Abstract

We reported a dual-wavelength laser with a ceramic Nd:YAG as laser material and Cr:YAG as frequency selector and saturable absorber. Continuous-wave output power was achieved to be as high as 6.19 W at 1052 nm. With Cr:YAG, the laser has dual-wavelength at 1052 and 1064 nm. The shortest pulse width, maximum pulse energy and highest peak power were 4.8 ns, 103.2 µJ, and 21.5 kW. This pulsed laser is possible to be used as a new source to generate terahertz radiation.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. D. Pelusi, H. F. Liu, D. Novak, and Y. Ogawa, “THz optical beat frequency generation from a single mode locked semiconductor laser,” Appl. Phys. Lett. 71(4), 449–451 (1997).
    [CrossRef]
  2. G. Q. Xie, D. Y. Tang, H. Luo, H. J. Zhang, H. H. Yu, J. Y. Wang, X. T. Tao, M. H. Jiang, and L. J. Qian, “Dual-wavelength synchronously mode-locked Nd:CNGG laser,” Opt. Lett. 33(16), 1872–1874 (2008).
    [CrossRef]
  3. K. Miyamoto, H. Minamide, M. Fujiwara, H. Hashimoto, and H. Ito, “Widely tunable terahertz-wave generation using an N-benzyl-2-methyl-4-nitroaniline crystal,” Opt. Lett. 33(3), 252–254 (2008).
    [CrossRef]
  4. D. Creeden, J. C. McCarthy, P. A. Ketteridge, P. G. Schunemann, T. Southward, J. J. Komiak, and E. P. Chicklis, “Compact, high average power, fiber-pumped terahertz source for active real-time imaging of concealed objects,” Opt. Express 15(10), 6478–6483 (2007).
    [CrossRef]
  5. S. Singh, R. G. Smith, and L. G. Van Uitert, “Stimulated-emission cross section and fluorescent quantum efficiency of Nd3+ in yttrium aluminum garnet at loom temperature,” Phys. Rev. B 10(6), 2566–2572 (1974).
    [CrossRef]
  6. J. Marling, “1.05–1.44 µm Tunability and Performance of the CW Nd3+:YAG Laser,” IEEE J. Quantum Electron. 14, 56–62 (1978).
    [CrossRef]
  7. R. L. Coble, “Sintering crystalline solids. II. Experimental test of diffusion models in powder compacts,” J. Appl. Phys. 32(5), 793–799 (1961).
    [CrossRef]
  8. J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials,” J. Alloy. Comp. 341(1–2), 220–225 (2002).
    [CrossRef]
  9. R. M. Yamamoto, B. S. Bhachu, K. P. Cutter, S. N. Fochs, S. A. Letts, C. W. Parks, M. D. Rotter, and T. F. Soules, “The use of large transparent ceramics in a high powered, diode pumped solid state laser,” LLNL report 352959, (2007).
  10. J. Lu, J. Lu, T. Murai, K. Takaichi, T. Uematsu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “36-W diode-pumped continuous-wave 1319-nm Nd:YAG ceramic laser,” Opt. Lett. 27(13), 1120–1122 (2002).
    [CrossRef]
  11. S. G. P. Strohmaier, H. J. Eichler, J. F. Bisson, H. Yagi, K. Takaichi, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “Ceramic Nd:YAG laser at 946 nm,” Laser Phys. Lett. 2(8), 383–386 (2005).
    [CrossRef]
  12. J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31(11), 1890–1901 (1995).
    [CrossRef]
  13. X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
    [CrossRef]
  14. Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kikta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34(2), 292–299 (1998).
    [CrossRef]
  15. R. G. Smith, ““New room temperature CW laser transitions in YAlG:Nd,” IEEE,” Quantum Electron. 4(8), 505–506 (1968).
  16. H. Yu, H. Zhang, Z. Wang, J. Wang, Y. Yu, X. Zhang, R. Lan, and M. Jiang, “Dual-wavelength neodymium-doped yttrium aluminum garnet laser with chromium-doped yttrium aluminum garnet as frequency selector,” Appl. Phys. Lett. 94(4), 041126 (2009).
    [CrossRef]

2009 (1)

