Abstract

IR absorption of chemical species in microscopic objects such as biological cells cannot be measured by conventional IR microscopes, because of their low resolution. To overcome this problem, we developed a novel far-field IR super-resolution microscope employing transient fluorescence detected IR spectroscopy. The resolution of this microscope was shown to be 880 nm by measuring the image of 1 µm fluorescent beads. Furthermore, it succeeded in resolving beads located 1.4 µm apart from each other. This is considerably smaller than the diffraction limit of the applied IR light (3.4 µm). These results suggest the capability of our microscope to study sub-micron targets such as sub-cellular structures of biological cells.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Naito, A. Toh-e, and H. Hamaguchi, “In vivo time-resolved Raman Imaging of a spontaneous death process of a single budding yeast cell,” J. Raman Spectrosc. 36(9), 837–839 (2005).
    [CrossRef]
  2. J. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B 105(7), 1277–1280 (2001).
    [CrossRef]
  3. H. Kano and H. O. Hamaguchi, “In-vivo multi-nonlinear optical imaging of a living cell using a supercontinuum light source generated from a photonic crystal fiber,” Opt. Express 14(7), 2798–2804 (2006).
    [CrossRef]
  4. E. Hecht, Optics (Addison-Wesley, New York, 2001).
  5. P. Lasch and D. Naumann, “Spatial resolution in infrared microspectroscopic imaging of tissues,” Biochim. Biophys. Acta 1758(7), 814–829 (2006).
  6. P. Lasch, A. Pacifico, and M. Diem, “Spatially resolved IR microspectroscopy of single cells,” Biopolymers 67(4-5), 335–338 (2002).
    [CrossRef]
  7. B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399(6732), 134–137 (1999).
    [CrossRef]
  8. J.-S. Samson, G. Wollny, E. Bründermann, A. Bergner, A. Hecker, G. Schwaab, A. D. Wieck, and M. Havenith, “Setup of a scanning near field infrared microscope (SNIM): imaging of sub-surface nano-structures in gallium-doped silicon,” Phys. Chem. Chem. Phys. 8(6), 753–758 (2006).
    [CrossRef]
  9. M. Sakai, Y. Kawashima, A. Takeda, T. Ohmori, and M. Fujii, “Far-field infrared super-resolution microscopy using picosecond time-resolved transient fluorescence detected IR spectroscopy,” Chem. Phys. Lett. 439(1-3), 171–176 (2007).
    [CrossRef]
  10. M. Sakai, T. Ohmori, M. Kinjo, N. Ohta, and M. Fujii, “Picosecond time-resolved infrared imaging by a nonscanning two-color infrared super-resolution microscope,” Chem. Lett. 36(11), 1380–1381 (2007).
    [CrossRef]

2007 (2)

M. Sakai, Y. Kawashima, A. Takeda, T. Ohmori, and M. Fujii, “Far-field infrared super-resolution microscopy using picosecond time-resolved transient fluorescence detected IR spectroscopy,” Chem. Phys. Lett. 439(1-3), 171–176 (2007).
[CrossRef]

M. Sakai, T. Ohmori, M. Kinjo, N. Ohta, and M. Fujii, “Picosecond time-resolved infrared imaging by a nonscanning two-color infrared super-resolution microscope,” Chem. Lett. 36(11), 1380–1381 (2007).
[CrossRef]

2006 (3)

H. Kano and H. O. Hamaguchi, “In-vivo multi-nonlinear optical imaging of a living cell using a supercontinuum light source generated from a photonic crystal fiber,” Opt. Express 14(7), 2798–2804 (2006).
[CrossRef]

P. Lasch and D. Naumann, “Spatial resolution in infrared microspectroscopic imaging of tissues,” Biochim. Biophys. Acta 1758(7), 814–829 (2006).

