Opt. Lett. 38(9) 1398-1400 (2013)

Colored image produced with guided-mode resonance filter array

Qi Wang, Dawei Zhang, Banglian Xu, Yuanshen Huang, Chunxian Tao, Chunfang Wang, Baicheng Li, Zhengji Ni, and Songlin Zhuang
Opt. Lett. 36(23) 4698-4700 (2011)

Beaming thermal emission from hot metallic bull’s eyes

S. E. Han and D. J. Norris
Opt. Express 18(5) 4829-4837 (2010)

References

  • View by:
  • |
  • |
  • |

  1. S. Kinoshita and S. Yoshioka, “Structural colors in nature: the role of regularity and irregularity in the structure,” Chem. Phys.  6, 1–19 (2005).
  2. P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. Lond. B. Biol. Sci.  266, 1402–1411 (1999).
    [Crossref]
  3. B. Gralak, G. Tayeb, and S. Enoch, “Morpho butterflies wings color modeled with lamellar grating theory,” Opt. Express 9(11), 567–578 (2001).
    [Crossref]
  4. L. M. Liz-Marzán, “Nanometals: Formation and color,” Mater. Today  7, 26–31 (2004).
    [Crossref]
  5. W. A. Murray and W. L. Barnes, “Plasmonic Materials,” Adv. Mater.  19(22), 3771–3782 (2007).
    [Crossref]
  6. J. Turunen and F. Wyrowski, Diffractive Optics for Industrial and Commercial Applications (Akademie Verlag, Berlin, 1997).
  7. L. J. Guo, “Nanoimprint Lithography: Methods and Material Requirements,” Adv. Mater.  19(4), 495–513 (2007).
    [Crossref]
  8. S. H. Ahn and L. J. Guo, “High speed Roll-to-Roll Nanoimprint Lithography on Flexible Plastic Substrates,” Adv. Mater.  20(11), 2044–2049 (2008).
    [Crossref]
  9. T. W. Ebbesen, H. J. Ghaemi, H. F. Lezec, T. Thio, and P. A. Wolff, “Extraordinary Optical Transmission through Sub-Wavelength Hole Arrays,” Nature  391(6668), 667–669 (1998).
    [Crossref]
  10. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature  424(6950), 824–830 (2003).
    [Crossref]
  11. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science  311(5758), 189–193 (2006).
    [Crossref]
  12. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
    [Crossref]
  13. E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics  2(3), 161–164 (2008).
    [Crossref]
  14. N. F. van Hulst, “Plasmonics: Sorting colors,” Nat. Photonics  2(3), 139–140 (2008).
    [Crossref]
  15. L. Li, “Multilayer modal method for diffraction gratings of arbitrary profile, depth, and permittivity,” J. Opt. Soc. Am. A 10(12), 2581–2591 (1993).
    [Crossref]
  16. E. D. Palik, Handbook of Optical Constants of Solids Part II (Academic, New York, 1985).
  17. H. Lochbihler and P. Predehl“Characterization of x-ray transmission gratings,” Appl. Opt. 31(7), 964 (1992). H. Lochbihler and R. A. Depine, “Characterization of highly conducting wire gratings using an electromagnetic theory of diffraction,” Opt. Commun.100(1–4), 231–239 (1993).
    [Crossref]
  18. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett.  83(14), 2845–2848 (1999).
    [Crossref]
  19. H. Lochbihler, “Surface Polaritons on Gold-Wire Gratings,” Phys. Rev. B  50(7), 4795–4801 (1994).
    [Crossref]
  20. H. RätherSurface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer Verlag, Berlin, 1988); V. M. Agranovich and D. L. Mills, Surface Polaritons (North Holland, Amsterdam, 1982).
  21. H. Lochbihler, “Surface Polaritons on Metallic Wire Gratings studied via Power Losses,” Phys. Rev. B  53(15), 10289–10295 (1996).
    [Crossref]
  22. T. D. Visser, “Plasmonics: Surface plasmons at work?” Nat. Phys.  2(8), 509–510 (2006).
    [Crossref]
  23. G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys.  2(4), 262–267 (2006).
    [Crossref]
  24. H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature  452(7188), 728–731 (2008).
    [Crossref]
  25. H. Lochbihler, “Field Enhancement on Metallic Wire Gratings,” Opt. Commun. 111(5–6), 417–422 (1994).
    [Crossref]
  26. G. A. Klein, Farbenphysik für industrielle Anwendungen (Springer-Verlag, Berlin, 2004).
    [Crossref]
  27. http://en.wikipedia.org/wiki/Portrait_of_Dr._Gachet

