Abstract

Several adaptive-optics techniques, based on the active modification of the optical properties of the laser cavity, were used to significantly reduce the time-to-full-brightness of solid-state lasers. Resonator re-configuration was achieved using a mechanical translation stage and both multi- and single-element deformable bimorph mirrors. Using these techniques the effects of thermally induced distortion in Nd:YLF and Nd:YAG lasers can be minimized and the warm-up time reduced by a factor of 3–6.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Moshe, S. Jackel, and R. Lallouz, “Working beyond the static limits of laser stability by use of adaptive and polarization-conjugation optics,” Appl. Opt. 37(27), 6415–6420 (1998).
    [CrossRef]
  2. J. W. Hardy, Adaptive Optics for Astronomical Telescope (Oxford University Press US, 1998), Chap. 6.6.
  3. A. V. Ikramov, I. M. Roshchupkin, and A. G. Safronov, “Cooled bimorph adaptive mirrors for laser optics,” Quantum Electron. 24(7), 613–617 (1994).
    [CrossRef]
  4. J. C. Dainty, A. V. Koryabin, and A. V. Kudryashov, “Low-order adaptive deformable mirror,” Appl. Opt. 37(21), 4663–4668 (1998).
    [CrossRef]
  5. T. Y. Cherezova, L. N. Kaptsov, and A. V. Kudryashov, “Cw industrial rod YAG:Nd3+ laser with an intracavity active bimorph mirror,” Appl. Opt. 35(15), 2554–2561 (1996).
    [CrossRef]
  6. BAE Systems Advanced Technology Centre, West Hanningfield rd, Great Baddow, Chelmsford CM2 8HN, UK.
  7. W. Lubeigt, G. Valentine, J. Girkin, E. Bente, and D. Burns, “Active transverse mode control and optimization of an all-solid-state laser using an intracavity adaptive-optic mirror,” Opt. Express 10(13), 550–555 (2002).
  8. W. Lubeigt, G. Valentine, and D. Burns, “Enhancement of laser performance using an intracavity deformable membrane mirror,” Opt. Express 16(15), 10943–10955 (2008).
    [CrossRef]
  9. B. V. Flexible Optical, PO Box 581, 2600 AN, Delft, the Netherlands, www.okotech.com
  10. W. Koechner, Solid-State Laser Engineering, 5th edition (Springer Series in Optical Sciences, New-York, 1999)
  11. Cutting Edge Optronics, Cutting Edge Optronics, 20 Point West Boulevard, St. Charles, MO 63301, USA, http://www.st.northropgrumman.com/ceolaser/ .
  12. L. A. S. C. A. D. Gmbh, Brimhildenstr. 9, 80639 Munich, Germany, http://www.las-cad.com/index.php .
  13. COMSOL Multiphysics, COMSOL Inc., 1 New England Executive Park, Suite 350, Burlington, MA 01803, USA.
  14. Winlase II, Future Laser Technologies, 5051 Alton Pkwy #102, Irvine, CA 92604, USA.
  15. MICOS VT-80, MICOS GmbH, Freiburger Str. 30, DE-79427 Eschbach, Germany.

2008 (1)

2002 (1)

1998 (2)

1996 (1)

1994 (1)

A. V. Ikramov, I. M. Roshchupkin, and A. G. Safronov, “Cooled bimorph adaptive mirrors for laser optics,” Quantum Electron. 24(7), 613–617 (1994).
[CrossRef]

Bente, E.

Burns, D.

Cherezova, T. Y.

Dainty, J. C.

Girkin, J.

Ikramov, A. V.

A. V. Ikramov, I. M. Roshchupkin, and A. G. Safronov, “Cooled bimorph adaptive mirrors for laser optics,” Quantum Electron. 24(7), 613–617 (1994).
[CrossRef]

Jackel, S.

Kaptsov, L. N.

Koryabin, A. V.

Kudryashov, A. V.

Lallouz, R.

Lubeigt, W.

Moshe, I.

Roshchupkin, I. M.

