R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).

[Crossref]

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).

[Crossref]

M. G. Silveirinha and N. Engheta, “Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media,” Phys. Rev. B 75(7), 075119 (2007).

[Crossref]

M. G. Silveirinha and N. Engheta, “Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ε near-zero metamaterials,” Phys. Rev. B 76(24), 245109 (2007).

[Crossref]

Q. Cheng, R. Liu, D. Huang, T. J. Cui, and D. R. Smith, “Circuit verification of tunneling effect in zero permittivity medium,” Appl. Phys. Lett. 91(23), 234105 (2007).

[Crossref]

M. G. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).

[Crossref]

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 3 Pt 2B), 036617 (2005).

[Crossref]

M. G. Silveirinha and C. A. Fernandes, “Homogenization of 3-D-connected and nonconnected wire metamaterials,” IEEE Trans. Microw. Theory Tech. 53(4), 1418–1430 (2005).

[Crossref]

R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(4), 046608 (2004).

[Crossref]

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).

[Crossref]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low Frequency Plasmons in Thin Wire Structures,” J. Phys. Condens. Matter 10(22), 4785–4809 (1998).

[Crossref]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely Low Frequency Plasmons in Metallic Mesostructures,” Phys. Rev. Lett. 76(25), 4773 (1996).

[Crossref]

J. Hupert, “Evanescent Mode Guide Filter and Tunnel-Effect Analogy,” IEEE Trans. Circ. Syst. 15, 279–280 (1968).

G. Craven, “Waveguide bandpass filters using evanescent modes,” Electron. Lett. 2(7), 251–252 (1966).

[Crossref]

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).

[Crossref]

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).

[Crossref]

Q. Cheng, R. Liu, D. Huang, T. J. Cui, and D. R. Smith, “Circuit verification of tunneling effect in zero permittivity medium,” Appl. Phys. Lett. 91(23), 234105 (2007).

[Crossref]

G. Craven, “Waveguide bandpass filters using evanescent modes,” Electron. Lett. 2(7), 251–252 (1966).

[Crossref]

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).

[Crossref]

Q. Cheng, R. Liu, D. Huang, T. J. Cui, and D. R. Smith, “Circuit verification of tunneling effect in zero permittivity medium,” Appl. Phys. Lett. 91(23), 234105 (2007).

[Crossref]

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).

[Crossref]

M. David and Pozar, “transmission lines and waveguides,” in Microwave Engineering (John Wiley & Sons, New York, 2004).

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).

[Crossref]

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).

[Crossref]

M. G. Silveirinha and N. Engheta, “Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ε near-zero metamaterials,” Phys. Rev. B 76(24), 245109 (2007).

[Crossref]

M. G. Silveirinha and N. Engheta, “Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media,” Phys. Rev. B 75(7), 075119 (2007).

[Crossref]

M. G. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).

[Crossref]

M. G. Silveirinha and C. A. Fernandes, “Homogenization of 3-D-connected and nonconnected wire metamaterials,” IEEE Trans. Microw. Theory Tech. 53(4), 1418–1430 (2005).

[Crossref]

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).

[Crossref]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low Frequency Plasmons in Thin Wire Structures,” J. Phys. Condens. Matter 10(22), 4785–4809 (1998).

[Crossref]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely Low Frequency Plasmons in Metallic Mesostructures,” Phys. Rev. Lett. 76(25), 4773 (1996).

[Crossref]

Q. Cheng, R. Liu, D. Huang, T. J. Cui, and D. R. Smith, “Circuit verification of tunneling effect in zero permittivity medium,” Appl. Phys. Lett. 91(23), 234105 (2007).

[Crossref]

J. Hupert, “Evanescent Mode Guide Filter and Tunnel-Effect Analogy,” IEEE Trans. Circ. Syst. 15, 279–280 (1968).

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 3 Pt 2B), 036617 (2005).

[Crossref]

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).

[Crossref]

Q. Cheng, R. Liu, D. Huang, T. J. Cui, and D. R. Smith, “Circuit verification of tunneling effect in zero permittivity medium,” Appl. Phys. Lett. 91(23), 234105 (2007).