H. Yu, H. Zhang, Z. Wang, J. Wang, Y. Yu, X. Zhang, R. Lan, and M. Jiang, “Dual-wavelength neodymium-doped yttrium aluminum garnet laser with chromium-doped yttrium aluminum garnet as frequency selector,” Appl. Phys. Lett. 94(4), 041126 (2009).
[CrossRef]

2008 (2)

G. Q. Xie, D. Y. Tang, H. Luo, H. J. Zhang, H. H. Yu, J. Y. Wang, X. T. Tao, M. H. Jiang, and L. J. Qian, “Dual-wavelength synchronously mode-locked Nd:CNGG laser,” Opt. Lett. 33(16), 1872–1874 (2008).
[CrossRef]

K. Miyamoto, H. Minamide, M. Fujiwara, H. Hashimoto, and H. Ito, “Widely tunable terahertz-wave generation using an N-benzyl-2-methyl-4-nitroaniline crystal,” Opt. Lett. 33(3), 252–254 (2008).
[CrossRef]

2007 (1)

D. Creeden, J. C. McCarthy, P. A. Ketteridge, P. G. Schunemann, T. Southward, J. J. Komiak, and E. P. Chicklis, “Compact, high average power, fiber-pumped terahertz source for active real-time imaging of concealed objects,” Opt. Express 15(10), 6478–6483 (2007).
[CrossRef]

2005 (1)

S. G. P. Strohmaier, H. J. Eichler, J. F. Bisson, H. Yagi, K. Takaichi, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “Ceramic Nd:YAG laser at 946 nm,” Laser Phys. Lett. 2(8), 383–386 (2005).
[CrossRef]

2002 (2)

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials,” J. Alloy. Comp. 341(1–2), 220–225 (2002).
[CrossRef]

J. Lu, J. Lu, T. Murai, K. Takaichi, T. Uematsu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “36-W diode-pumped continuous-wave 1319-nm Nd:YAG ceramic laser,” Opt. Lett. 27(13), 1120–1122 (2002).
[CrossRef]

1998 (1)

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kikta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34(2), 292–299 (1998).
[CrossRef]

1997 (2)

M. D. Pelusi, H. F. Liu, D. Novak, and Y. Ogawa, “THz optical beat frequency generation from a single mode locked semiconductor laser,” Appl. Phys. Lett. 71(4), 449–451 (1997).
[CrossRef]

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[CrossRef]

1995 (1)

J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31(11), 1890–1901 (1995).
[CrossRef]

1978 (1)

J. Marling, “1.05–1.44 µm Tunability and Performance of the CW Nd3+:YAG Laser,” IEEE J. Quantum Electron. 14, 56–62 (1978).
[CrossRef]

1974 (1)

S. Singh, R. G. Smith, and L. G. Van Uitert, “Stimulated-emission cross section and fluorescent quantum efficiency of Nd3+ in yttrium aluminum garnet at loom temperature,” Phys. Rev. B 10(6), 2566–2572 (1974).
[CrossRef]

1968 (1)

R. G. Smith, ““New room temperature CW laser transitions in YAlG:Nd,” IEEE,” Quantum Electron. 4(8), 505–506 (1968).

1961 (1)

R. L. Coble, “Sintering crystalline solids. II. Experimental test of diffusion models in powder compacts,” J. Appl. Phys. 32(5), 793–799 (1961).
[CrossRef]

Akiyama, Y.

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials,” J. Alloy. Comp. 341(1–2), 220–225 (2002).
[CrossRef]

Bhachu, B. S.

R. M. Yamamoto, B. S. Bhachu, K. P. Cutter, S. N. Fochs, S. A. Letts, C. W. Parks, M. D. Rotter, and T. F. Soules, “The use of large transparent ceramics in a high powered, diode pumped solid state laser,” LLNL report 352959, (2007).

Bisson, J. F.

S. G. P. Strohmaier, H. J. Eichler, J. F. Bisson, H. Yagi, K. Takaichi, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “Ceramic Nd:YAG laser at 946 nm,” Laser Phys. Lett. 2(8), 383–386 (2005).
[CrossRef]

Blau, P.

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kikta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34(2), 292–299 (1998).
[CrossRef]

Burshtein, Z.

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kikta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34(2), 292–299 (1998).
[CrossRef]

Chicklis, E. P.