J.-S. Samson, G. Wollny, E. Bründermann, A. Bergner, A. Hecker, G. Schwaab, A. D. Wieck, and M. Havenith, “Setup of a scanning near field infrared microscope (SNIM): imaging of sub-surface nano-structures in gallium-doped silicon,” Phys. Chem. Chem. Phys. 8(6), 753–758 (2006).
[CrossRef]

2005 (1)

Y. Naito, A. Toh-e, and H. Hamaguchi, “In vivo time-resolved Raman Imaging of a spontaneous death process of a single budding yeast cell,” J. Raman Spectrosc. 36(9), 837–839 (2005).
[CrossRef]

2002 (1)

P. Lasch, A. Pacifico, and M. Diem, “Spatially resolved IR microspectroscopy of single cells,” Biopolymers 67(4-5), 335–338 (2002).
[CrossRef]

2001 (1)

J. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B 105(7), 1277–1280 (2001).
[CrossRef]

1999 (1)

B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399(6732), 134–137 (1999).
[CrossRef]

Bergner, A.

J.-S. Samson, G. Wollny, E. Bründermann, A. Bergner, A. Hecker, G. Schwaab, A. D. Wieck, and M. Havenith, “Setup of a scanning near field infrared microscope (SNIM): imaging of sub-surface nano-structures in gallium-doped silicon,” Phys. Chem. Chem. Phys. 8(6), 753–758 (2006).
[CrossRef]

Book, L. D.

J. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B 105(7), 1277–1280 (2001).
[CrossRef]

Bründermann, E.

J.-S. Samson, G. Wollny, E. Bründermann, A. Bergner, A. Hecker, G. Schwaab, A. D. Wieck, and M. Havenith, “Setup of a scanning near field infrared microscope (SNIM): imaging of sub-surface nano-structures in gallium-doped silicon,” Phys. Chem. Chem. Phys. 8(6), 753–758 (2006).
[CrossRef]

Cheng, J.

J. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B 105(7), 1277–1280 (2001).
[CrossRef]

Diem, M.

P. Lasch, A. Pacifico, and M. Diem, “Spatially resolved IR microspectroscopy of single cells,” Biopolymers 67(4-5), 335–338 (2002).
[CrossRef]

Fujii, M.

M. Sakai, Y. Kawashima, A. Takeda, T. Ohmori, and M. Fujii, “Far-field infrared super-resolution microscopy using picosecond time-resolved transient fluorescence detected IR spectroscopy,” Chem. Phys. Lett. 439(1-3), 171–176 (2007).
[CrossRef]

M. Sakai, T. Ohmori, M. Kinjo, N. Ohta, and M. Fujii, “Picosecond time-resolved infrared imaging by a nonscanning two-color infrared super-resolution microscope,” Chem. Lett. 36(11), 1380–1381 (2007).
[CrossRef]

Hamaguchi, H.

Y. Naito, A. Toh-e, and H. Hamaguchi, “In vivo time-resolved Raman Imaging of a spontaneous death process of a single budding yeast cell,” J. Raman Spectrosc. 36(9), 837–839 (2005).
[CrossRef]

Hamaguchi, H. O.

Havenith, M.

J.-S. Samson, G. Wollny, E. Bründermann, A. Bergner, A. Hecker, G. Schwaab, A. D. Wieck, and M. Havenith, “Setup of a scanning near field infrared microscope (SNIM): imaging of sub-surface nano-structures in gallium-doped silicon,” Phys. Chem. Chem. Phys. 8(6), 753–758 (2006).
[CrossRef]

Hecker, A.

J.-S. Samson, G. Wollny, E. Bründermann, A. Bergner, A. Hecker, G. Schwaab, A. D. Wieck, and M. Havenith, “Setup of a scanning near field infrared microscope (SNIM): imaging of sub-surface nano-structures in gallium-doped silicon,” Phys. Chem. Chem. Phys. 8(6), 753–758 (2006).
[CrossRef]

Kano, H.

Kawashima, Y.

M. Sakai, Y. Kawashima, A. Takeda, T. Ohmori, and M. Fujii, “Far-field infrared super-resolution microscopy using picosecond time-resolved transient fluorescence detected IR spectroscopy,” Chem. Phys. Lett. 439(1-3), 171–176 (2007).
[CrossRef]

Keilmann, F.

B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399(6732), 134–137 (1999).
[CrossRef]

Kinjo, M.

M. Sakai, T. Ohmori, M. Kinjo, N. Ohta, and M. Fujii, “Picosecond time-resolved infrared imaging by a nonscanning two-color infrared super-resolution microscope,” Chem. Lett. 36(11), 1380–1381 (2007).
[CrossRef]

Knoll, B.

B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399(6732), 134–137 (1999).
[CrossRef]

Lasch, P.