[Crossref]

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).

[Crossref]

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).

[Crossref]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low Frequency Plasmons in Thin Wire Structures,” J. Phys. Condens. Matter 10(22), 4785–4809 (1998).

[Crossref]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely Low Frequency Plasmons in Metallic Mesostructures,” Phys. Rev. Lett. 76(25), 4773 (1996).

[Crossref]

M. David and Pozar, “transmission lines and waveguides,” in Microwave Engineering (John Wiley & Sons, New York, 2004).

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low Frequency Plasmons in Thin Wire Structures,” J. Phys. Condens. Matter 10(22), 4785–4809 (1998).

[Crossref]

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).

[Crossref]

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).

[Crossref]

M. G. Silveirinha and N. Engheta, “Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ε near-zero metamaterials,” Phys. Rev. B 76(24), 245109 (2007).

[Crossref]

M. G. Silveirinha and N. Engheta, “Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media,” Phys. Rev. B 75(7), 075119 (2007).

[Crossref]

M. G. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).

[Crossref]

M. G. Silveirinha and C. A. Fernandes, “Homogenization of 3-D-connected and nonconnected wire metamaterials,” IEEE Trans. Microw. Theory Tech. 53(4), 1418–1430 (2005).

[Crossref]

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).

[Crossref]

Q. Cheng, R. Liu, D. Huang, T. J. Cui, and D. R. Smith, “Circuit verification of tunneling effect in zero permittivity medium,” Appl. Phys. Lett. 91(23), 234105 (2007).

[Crossref]

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 3 Pt 2B), 036617 (2005).

[Crossref]

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).

[Crossref]

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 3 Pt 2B), 036617 (2005).

[Crossref]

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).

[Crossref]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low Frequency Plasmons in Thin Wire Structures,” J. Phys. Condens. Matter 10(22), 4785–4809 (1998).

[Crossref]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely Low Frequency Plasmons in Metallic Mesostructures,” Phys. Rev. Lett. 76(25), 4773 (1996).

[Crossref]

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 3 Pt 2B), 036617 (2005).

[Crossref]

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).

[Crossref]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely Low Frequency Plasmons in Metallic Mesostructures,” Phys. Rev. Lett. 76(25), 4773 (1996).

[Crossref]

R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(4), 046608 (2004).

[Crossref]

Q. Cheng, R. Liu, D. Huang, T. J. Cui, and D. R. Smith, “Circuit verification of tunneling effect in zero permittivity medium,” Appl. Phys. Lett. 91(23), 234105 (2007).

[Crossref]

G. Craven, “Waveguide bandpass filters using evanescent modes,” Electron. Lett. 2(7), 251–252 (1966).

[Crossref]

J. Hupert, “Evanescent Mode Guide Filter and Tunnel-Effect Analogy,” IEEE Trans. Circ. Syst. 15, 279–280 (1968).

M. G. Silveirinha and C. A. Fernandes, “Homogenization of 3-D-connected and nonconnected wire metamaterials,” IEEE Trans. Microw. Theory Tech. 53(4), 1418–1430 (2005).

[Crossref]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Low Frequency Plasmons in Thin Wire Structures,” J. Phys. Condens. Matter 10(22), 4785–4809 (1998).

[Crossref]

D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65(19), 195104 (2002).

[Crossref]

M. G. Silveirinha and N. Engheta, “Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media,” Phys. Rev. B 75(7), 075119 (2007).

[Crossref]

M. G. Silveirinha and N. Engheta, “Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ε near-zero metamaterials,” Phys. Rev. B 76(24), 245109 (2007).

[Crossref]

R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(4), 046608 (2004).

[Crossref]

D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3 3 Pt 2B), 036617 (2005).

[Crossref]

M. G. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).

[Crossref]

R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100(2), 023903 (2008).

[Crossref]

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).

[Crossref]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely Low Frequency Plasmons in Metallic Mesostructures,” Phys. Rev. Lett. 76(25), 4773 (1996).

[Crossref]

M. David and Pozar, “transmission lines and waveguides,” in Microwave Engineering (John Wiley & Sons, New York, 2004).