D. Creeden, J. C. McCarthy, P. A. Ketteridge, P. G. Schunemann, T. Southward, J. J. Komiak, and E. P. Chicklis, “Compact, high average power, fiber-pumped terahertz source for active real-time imaging of concealed objects,” Opt. Express 15(10), 6478–6483 (2007).
[CrossRef]

Coble, R. L.

R. L. Coble, “Sintering crystalline solids. II. Experimental test of diffusion models in powder compacts,” J. Appl. Phys. 32(5), 793–799 (1961).
[CrossRef]

Creeden, D.

D. Creeden, J. C. McCarthy, P. A. Ketteridge, P. G. Schunemann, T. Southward, J. J. Komiak, and E. P. Chicklis, “Compact, high average power, fiber-pumped terahertz source for active real-time imaging of concealed objects,” Opt. Express 15(10), 6478–6483 (2007).
[CrossRef]

Cutter, K. P.

R. M. Yamamoto, B. S. Bhachu, K. P. Cutter, S. N. Fochs, S. A. Letts, C. W. Parks, M. D. Rotter, and T. F. Soules, “The use of large transparent ceramics in a high powered, diode pumped solid state laser,” LLNL report 352959, (2007).

Degnan, J. J.

J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31(11), 1890–1901 (1995).
[CrossRef]

Eichler, H. J.

S. G. P. Strohmaier, H. J. Eichler, J. F. Bisson, H. Yagi, K. Takaichi, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “Ceramic Nd:YAG laser at 946 nm,” Laser Phys. Lett. 2(8), 383–386 (2005).
[CrossRef]

Fochs, S. N.

R. M. Yamamoto, B. S. Bhachu, K. P. Cutter, S. N. Fochs, S. A. Letts, C. W. Parks, M. D. Rotter, and T. F. Soules, “The use of large transparent ceramics in a high powered, diode pumped solid state laser,” LLNL report 352959, (2007).

Fujiwara, M.

K. Miyamoto, H. Minamide, M. Fujiwara, H. Hashimoto, and H. Ito, “Widely tunable terahertz-wave generation using an N-benzyl-2-methyl-4-nitroaniline crystal,” Opt. Lett. 33(3), 252–254 (2008).
[CrossRef]

Hashimoto, H.

K. Miyamoto, H. Minamide, M. Fujiwara, H. Hashimoto, and H. Ito, “Widely tunable terahertz-wave generation using an N-benzyl-2-methyl-4-nitroaniline crystal,” Opt. Lett. 33(3), 252–254 (2008).
[CrossRef]

Ito, H.

K. Miyamoto, H. Minamide, M. Fujiwara, H. Hashimoto, and H. Ito, “Widely tunable terahertz-wave generation using an N-benzyl-2-methyl-4-nitroaniline crystal,” Opt. Lett. 33(3), 252–254 (2008).
[CrossRef]

Jiang, M.

H. Yu, H. Zhang, Z. Wang, J. Wang, Y. Yu, X. Zhang, R. Lan, and M. Jiang, “Dual-wavelength neodymium-doped yttrium aluminum garnet laser with chromium-doped yttrium aluminum garnet as frequency selector,” Appl. Phys. Lett. 94(4), 041126 (2009).
[CrossRef]

Jiang, M. H.

G. Q. Xie, D. Y. Tang, H. Luo, H. J. Zhang, H. H. Yu, J. Y. Wang, X. T. Tao, M. H. Jiang, and L. J. Qian, “Dual-wavelength synchronously mode-locked Nd:CNGG laser,” Opt. Lett. 33(16), 1872–1874 (2008).
[CrossRef]

Kalisky, Y.

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kikta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34(2), 292–299 (1998).
[CrossRef]

Kaminskii, A. A.

S. G. P. Strohmaier, H. J. Eichler, J. F. Bisson, H. Yagi, K. Takaichi, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “Ceramic Nd:YAG laser at 946 nm,” Laser Phys. Lett. 2(8), 383–386 (2005).
[CrossRef]

J. Lu, J. Lu, T. Murai, K. Takaichi, T. Uematsu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “36-W diode-pumped continuous-wave 1319-nm Nd:YAG ceramic laser,” Opt. Lett. 27(13), 1120–1122 (2002).
[CrossRef]

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials,” J. Alloy. Comp. 341(1–2), 220–225 (2002).
[CrossRef]

Ketteridge, P. A.