2008 (4)

S. H. Ahn and L. J. Guo, “High speed Roll-to-Roll Nanoimprint Lithography on Flexible Plastic Substrates,” Adv. Mater.  20(11), 2044–2049 (2008).
[Crossref]

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics  2(3), 161–164 (2008).
[Crossref]

N. F. van Hulst, “Plasmonics: Sorting colors,” Nat. Photonics  2(3), 139–140 (2008).
[Crossref]

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature  452(7188), 728–731 (2008).
[Crossref]

2007 (3)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref]

W. A. Murray and W. L. Barnes, “Plasmonic Materials,” Adv. Mater.  19(22), 3771–3782 (2007).
[Crossref]

L. J. Guo, “Nanoimprint Lithography: Methods and Material Requirements,” Adv. Mater.  19(4), 495–513 (2007).
[Crossref]

2006 (3)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science  311(5758), 189–193 (2006).
[Crossref]

T. D. Visser, “Plasmonics: Surface plasmons at work?” Nat. Phys.  2(8), 509–510 (2006).
[Crossref]

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys.  2(4), 262–267 (2006).
[Crossref]

2005 (1)

S. Kinoshita and S. Yoshioka, “Structural colors in nature: the role of regularity and irregularity in the structure,” Chem. Phys.  6, 1–19 (2005).

2004 (1)

L. M. Liz-Marzán, “Nanometals: Formation and color,” Mater. Today  7, 26–31 (2004).
[Crossref]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature  424(6950), 824–830 (2003).
[Crossref]

2001 (1)

B. Gralak, G. Tayeb, and S. Enoch, “Morpho butterflies wings color modeled with lamellar grating theory,” Opt. Express 9(11), 567–578 (2001).
[Crossref]

1999 (2)

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. Lond. B. Biol. Sci.  266, 1402–1411 (1999).
[Crossref]

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett.  83(14), 2845–2848 (1999).
[Crossref]

1998 (1)

T. W. Ebbesen, H. J. Ghaemi, H. F. Lezec, T. Thio, and P. A. Wolff, “Extraordinary Optical Transmission through Sub-Wavelength Hole Arrays,” Nature  391(6668), 667–669 (1998).
[Crossref]

1996 (1)

H. Lochbihler, “Surface Polaritons on Metallic Wire Gratings studied via Power Losses,” Phys. Rev. B  53(15), 10289–10295 (1996).
[Crossref]

1994 (2)

H. Lochbihler, “Surface Polaritons on Gold-Wire Gratings,” Phys. Rev. B  50(7), 4795–4801 (1994).
[Crossref]

H. Lochbihler, “Field Enhancement on Metallic Wire Gratings,” Opt. Commun. 111(5–6), 417–422 (1994).
[Crossref]

1993 (1)

L. Li, “Multilayer modal method for diffraction gratings of arbitrary profile, depth, and permittivity,” J. Opt. Soc. Am. A 10(12), 2581–2591 (1993).
[Crossref]

Agranovich, V. M.

H. RätherSurface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer Verlag, Berlin, 1988); V. M. Agranovich and D. L. Mills, Surface Polaritons (North Holland, Amsterdam, 1982).

Ahn, S. H.

S. H. Ahn and L. J. Guo, “High speed Roll-to-Roll Nanoimprint Lithography on Flexible Plastic Substrates,” Adv. Mater.  20(11), 2044–2049 (2008).
[Crossref]

Alloschery, O.

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys.  2(4), 262–267 (2006).
[Crossref]

Barnes, W. L.

W. A. Murray and W. L. Barnes, “Plasmonic Materials,” Adv. Mater.  19(22), 3771–3782 (2007).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature  424(6950), 824–830 (2003).
[Crossref]

Depine, R. A.

H. Lochbihler and P. Predehl“Characterization of x-ray transmission gratings,” Appl. Opt. 31(7), 964 (1992). H. Lochbihler and R. A. Depine, “Characterization of highly conducting wire gratings using an electromagnetic theory of diffraction,” Opt. Commun.100(1–4), 231–239 (1993).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature  424(6950), 824–830 (2003).
[Crossref]

Ebbesen, T. W.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics  2(3), 161–164 (2008).
[Crossref]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature  424(6950), 824–830 (2003).
[Crossref]

T. W. Ebbesen, H. J. Ghaemi, H. F. Lezec, T. Thio, and P. A. Wolff, “Extraordinary Optical Transmission through Sub-Wavelength Hole Arrays,” Nature  391(6668), 667–669 (1998).
[Crossref]

Enoch, S.

