Abstract

A low-noise fiber frequency comb is demonstrated to improve the frequency accuracy and linewidth by suppressing the phase noise caused by the nonlinear self-phase modulation as well as the amplified spontaneous emission within the Er-doped fiber amplifier. The linewidth of the carrier-envelop-offset signal measures less than 1.9 mHz and the frequency stability well follows the reference Rb clock. This achievement will facilitate the use of the fiber frequency comb for industrial applications to precision near-infrared spectroscopy, frequency calibration, optical clocks and length metrology.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Holzwarth, M. Zimmermann, T. Udem, and T. W. Hänsch, “Optical clockworks and the measurement of laser frequencies with a mode-locked frequency comb,” IEEE J. Quantum Electron. 37, 1482–1492 (2001).
    [Crossref]
  2. J. L. Hall, J. Ye, S. A. Diddams, L. Ma, S. T. Cundiff, and D. J. Jones, “Ultrasensitive spectroscopy, the ultrastable lasers, the ultrafast lasers, and the seriously nonlinear fiber: A new alliance for physics and metrology,” IEEE J. Quantum Electron. 37, 1493–1501 (2001).
    [Crossref]
  3. L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
    [Crossref]
  4. J. W. Nicholson, M. F. Yan, P. Wisk, J. Fleming, F. DiMarcello, E. Monberg, A. Yablon, C. Jørgensen, and T. Veng, “All-fiber, octave-spanning supercontinuum,” Opt. Lett. 28, 643–645 (2003).
    [Crossref] [PubMed]
  5. F. Tauser, A. Leitenstorfer, and W. Zinth, “Amplified femtosecond pulses from an Er:fiber system: Nonlinear pulse shortening and self-referencing detection of the carrier-envelope phase evolution,” Opt. Express 11, 594–600 (2003).
    [Crossref] [PubMed]
  6. H. Hundertmark, D. Wandt, C. Fallnich, N. Haverkamp, and H. R. Telle, “Phase-locked carrier-envelope-offset frequency at 1560 nm,” Opt. Express 12, 770–775 (2004).
    [Crossref] [PubMed]
  7. J. Nicholson, A. Yablon, P. Westbrook, K. Feder, and M. Yan, “High power, single mode, all-fiber source of femtosecond pulses at 1550 nm and its use in supercontinuum generation,” Opt. Express 12, 3025–3034 (2004).
    [Crossref] [PubMed]
  8. B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jrgensen, “Phase-locked erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29, 250–252 (2004).
    [Crossref] [PubMed]
  9. T. R. Schibli, K. Minoshima, F. -L. Hong, H. Inaba, A. Onae, H. Matsumoto, I. Hartl, and M. E. Fermann, “Frequency metrology with a turnkey all-fiber system,” Opt. Lett. 29, 2467–2469 (2004).
    [Crossref] [PubMed]
  10. H. Inaba, Y. Daimon, F. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express 14, 5223–5231 (2006).
    [Crossref] [PubMed]
  11. J. J. McFerran, W. C. Swann, B. R. Washburn, and N. R. Newbury, “Elimination of pump-induced frequency jitter on fiber-laser frequency combs,” Opt. Lett. 31, 1997–1999 (2006).
  12. T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nature Photonics 2, 355–359 (2008).
    [Crossref]

2008 (1)

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nature Photonics 2, 355–359 (2008).
[Crossref]

2006 (1)

2004 (4)

2003 (2)

2001 (2)

R. Holzwarth, M. Zimmermann, T. Udem, and T. W. Hänsch, “Optical clockworks and the measurement of laser frequencies with a mode-locked frequency comb,” IEEE J. Quantum Electron. 37, 1482–1492 (2001).
[Crossref]

J. L. Hall, J. Ye, S. A. Diddams, L. Ma, S. T. Cundiff, and D. J. Jones, “Ultrasensitive spectroscopy, the ultrastable lasers, the ultrafast lasers, and the seriously nonlinear fiber: A new alliance for physics and metrology,” IEEE J. Quantum Electron. 37, 1493–1501 (2001).
[Crossref]

1997 (2)

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[Crossref]

J. J. McFerran, W. C. Swann, B. R. Washburn, and N. R. Newbury, “Elimination of pump-induced frequency jitter on fiber-laser frequency combs,” Opt. Lett. 31, 1997–1999 (2006).

Cundiff, S. T.