D. Creeden, J. C. McCarthy, P. A. Ketteridge, P. G. Schunemann, T. Southward, J. J. Komiak, and E. P. Chicklis, “Compact, high average power, fiber-pumped terahertz source for active real-time imaging of concealed objects,” Opt. Express 15(10), 6478–6483 (2007).
[CrossRef]

Kikta, M. R.

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kikta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34(2), 292–299 (1998).
[CrossRef]

Komiak, J. J.

D. Creeden, J. C. McCarthy, P. A. Ketteridge, P. G. Schunemann, T. Southward, J. J. Komiak, and E. P. Chicklis, “Compact, high average power, fiber-pumped terahertz source for active real-time imaging of concealed objects,” Opt. Express 15(10), 6478–6483 (2007).
[CrossRef]

Lan, R.

H. Yu, H. Zhang, Z. Wang, J. Wang, Y. Yu, X. Zhang, R. Lan, and M. Jiang, “Dual-wavelength neodymium-doped yttrium aluminum garnet laser with chromium-doped yttrium aluminum garnet as frequency selector,” Appl. Phys. Lett. 94(4), 041126 (2009).
[CrossRef]

Letts, S. A.

R. M. Yamamoto, B. S. Bhachu, K. P. Cutter, S. N. Fochs, S. A. Letts, C. W. Parks, M. D. Rotter, and T. F. Soules, “The use of large transparent ceramics in a high powered, diode pumped solid state laser,” LLNL report 352959, (2007).

Liu, H. F.

M. D. Pelusi, H. F. Liu, D. Novak, and Y. Ogawa, “THz optical beat frequency generation from a single mode locked semiconductor laser,” Appl. Phys. Lett. 71(4), 449–451 (1997).
[CrossRef]

Lu, J.

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials,” J. Alloy. Comp. 341(1–2), 220–225 (2002).
[CrossRef]

J. Lu, J. Lu, T. Murai, K. Takaichi, T. Uematsu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “36-W diode-pumped continuous-wave 1319-nm Nd:YAG ceramic laser,” Opt. Lett. 27(13), 1120–1122 (2002).
[CrossRef]

J. Lu, J. Lu, T. Murai, K. Takaichi, T. Uematsu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “36-W diode-pumped continuous-wave 1319-nm Nd:YAG ceramic laser,” Opt. Lett. 27(13), 1120–1122 (2002).
[CrossRef]

Luo, H.

G. Q. Xie, D. Y. Tang, H. Luo, H. J. Zhang, H. H. Yu, J. Y. Wang, X. T. Tao, M. H. Jiang, and L. J. Qian, “Dual-wavelength synchronously mode-locked Nd:CNGG laser,” Opt. Lett. 33(16), 1872–1874 (2008).
[CrossRef]

Marling, J.

J. Marling, “1.05–1.44 µm Tunability and Performance of the CW Nd3+:YAG Laser,” IEEE J. Quantum Electron. 14, 56–62 (1978).
[CrossRef]

McCarthy, J. C.

D. Creeden, J. C. McCarthy, P. A. Ketteridge, P. G. Schunemann, T. Southward, J. J. Komiak, and E. P. Chicklis, “Compact, high average power, fiber-pumped terahertz source for active real-time imaging of concealed objects,” Opt. Express 15(10), 6478–6483 (2007).
[CrossRef]

Minamide, H.

K. Miyamoto, H. Minamide, M. Fujiwara, H. Hashimoto, and H. Ito, “Widely tunable terahertz-wave generation using an N-benzyl-2-methyl-4-nitroaniline crystal,” Opt. Lett. 33(3), 252–254 (2008).
[CrossRef]

Miyamoto, K.

K. Miyamoto, H. Minamide, M. Fujiwara, H. Hashimoto, and H. Ito, “Widely tunable terahertz-wave generation using an N-benzyl-2-methyl-4-nitroaniline crystal,” Opt. Lett. 33(3), 252–254 (2008).
[CrossRef]

Murai, T.

J. Lu, J. Lu, T. Murai, K. Takaichi, T. Uematsu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “36-W diode-pumped continuous-wave 1319-nm Nd:YAG ceramic laser,” Opt. Lett. 27(13), 1120–1122 (2002).
[CrossRef]

Novak, D.