B. Gralak, G. Tayeb, and S. Enoch, “Morpho butterflies wings color modeled with lamellar grating theory,” Opt. Express 9(11), 567–578 (2001).
[Crossref]

Garcia-Vidal, F. J.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett.  83(14), 2845–2848 (1999).
[Crossref]

Gay, G.

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys.  2(4), 262–267 (2006).
[Crossref]

Genet, C.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics  2(3), 161–164 (2008).
[Crossref]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref]

Ghaemi, H. J.

T. W. Ebbesen, H. J. Ghaemi, H. F. Lezec, T. Thio, and P. A. Wolff, “Extraordinary Optical Transmission through Sub-Wavelength Hole Arrays,” Nature  391(6668), 667–669 (1998).
[Crossref]

Gralak, B.

B. Gralak, G. Tayeb, and S. Enoch, “Morpho butterflies wings color modeled with lamellar grating theory,” Opt. Express 9(11), 567–578 (2001).
[Crossref]

Guo, L. J.

S. H. Ahn and L. J. Guo, “High speed Roll-to-Roll Nanoimprint Lithography on Flexible Plastic Substrates,” Adv. Mater.  20(11), 2044–2049 (2008).
[Crossref]

L. J. Guo, “Nanoimprint Lithography: Methods and Material Requirements,” Adv. Mater.  19(4), 495–513 (2007).
[Crossref]

Kinoshita, S.

S. Kinoshita and S. Yoshioka, “Structural colors in nature: the role of regularity and irregularity in the structure,” Chem. Phys.  6, 1–19 (2005).

Klein, G. A.

G. A. Klein, Farbenphysik für industrielle Anwendungen (Springer-Verlag, Berlin, 2004).
[Crossref]

Lalanne, P.

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature  452(7188), 728–731 (2008).
[Crossref]

Laux, E.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics  2(3), 161–164 (2008).
[Crossref]

Lawrence, C. R.

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. Lond. B. Biol. Sci.  266, 1402–1411 (1999).
[Crossref]

Lezec, H. F.

T. W. Ebbesen, H. J. Ghaemi, H. F. Lezec, T. Thio, and P. A. Wolff, “Extraordinary Optical Transmission through Sub-Wavelength Hole Arrays,” Nature  391(6668), 667–669 (1998).
[Crossref]

Lezec, H. J.

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys.  2(4), 262–267 (2006).
[Crossref]

Li, L.

L. Li, “Multilayer modal method for diffraction gratings of arbitrary profile, depth, and permittivity,” J. Opt. Soc. Am. A 10(12), 2581–2591 (1993).
[Crossref]

Liu, H.

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature  452(7188), 728–731 (2008).
[Crossref]

Liz-Marzán, L. M.

L. M. Liz-Marzán, “Nanometals: Formation and color,” Mater. Today  7, 26–31 (2004).
[Crossref]

Lochbihler, H.

H. Lochbihler, “Surface Polaritons on Metallic Wire Gratings studied via Power Losses,” Phys. Rev. B  53(15), 10289–10295 (1996).
[Crossref]

H. Lochbihler, “Surface Polaritons on Gold-Wire Gratings,” Phys. Rev. B  50(7), 4795–4801 (1994).
[Crossref]

H. Lochbihler, “Field Enhancement on Metallic Wire Gratings,” Opt. Commun. 111(5–6), 417–422 (1994).
[Crossref]

H. Lochbihler and P. Predehl“Characterization of x-ray transmission gratings,” Appl. Opt. 31(7), 964 (1992). H. Lochbihler and R. A. Depine, “Characterization of highly conducting wire gratings using an electromagnetic theory of diffraction,” Opt. Commun.100(1–4), 231–239 (1993).
[Crossref]

H. Lochbihler and P. Predehl“Characterization of x-ray transmission gratings,” Appl. Opt. 31(7), 964 (1992). H. Lochbihler and R. A. Depine, “Characterization of highly conducting wire gratings using an electromagnetic theory of diffraction,” Opt. Commun.100(1–4), 231–239 (1993).
[Crossref]

Mills, D. L.

H. RätherSurface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer Verlag, Berlin, 1988); V. M. Agranovich and D. L. Mills, Surface Polaritons (North Holland, Amsterdam, 1982).

Murray, W. A.

W. A. Murray and W. L. Barnes, “Plasmonic Materials,” Adv. Mater.  19(22), 3771–3782 (2007).
[Crossref]

O’Dwyer, C.