A. V. Ikramov, I. M. Roshchupkin, and A. G. Safronov, “Cooled bimorph adaptive mirrors for laser optics,” Quantum Electron. 24(7), 613–617 (1994).
[CrossRef]

Safronov, A. G.

A. V. Ikramov, I. M. Roshchupkin, and A. G. Safronov, “Cooled bimorph adaptive mirrors for laser optics,” Quantum Electron. 24(7), 613–617 (1994).
[CrossRef]

Valentine, G.

Appl. Opt. (3)

Opt. Express (2)

Quantum Electron. (1)

A. V. Ikramov, I. M. Roshchupkin, and A. G. Safronov, “Cooled bimorph adaptive mirrors for laser optics,” Quantum Electron. 24(7), 613–617 (1994).
[CrossRef]

Other (9)

B. V. Flexible Optical, PO Box 581, 2600 AN, Delft, the Netherlands, www.okotech.com

W. Koechner, Solid-State Laser Engineering, 5th edition (Springer Series in Optical Sciences, New-York, 1999)

Cutting Edge Optronics, Cutting Edge Optronics, 20 Point West Boulevard, St. Charles, MO 63301, USA, http://www.st.northropgrumman.com/ceolaser/ .

L. A. S. C. A. D. Gmbh, Brimhildenstr. 9, 80639 Munich, Germany, http://www.las-cad.com/index.php .

COMSOL Multiphysics, COMSOL Inc., 1 New England Executive Park, Suite 350, Burlington, MA 01803, USA.

Winlase II, Future Laser Technologies, 5051 Alton Pkwy #102, Irvine, CA 92604, USA.

MICOS VT-80, MICOS GmbH, Freiburger Str. 30, DE-79427 Eschbach, Germany.

BAE Systems Advanced Technology Centre, West Hanningfield rd, Great Baddow, Chelmsford CM2 8HN, UK.

J. W. Hardy, Adaptive Optics for Astronomical Telescope (Oxford University Press US, 1998), Chap. 6.6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Temperature distribution in the rod (a), pump deposition (b) and temperature (c) distributions in the cross section located at the centre of the rod

Fig. 2.
Fig. 2.

Experimental set-up used for thermal lens measurement

Fig. 3.
Fig. 3.

Calculated temperature dependence at the centre of the Nd:YLF rod

Fig. 4.
Fig. 4.

Test-bed laser cavity. The π plane is in the plane of the figure whereas the σ plane is perpendicular to the plane of the figure.

Fig. 5.
Fig. 5.

Fundamental mode radius along the laser cavity (a) for the cold cavity (d=353mm) and (b) with the maximum thermal lens (d=386mm).

Fig. 6.
Fig. 6.

Instantaneous transverse intensity distributions as a function of time after laser turn-on for (a) d=353mm, (b) d=386mm and (c) the output coupler moving at maximum speed from d=353mm to d=386mm.

Fig. 7.
Fig. 7.

Folded laser cavity [N.B. the tangential plane is now along the σ-axis while the sagittal plane is along the π-axis]

Fig. 8.
Fig. 8.

On-axis output power measured by a pinhole/photodiode arrangement for (a).d=170mm, (b) d=185mm and, (c) moving mirror laser

Fig. 9.
Fig. 9.

(a) View of the bimorph mirror, and (b) the corresponding actuator pattern where the actuator division is shown (160V and 100V were respectively applied to the actuators in green and in red)

Fig. 10.
Fig. 10.

Laser cavity with the IC deformable mirror

Fig. 11.
Fig. 11.

Transverse intensity distribution at the turn-on time without (a) and with (b) transient correction of the bimorph mirror.

Fig. 12.
Fig. 12.

Schematic of the end-pumped Nd:YAG laser

Fig. 13.
Fig. 13.

Transverse intensity distribution at the turn-on time without (a) and with (b) transient correction of the bimorph mirror.

Tables (2)

Tables Icon

Table 1. The Nd:YLF parameters used in the finite-element analysis

Tables Icon

Table 2. Fundamental mode radius as a function of cavity length and focal length of the thermal lens

Metrics