M. D. Pelusi, H. F. Liu, D. Novak, and Y. Ogawa, “THz optical beat frequency generation from a single mode locked semiconductor laser,” Appl. Phys. Lett. 71(4), 449–451 (1997).
[CrossRef]

Ogawa, Y.

M. D. Pelusi, H. F. Liu, D. Novak, and Y. Ogawa, “THz optical beat frequency generation from a single mode locked semiconductor laser,” Appl. Phys. Lett. 71(4), 449–451 (1997).
[CrossRef]

Parks, C. W.

R. M. Yamamoto, B. S. Bhachu, K. P. Cutter, S. N. Fochs, S. A. Letts, C. W. Parks, M. D. Rotter, and T. F. Soules, “The use of large transparent ceramics in a high powered, diode pumped solid state laser,” LLNL report 352959, (2007).

Pelusi, M. D.

M. D. Pelusi, H. F. Liu, D. Novak, and Y. Ogawa, “THz optical beat frequency generation from a single mode locked semiconductor laser,” Appl. Phys. Lett. 71(4), 449–451 (1997).
[CrossRef]

Qian, L. J.

G. Q. Xie, D. Y. Tang, H. Luo, H. J. Zhang, H. H. Yu, J. Y. Wang, X. T. Tao, M. H. Jiang, and L. J. Qian, “Dual-wavelength synchronously mode-locked Nd:CNGG laser,” Opt. Lett. 33(16), 1872–1874 (2008).
[CrossRef]

Rotter, M. D.

R. M. Yamamoto, B. S. Bhachu, K. P. Cutter, S. N. Fochs, S. A. Letts, C. W. Parks, M. D. Rotter, and T. F. Soules, “The use of large transparent ceramics in a high powered, diode pumped solid state laser,” LLNL report 352959, (2007).

Schunemann, P. G.

D. Creeden, J. C. McCarthy, P. A. Ketteridge, P. G. Schunemann, T. Southward, J. J. Komiak, and E. P. Chicklis, “Compact, high average power, fiber-pumped terahertz source for active real-time imaging of concealed objects,” Opt. Express 15(10), 6478–6483 (2007).
[CrossRef]

Shimony, Y.

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kikta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34(2), 292–299 (1998).
[CrossRef]

Singh, S.

S. Singh, R. G. Smith, and L. G. Van Uitert, “Stimulated-emission cross section and fluorescent quantum efficiency of Nd3+ in yttrium aluminum garnet at loom temperature,” Phys. Rev. B 10(6), 2566–2572 (1974).
[CrossRef]

Smith, R. G.

S. Singh, R. G. Smith, and L. G. Van Uitert, “Stimulated-emission cross section and fluorescent quantum efficiency of Nd3+ in yttrium aluminum garnet at loom temperature,” Phys. Rev. B 10(6), 2566–2572 (1974).
[CrossRef]

R. G. Smith, ““New room temperature CW laser transitions in YAlG:Nd,” IEEE,” Quantum Electron. 4(8), 505–506 (1968).

Soules, T. F.

R. M. Yamamoto, B. S. Bhachu, K. P. Cutter, S. N. Fochs, S. A. Letts, C. W. Parks, M. D. Rotter, and T. F. Soules, “The use of large transparent ceramics in a high powered, diode pumped solid state laser,” LLNL report 352959, (2007).

Southward, T.

D. Creeden, J. C. McCarthy, P. A. Ketteridge, P. G. Schunemann, T. Southward, J. J. Komiak, and E. P. Chicklis, “Compact, high average power, fiber-pumped terahertz source for active real-time imaging of concealed objects,” Opt. Express 15(10), 6478–6483 (2007).
[CrossRef]

Strohmaier, S. G. P.

S. G. P. Strohmaier, H. J. Eichler, J. F. Bisson, H. Yagi, K. Takaichi, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “Ceramic Nd:YAG laser at 946 nm,” Laser Phys. Lett. 2(8), 383–386 (2005).
[CrossRef]

Sun, L.

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[CrossRef]

Takaichi, K.