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys.  2(4), 262–267 (2006).
[Crossref]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science  311(5758), 189–193 (2006).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids Part II (Academic, New York, 1985).

Pendry, J. B.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett.  83(14), 2845–2848 (1999).
[Crossref]

Porto, J. A.

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett.  83(14), 2845–2848 (1999).
[Crossref]

Predehl, P.

H. Lochbihler and P. Predehl“Characterization of x-ray transmission gratings,” Appl. Opt. 31(7), 964 (1992). H. Lochbihler and R. A. Depine, “Characterization of highly conducting wire gratings using an electromagnetic theory of diffraction,” Opt. Commun.100(1–4), 231–239 (1993).
[Crossref]

Räther, H.

H. RätherSurface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer Verlag, Berlin, 1988); V. M. Agranovich and D. L. Mills, Surface Polaritons (North Holland, Amsterdam, 1982).

Sambles, J. R.

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. Lond. B. Biol. Sci.  266, 1402–1411 (1999).
[Crossref]

Skauli, T.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics  2(3), 161–164 (2008).
[Crossref]

Tayeb, G.

B. Gralak, G. Tayeb, and S. Enoch, “Morpho butterflies wings color modeled with lamellar grating theory,” Opt. Express 9(11), 567–578 (2001).
[Crossref]

Thio, T.

T. W. Ebbesen, H. J. Ghaemi, H. F. Lezec, T. Thio, and P. A. Wolff, “Extraordinary Optical Transmission through Sub-Wavelength Hole Arrays,” Nature  391(6668), 667–669 (1998).
[Crossref]

Turunen, J.

J. Turunen and F. Wyrowski, Diffractive Optics for Industrial and Commercial Applications (Akademie Verlag, Berlin, 1997).

van Hulst, N. F.

N. F. van Hulst, “Plasmonics: Sorting colors,” Nat. Photonics  2(3), 139–140 (2008).
[Crossref]

Viaris de Lesegno, B.

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys.  2(4), 262–267 (2006).
[Crossref]

Visser, T. D.

T. D. Visser, “Plasmonics: Surface plasmons at work?” Nat. Phys.  2(8), 509–510 (2006).
[Crossref]

Vukusic, P.

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. Lond. B. Biol. Sci.  266, 1402–1411 (1999).
[Crossref]

Weiner, J.

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys.  2(4), 262–267 (2006).
[Crossref]

Wolff, P. A.

T. W. Ebbesen, H. J. Ghaemi, H. F. Lezec, T. Thio, and P. A. Wolff, “Extraordinary Optical Transmission through Sub-Wavelength Hole Arrays,” Nature  391(6668), 667–669 (1998).
[Crossref]

Wootton, R. J.

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. Lond. B. Biol. Sci.  266, 1402–1411 (1999).
[Crossref]

Wyrowski, F.

J. Turunen and F. Wyrowski, Diffractive Optics for Industrial and Commercial Applications (Akademie Verlag, Berlin, 1997).

Yoshioka, S.

S. Kinoshita and S. Yoshioka, “Structural colors in nature: the role of regularity and irregularity in the structure,” Chem. Phys.  6, 1–19 (2005).

Adv. Mater. (3)

L. J. Guo, “Nanoimprint Lithography: Methods and Material Requirements,” Adv. Mater.  19(4), 495–513 (2007).
[Crossref]

S. H. Ahn and L. J. Guo, “High speed Roll-to-Roll Nanoimprint Lithography on Flexible Plastic Substrates,” Adv. Mater.  20(11), 2044–2049 (2008).
[Crossref]

W. A. Murray and W. L. Barnes, “Plasmonic Materials,” Adv. Mater.  19(22), 3771–3782 (2007).
[Crossref]

Chem. Phys. (1)

S. Kinoshita and S. Yoshioka, “Structural colors in nature: the role of regularity and irregularity in the structure,” Chem. Phys.  6, 1–19 (2005).