P. Lasch and D. Naumann, “Spatial resolution in infrared microspectroscopic imaging of tissues,” Biochim. Biophys. Acta 1758(7), 814–829 (2006).

P. Lasch, A. Pacifico, and M. Diem, “Spatially resolved IR microspectroscopy of single cells,” Biopolymers 67(4-5), 335–338 (2002).
[CrossRef]

Naito, Y.

Y. Naito, A. Toh-e, and H. Hamaguchi, “In vivo time-resolved Raman Imaging of a spontaneous death process of a single budding yeast cell,” J. Raman Spectrosc. 36(9), 837–839 (2005).
[CrossRef]

Naumann, D.

P. Lasch and D. Naumann, “Spatial resolution in infrared microspectroscopic imaging of tissues,” Biochim. Biophys. Acta 1758(7), 814–829 (2006).

Ohmori, T.

M. Sakai, Y. Kawashima, A. Takeda, T. Ohmori, and M. Fujii, “Far-field infrared super-resolution microscopy using picosecond time-resolved transient fluorescence detected IR spectroscopy,” Chem. Phys. Lett. 439(1-3), 171–176 (2007).
[CrossRef]

M. Sakai, T. Ohmori, M. Kinjo, N. Ohta, and M. Fujii, “Picosecond time-resolved infrared imaging by a nonscanning two-color infrared super-resolution microscope,” Chem. Lett. 36(11), 1380–1381 (2007).
[CrossRef]

Ohta, N.

M. Sakai, T. Ohmori, M. Kinjo, N. Ohta, and M. Fujii, “Picosecond time-resolved infrared imaging by a nonscanning two-color infrared super-resolution microscope,” Chem. Lett. 36(11), 1380–1381 (2007).
[CrossRef]

Pacifico, A.

P. Lasch, A. Pacifico, and M. Diem, “Spatially resolved IR microspectroscopy of single cells,” Biopolymers 67(4-5), 335–338 (2002).
[CrossRef]

Sakai, M.

M. Sakai, T. Ohmori, M. Kinjo, N. Ohta, and M. Fujii, “Picosecond time-resolved infrared imaging by a nonscanning two-color infrared super-resolution microscope,” Chem. Lett. 36(11), 1380–1381 (2007).
[CrossRef]

M. Sakai, Y. Kawashima, A. Takeda, T. Ohmori, and M. Fujii, “Far-field infrared super-resolution microscopy using picosecond time-resolved transient fluorescence detected IR spectroscopy,” Chem. Phys. Lett. 439(1-3), 171–176 (2007).
[CrossRef]

Samson, J.-S.

J.-S. Samson, G. Wollny, E. Bründermann, A. Bergner, A. Hecker, G. Schwaab, A. D. Wieck, and M. Havenith, “Setup of a scanning near field infrared microscope (SNIM): imaging of sub-surface nano-structures in gallium-doped silicon,” Phys. Chem. Chem. Phys. 8(6), 753–758 (2006).
[CrossRef]

Schwaab, G.

J.-S. Samson, G. Wollny, E. Bründermann, A. Bergner, A. Hecker, G. Schwaab, A. D. Wieck, and M. Havenith, “Setup of a scanning near field infrared microscope (SNIM): imaging of sub-surface nano-structures in gallium-doped silicon,” Phys. Chem. Chem. Phys. 8(6), 753–758 (2006).
[CrossRef]

Takeda, A.

M. Sakai, Y. Kawashima, A. Takeda, T. Ohmori, and M. Fujii, “Far-field infrared super-resolution microscopy using picosecond time-resolved transient fluorescence detected IR spectroscopy,” Chem. Phys. Lett. 439(1-3), 171–176 (2007).
[CrossRef]

Toh-e, A.

Y. Naito, A. Toh-e, and H. Hamaguchi, “In vivo time-resolved Raman Imaging of a spontaneous death process of a single budding yeast cell,” J. Raman Spectrosc. 36(9), 837–839 (2005).
[CrossRef]

Volkmer, A.

J. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B 105(7), 1277–1280 (2001).
[CrossRef]

Wieck, A. D.