S. G. P. Strohmaier, H. J. Eichler, J. F. Bisson, H. Yagi, K. Takaichi, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “Ceramic Nd:YAG laser at 946 nm,” Laser Phys. Lett. 2(8), 383–386 (2005).
[CrossRef]

J. Lu, J. Lu, T. Murai, K. Takaichi, T. Uematsu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “36-W diode-pumped continuous-wave 1319-nm Nd:YAG ceramic laser,” Opt. Lett. 27(13), 1120–1122 (2002).
[CrossRef]

Tang, D. Y.

G. Q. Xie, D. Y. Tang, H. Luo, H. J. Zhang, H. H. Yu, J. Y. Wang, X. T. Tao, M. H. Jiang, and L. J. Qian, “Dual-wavelength synchronously mode-locked Nd:CNGG laser,” Opt. Lett. 33(16), 1872–1874 (2008).
[CrossRef]

Tao, X. T.

G. Q. Xie, D. Y. Tang, H. Luo, H. J. Zhang, H. H. Yu, J. Y. Wang, X. T. Tao, M. H. Jiang, and L. J. Qian, “Dual-wavelength synchronously mode-locked Nd:CNGG laser,” Opt. Lett. 33(16), 1872–1874 (2008).
[CrossRef]

Ueda, K.

S. G. P. Strohmaier, H. J. Eichler, J. F. Bisson, H. Yagi, K. Takaichi, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “Ceramic Nd:YAG laser at 946 nm,” Laser Phys. Lett. 2(8), 383–386 (2005).
[CrossRef]

J. Lu, J. Lu, T. Murai, K. Takaichi, T. Uematsu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “36-W diode-pumped continuous-wave 1319-nm Nd:YAG ceramic laser,” Opt. Lett. 27(13), 1120–1122 (2002).
[CrossRef]

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials,” J. Alloy. Comp. 341(1–2), 220–225 (2002).
[CrossRef]

Uematsu, T.

J. Lu, J. Lu, T. Murai, K. Takaichi, T. Uematsu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “36-W diode-pumped continuous-wave 1319-nm Nd:YAG ceramic laser,” Opt. Lett. 27(13), 1120–1122 (2002).
[CrossRef]

Van Uitert, L. G.

S. Singh, R. G. Smith, and L. G. Van Uitert, “Stimulated-emission cross section and fluorescent quantum efficiency of Nd3+ in yttrium aluminum garnet at loom temperature,” Phys. Rev. B 10(6), 2566–2572 (1974).
[CrossRef]

Wang, J.

H. Yu, H. Zhang, Z. Wang, J. Wang, Y. Yu, X. Zhang, R. Lan, and M. Jiang, “Dual-wavelength neodymium-doped yttrium aluminum garnet laser with chromium-doped yttrium aluminum garnet as frequency selector,” Appl. Phys. Lett. 94(4), 041126 (2009).
[CrossRef]

Wang, J. Y.

G. Q. Xie, D. Y. Tang, H. Luo, H. J. Zhang, H. H. Yu, J. Y. Wang, X. T. Tao, M. H. Jiang, and L. J. Qian, “Dual-wavelength synchronously mode-locked Nd:CNGG laser,” Opt. Lett. 33(16), 1872–1874 (2008).
[CrossRef]

Wang, Q.

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[CrossRef]

Wang, Z.

H. Yu, H. Zhang, Z. Wang, J. Wang, Y. Yu, X. Zhang, R. Lan, and M. Jiang, “Dual-wavelength neodymium-doped yttrium aluminum garnet laser with chromium-doped yttrium aluminum garnet as frequency selector,” Appl. Phys. Lett. 94(4), 041126 (2009).
[CrossRef]

Xie, G. Q.

G. Q. Xie, D. Y. Tang, H. Luo, H. J. Zhang, H. H. Yu, J. Y. Wang, X. T. Tao, M. H. Jiang, and L. J. Qian, “Dual-wavelength synchronously mode-locked Nd:CNGG laser,” Opt. Lett. 33(16), 1872–1874 (2008).
[CrossRef]

Xu, J.

J. Lu, J. Lu, T. Murai, K. Takaichi, T. Uematsu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “36-W diode-pumped continuous-wave 1319-nm Nd:YAG ceramic laser,” Opt. Lett. 27(13), 1120–1122 (2002).
[CrossRef]

Yagi, H.