J. Opt. Soc. Am. A (1)

L. Li, “Multilayer modal method for diffraction gratings of arbitrary profile, depth, and permittivity,” J. Opt. Soc. Am. A 10(12), 2581–2591 (1993).
[Crossref]

Mater. Today (1)

L. M. Liz-Marzán, “Nanometals: Formation and color,” Mater. Today  7, 26–31 (2004).
[Crossref]

Nat. Photonics (2)

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics  2(3), 161–164 (2008).
[Crossref]

N. F. van Hulst, “Plasmonics: Sorting colors,” Nat. Photonics  2(3), 139–140 (2008).
[Crossref]

Nat. Phys. (2)

T. D. Visser, “Plasmonics: Surface plasmons at work?” Nat. Phys.  2(8), 509–510 (2006).
[Crossref]

G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H. J. Lezec, “The optical response of nanostructured surfaces and the composite diffracted evanescent wave model,” Nat. Phys.  2(4), 262–267 (2006).
[Crossref]

Nature (4)

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature  452(7188), 728–731 (2008).
[Crossref]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref]

T. W. Ebbesen, H. J. Ghaemi, H. F. Lezec, T. Thio, and P. A. Wolff, “Extraordinary Optical Transmission through Sub-Wavelength Hole Arrays,” Nature  391(6668), 667–669 (1998).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature  424(6950), 824–830 (2003).
[Crossref]

Opt. Commun. (1)

H. Lochbihler, “Field Enhancement on Metallic Wire Gratings,” Opt. Commun. 111(5–6), 417–422 (1994).
[Crossref]

Opt. Express (1)

B. Gralak, G. Tayeb, and S. Enoch, “Morpho butterflies wings color modeled with lamellar grating theory,” Opt. Express 9(11), 567–578 (2001).
[Crossref]

Phys. Rev. B (2)

H. Lochbihler, “Surface Polaritons on Gold-Wire Gratings,” Phys. Rev. B  50(7), 4795–4801 (1994).
[Crossref]

H. Lochbihler, “Surface Polaritons on Metallic Wire Gratings studied via Power Losses,” Phys. Rev. B  53(15), 10289–10295 (1996).
[Crossref]

Phys. Rev. Lett. (1)

J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett.  83(14), 2845–2848 (1999).
[Crossref]

Proc. R. Soc. Lond. B. Biol. Sci. (1)

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. R. Soc. Lond. B. Biol. Sci.  266, 1402–1411 (1999).
[Crossref]

Science (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science  311(5758), 189–193 (2006).
[Crossref]

Other (6)

E. D. Palik, Handbook of Optical Constants of Solids Part II (Academic, New York, 1985).

H. Lochbihler and P. Predehl“Characterization of x-ray transmission gratings,” Appl. Opt. 31(7), 964 (1992). H. Lochbihler and R. A. Depine, “Characterization of highly conducting wire gratings using an electromagnetic theory of diffraction,” Opt. Commun.100(1–4), 231–239 (1993).
[Crossref]

J. Turunen and F. Wyrowski, Diffractive Optics for Industrial and Commercial Applications (Akademie Verlag, Berlin, 1997).

H. RätherSurface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer Verlag, Berlin, 1988); V. M. Agranovich and D. L. Mills, Surface Polaritons (North Holland, Amsterdam, 1982).

G. A. Klein, Farbenphysik für industrielle Anwendungen (Springer-Verlag, Berlin, 2004).
[Crossref]

http://en.wikipedia.org/wiki/Portrait_of_Dr._Gachet

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Wire grating with “Z” shaped metallic wire profile with period d=330 nm, film thickness t=60 nm, and width b=130 nm evaporated by an angle Q=20° and embedded in a dielectric. (a) Sketch of the wire profile for the modulation depths h1=100 nm and h2=250 nm, respectively. Light diffraction is illustrated by black arrows. The hollow arrows indicate the evaporation process. (b) Electron-micrograph of an embedded aluminium wire grating manufactured by tilted evaporation having a modulation depth h=280 nm.

Fig. 2.
Fig. 2.

Calculated transmittance and power losses as a function of wavelength for (a) TM polarization and various modulation depths h at normal incidence, (b) TM polarization and various angles of incidence Θ0, (c) TE polarization and various modulation depths h at normal incidence, and (d) TE polarization and various angles of incidence Θ0.

Fig. 3.
Fig. 3.

(a) Transmitted colors of a grating with modulation depths from 70 nm up to 250 nm plotted as a trajectory (red line) into the CIE-1931 chromaticity diagram. (b) Master image and (c) and calculated coloring in transmittance of a grating with laterally variable modulation. The distribution of color pixels of the master image is shown as black points in the chromaticity diagram.

Fig. 4.
Fig. 4.

Light transmission of a manufactured grating replica embedded in a plastic foil with laterally variable modulation depth according to the design from Fig. 3(c). The size of this sample is 20.8 mm×25.0 mm.

Fig. 5.
Fig. 5.

Transmission of grating replica from Fig. 4 illuminated by polarized incident light: (a) TM-polarization, (b) TE-polarization, and (c) polarization conversion effect, when the grating lies between two crossed polarizers.

Metrics