J.-S. Samson, G. Wollny, E. Bründermann, A. Bergner, A. Hecker, G. Schwaab, A. D. Wieck, and M. Havenith, “Setup of a scanning near field infrared microscope (SNIM): imaging of sub-surface nano-structures in gallium-doped silicon,” Phys. Chem. Chem. Phys. 8(6), 753–758 (2006).
[CrossRef]

Wollny, G.

J.-S. Samson, G. Wollny, E. Bründermann, A. Bergner, A. Hecker, G. Schwaab, A. D. Wieck, and M. Havenith, “Setup of a scanning near field infrared microscope (SNIM): imaging of sub-surface nano-structures in gallium-doped silicon,” Phys. Chem. Chem. Phys. 8(6), 753–758 (2006).
[CrossRef]

Xie, X. S.

J. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B 105(7), 1277–1280 (2001).
[CrossRef]

Biochim. Biophys. Acta (1)

P. Lasch and D. Naumann, “Spatial resolution in infrared microspectroscopic imaging of tissues,” Biochim. Biophys. Acta 1758(7), 814–829 (2006).

Biopolymers (1)

P. Lasch, A. Pacifico, and M. Diem, “Spatially resolved IR microspectroscopy of single cells,” Biopolymers 67(4-5), 335–338 (2002).
[CrossRef]

Chem. Lett. (1)

M. Sakai, T. Ohmori, M. Kinjo, N. Ohta, and M. Fujii, “Picosecond time-resolved infrared imaging by a nonscanning two-color infrared super-resolution microscope,” Chem. Lett. 36(11), 1380–1381 (2007).
[CrossRef]

Chem. Phys. Lett. (1)

M. Sakai, Y. Kawashima, A. Takeda, T. Ohmori, and M. Fujii, “Far-field infrared super-resolution microscopy using picosecond time-resolved transient fluorescence detected IR spectroscopy,” Chem. Phys. Lett. 439(1-3), 171–176 (2007).
[CrossRef]

J. Phys. Chem. B (1)

J. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” J. Phys. Chem. B 105(7), 1277–1280 (2001).
[CrossRef]

J. Raman Spectrosc. (1)

Y. Naito, A. Toh-e, and H. Hamaguchi, “In vivo time-resolved Raman Imaging of a spontaneous death process of a single budding yeast cell,” J. Raman Spectrosc. 36(9), 837–839 (2005).
[CrossRef]

Nature (1)

B. Knoll and F. Keilmann, “Near-field probing of vibrational absorption for chemical microscopy,” Nature 399(6732), 134–137 (1999).
[CrossRef]

Opt. Express (1)

Phys. Chem. Chem. Phys. (1)

J.-S. Samson, G. Wollny, E. Bründermann, A. Bergner, A. Hecker, G. Schwaab, A. D. Wieck, and M. Havenith, “Setup of a scanning near field infrared microscope (SNIM): imaging of sub-surface nano-structures in gallium-doped silicon,” Phys. Chem. Chem. Phys. 8(6), 753–758 (2006).
[CrossRef]

Other (1)

E. Hecht, Optics (Addison-Wesley, New York, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a). Energy diagram of transient fluorescence detected IR (TFD-IR) spectroscopy. (b) Optical layout of an IR super-resolution microscope using TFD-IR.

Fig. 2.
Fig. 2.

Numerical investigation of the resolution performance of ordinary IR microscopy; (a) schematic picture of two 1 µm microbeads separated by 3 µm; (b) image of (a) using an illumination wavelength of 3.3 µm and a focusing optics with NA=0.5; (the IR absorbing area is shown by white color) (c) intensity cross-sections of (a) [dotted line] and (b) [continuous line] at y=0 µm. As shown, two objects separated by 3 µm are not resolved by an ordinary IR system.

Fig. 3.
Fig. 3.

(a). Fluorescence image of a 1 µm fluorescent bead (excitation wavelength=532 nm). Images of the same bead excited by (b) 610 nm visible beam (off resonant), (c) 3.3 µm IR beam and (d) 610 nm visible +3.3 µm IR beam. (e) The cross sectional profile (gray solid line) along the white line in (d). The black dashed line is the theoretical fluorescence intensity calculated as the convolution of the 1 µm bead and a Gaussian point spread function with FWHM=880 nm.

Fig. 4.
Fig. 4.

(a). IR super-resolution image of two adjacent beads. (b) Cross sectional profile along the white line in (a).

Metrics