S. G. P. Strohmaier, H. J. Eichler, J. F. Bisson, H. Yagi, K. Takaichi, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “Ceramic Nd:YAG laser at 946 nm,” Laser Phys. Lett. 2(8), 383–386 (2005).
[CrossRef]

J. Lu, J. Lu, T. Murai, K. Takaichi, T. Uematsu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “36-W diode-pumped continuous-wave 1319-nm Nd:YAG ceramic laser,” Opt. Lett. 27(13), 1120–1122 (2002).
[CrossRef]

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials,” J. Alloy. Comp. 341(1–2), 220–225 (2002).
[CrossRef]

Yamamoto, R. M.

R. M. Yamamoto, B. S. Bhachu, K. P. Cutter, S. N. Fochs, S. A. Letts, C. W. Parks, M. D. Rotter, and T. F. Soules, “The use of large transparent ceramics in a high powered, diode pumped solid state laser,” LLNL report 352959, (2007).

Yanagitani, T.

S. G. P. Strohmaier, H. J. Eichler, J. F. Bisson, H. Yagi, K. Takaichi, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “Ceramic Nd:YAG laser at 946 nm,” Laser Phys. Lett. 2(8), 383–386 (2005).
[CrossRef]

J. Lu, J. Lu, T. Murai, K. Takaichi, T. Uematsu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “36-W diode-pumped continuous-wave 1319-nm Nd:YAG ceramic laser,” Opt. Lett. 27(13), 1120–1122 (2002).
[CrossRef]

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials,” J. Alloy. Comp. 341(1–2), 220–225 (2002).
[CrossRef]

Yu, H.

H. Yu, H. Zhang, Z. Wang, J. Wang, Y. Yu, X. Zhang, R. Lan, and M. Jiang, “Dual-wavelength neodymium-doped yttrium aluminum garnet laser with chromium-doped yttrium aluminum garnet as frequency selector,” Appl. Phys. Lett. 94(4), 041126 (2009).
[CrossRef]

Yu, H. H.

G. Q. Xie, D. Y. Tang, H. Luo, H. J. Zhang, H. H. Yu, J. Y. Wang, X. T. Tao, M. H. Jiang, and L. J. Qian, “Dual-wavelength synchronously mode-locked Nd:CNGG laser,” Opt. Lett. 33(16), 1872–1874 (2008).
[CrossRef]

Yu, Y.

H. Yu, H. Zhang, Z. Wang, J. Wang, Y. Yu, X. Zhang, R. Lan, and M. Jiang, “Dual-wavelength neodymium-doped yttrium aluminum garnet laser with chromium-doped yttrium aluminum garnet as frequency selector,” Appl. Phys. Lett. 94(4), 041126 (2009).
[CrossRef]

Zhang, H.

H. Yu, H. Zhang, Z. Wang, J. Wang, Y. Yu, X. Zhang, R. Lan, and M. Jiang, “Dual-wavelength neodymium-doped yttrium aluminum garnet laser with chromium-doped yttrium aluminum garnet as frequency selector,” Appl. Phys. Lett. 94(4), 041126 (2009).
[CrossRef]

Zhang, H. J.

G. Q. Xie, D. Y. Tang, H. Luo, H. J. Zhang, H. H. Yu, J. Y. Wang, X. T. Tao, M. H. Jiang, and L. J. Qian, “Dual-wavelength synchronously mode-locked Nd:CNGG laser,” Opt. Lett. 33(16), 1872–1874 (2008).
[CrossRef]

Zhang, Q.

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[CrossRef]

Zhang, S.

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[CrossRef]

Zhang, X.

H. Yu, H. Zhang, Z. Wang, J. Wang, Y. Yu, X. Zhang, R. Lan, and M. Jiang, “Dual-wavelength neodymium-doped yttrium aluminum garnet laser with chromium-doped yttrium aluminum garnet as frequency selector,” Appl. Phys. Lett. 94(4), 041126 (2009).
[CrossRef]

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[CrossRef]

Zhao, S.

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[CrossRef]

Appl. Phys. Lett. (2)

M. D. Pelusi, H. F. Liu, D. Novak, and Y. Ogawa, “THz optical beat frequency generation from a single mode locked semiconductor laser,” Appl. Phys. Lett. 71(4), 449–451 (1997).
[CrossRef]

H. Yu, H. Zhang, Z. Wang, J. Wang, Y. Yu, X. Zhang, R. Lan, and M. Jiang, “Dual-wavelength neodymium-doped yttrium aluminum garnet laser with chromium-doped yttrium aluminum garnet as frequency selector,” Appl. Phys. Lett. 94(4), 041126 (2009).
[CrossRef]

IEEE J. Quantum Electron. (4)

J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31(11), 1890–1901 (1995).
[CrossRef]

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[CrossRef]

Z. Burshtein, P. Blau, Y. Kalisky, Y. Shimony, and M. R. Kikta, “Excited-state absorption studies of Cr4+ ions in several garnet host crystals,” IEEE J. Quantum Electron. 34(2), 292–299 (1998).
[CrossRef]

J. Marling, “1.05–1.44 µm Tunability and Performance of the CW Nd3+:YAG Laser,” IEEE J. Quantum Electron. 14, 56–62 (1978).
[CrossRef]

J. Alloy. Comp. (1)

J. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, and A. A. Kaminskii, “Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials,” J. Alloy. Comp. 341(1–2), 220–225 (2002).
[CrossRef]

J. Appl. Phys. (1)

R. L. Coble, “Sintering crystalline solids. II. Experimental test of diffusion models in powder compacts,” J. Appl. Phys. 32(5), 793–799 (1961).
[CrossRef]

Laser Phys. Lett. (1)

S. G. P. Strohmaier, H. J. Eichler, J. F. Bisson, H. Yagi, K. Takaichi, K. Ueda, T. Yanagitani, and A. A. Kaminskii, “Ceramic Nd:YAG laser at 946 nm,” Laser Phys. Lett. 2(8), 383–386 (2005).
[CrossRef]

Opt. Express (1)

D. Creeden, J. C. McCarthy, P. A. Ketteridge, P. G. Schunemann, T. Southward, J. J. Komiak, and E. P. Chicklis, “Compact, high average power, fiber-pumped terahertz source for active real-time imaging of concealed objects,” Opt. Express 15(10), 6478–6483 (2007).
[CrossRef]

Opt. Lett. (3)

G. Q. Xie, D. Y. Tang, H. Luo, H. J. Zhang, H. H. Yu, J. Y. Wang, X. T. Tao, M. H. Jiang, and L. J. Qian, “Dual-wavelength synchronously mode-locked Nd:CNGG laser,” Opt. Lett. 33(16), 1872–1874 (2008).
[CrossRef]

K. Miyamoto, H. Minamide, M. Fujiwara, H. Hashimoto, and H. Ito, “Widely tunable terahertz-wave generation using an N-benzyl-2-methyl-4-nitroaniline crystal,” Opt. Lett. 33(3), 252–254 (2008).
[CrossRef]

J. Lu, J. Lu, T. Murai, K. Takaichi, T. Uematsu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “36-W diode-pumped continuous-wave 1319-nm Nd:YAG ceramic laser,” Opt. Lett. 27(13), 1120–1122 (2002).
[CrossRef]

Phys. Rev. B (1)

S. Singh, R. G. Smith, and L. G. Van Uitert, “Stimulated-emission cross section and fluorescent quantum efficiency of Nd3+ in yttrium aluminum garnet at loom temperature,” Phys. Rev. B 10(6), 2566–2572 (1974).
[CrossRef]

Quantum Electron. (1)

R. G. Smith, ““New room temperature CW laser transitions in YAlG:Nd,” IEEE,” Quantum Electron. 4(8), 505–506 (1968).

Other (1)

R. M. Yamamoto, B. S. Bhachu, K. P. Cutter, S. N. Fochs, S. A. Letts, C. W. Parks, M. D. Rotter, and T. F. Soules, “The use of large transparent ceramics in a high powered, diode pumped solid state laser,” LLNL report 352959, (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup of the ceramic Nd:YAG laser

Fig. 2.
Fig. 2.

Output power with the increase of incident pump power

Fig. 3.
Fig. 3.

Spectrum of the cw laser at 6 W

Fig. 4.
Fig. 4.

Spectra of the passively Q-switched ceramic Nd:YAG laser

Fig. 5.
Fig. 5.

Pulse profile with the width of 4.8 ns

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ni=ln(1R)+ln(1T02)+L2σl
nr=ln(1R)+ln(1Ts2)+L2σ1064l

Metrics