J. L. Hall, J. Ye, S. A. Diddams, L. Ma, S. T. Cundiff, and D. J. Jones, “Ultrasensitive spectroscopy, the ultrastable lasers, the ultrafast lasers, and the seriously nonlinear fiber: A new alliance for physics and metrology,” IEEE J. Quantum Electron. 37, 1493–1501 (2001).
[Crossref]

Daimon, Y.

Diddams, S. A.

B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jrgensen, “Phase-locked erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29, 250–252 (2004).
[Crossref] [PubMed]

J. L. Hall, J. Ye, S. A. Diddams, L. Ma, S. T. Cundiff, and D. J. Jones, “Ultrasensitive spectroscopy, the ultrastable lasers, the ultrafast lasers, and the seriously nonlinear fiber: A new alliance for physics and metrology,” IEEE J. Quantum Electron. 37, 1493–1501 (2001).
[Crossref]

DiMarcello, F.

Fallnich, C.

Feder, K.

Fermann, M. E.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nature Photonics 2, 355–359 (2008).
[Crossref]

T. R. Schibli, K. Minoshima, F. -L. Hong, H. Inaba, A. Onae, H. Matsumoto, I. Hartl, and M. E. Fermann, “Frequency metrology with a turnkey all-fiber system,” Opt. Lett. 29, 2467–2469 (2004).
[Crossref] [PubMed]

Fleming, J.

Hall, J. L.

J. L. Hall, J. Ye, S. A. Diddams, L. Ma, S. T. Cundiff, and D. J. Jones, “Ultrasensitive spectroscopy, the ultrastable lasers, the ultrafast lasers, and the seriously nonlinear fiber: A new alliance for physics and metrology,” IEEE J. Quantum Electron. 37, 1493–1501 (2001).
[Crossref]

Hänsch, T. W.

R. Holzwarth, M. Zimmermann, T. Udem, and T. W. Hänsch, “Optical clockworks and the measurement of laser frequencies with a mode-locked frequency comb,” IEEE J. Quantum Electron. 37, 1482–1492 (2001).
[Crossref]

Hartl, I.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nature Photonics 2, 355–359 (2008).
[Crossref]

T. R. Schibli, K. Minoshima, F. -L. Hong, H. Inaba, A. Onae, H. Matsumoto, I. Hartl, and M. E. Fermann, “Frequency metrology with a turnkey all-fiber system,” Opt. Lett. 29, 2467–2469 (2004).
[Crossref] [PubMed]

Haus, H. A.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[Crossref]

Haverkamp, N.

Hirano, M.

Holzwarth, R.

R. Holzwarth, M. Zimmermann, T. Udem, and T. W. Hänsch, “Optical clockworks and the measurement of laser frequencies with a mode-locked frequency comb,” IEEE J. Quantum Electron. 37, 1482–1492 (2001).
[Crossref]

Hong, F.

Hong, F. -L.

Hundertmark, H.

Inaba, H.

Ippen, E. P.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[Crossref]

Jones, D. J.

J. L. Hall, J. Ye, S. A. Diddams, L. Ma, S. T. Cundiff, and D. J. Jones, “Ultrasensitive spectroscopy, the ultrastable lasers, the ultrafast lasers, and the seriously nonlinear fiber: A new alliance for physics and metrology,” IEEE J. Quantum Electron. 37, 1493–1501 (2001).
[Crossref]

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[Crossref]

Jørgensen, C.

Jrgensen, C. G.

Leitenstorfer, A.

Ma, L.

J. L. Hall, J. Ye, S. A. Diddams, L. Ma, S. T. Cundiff, and D. J. Jones, “Ultrasensitive spectroscopy, the ultrastable lasers, the ultrafast lasers, and the seriously nonlinear fiber: A new alliance for physics and metrology,” IEEE J. Quantum Electron. 37, 1493–1501 (2001).
[Crossref]

Marcinkevicius, A.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nature Photonics 2, 355–359 (2008).
[Crossref]

Martin, M. J.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nature Photonics 2, 355–359 (2008).
[Crossref]

Matsumoto, H.

McFerran, J. J.

J. J. McFerran, W. C. Swann, B. R. Washburn, and N. R. Newbury, “Elimination of pump-induced frequency jitter on fiber-laser frequency combs,” Opt. Lett. 31, 1997–1999 (2006).

Minoshima, K.

Monberg, E.

Nakazawa, M.

Nelson, L. E.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[Crossref]

Newbury, N. R.

B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jrgensen, “Phase-locked erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29, 250–252 (2004).
[Crossref] [PubMed]

J. J. McFerran, W. C. Swann, B. R. Washburn, and N. R. Newbury, “Elimination of pump-induced frequency jitter on fiber-laser frequency combs,” Opt. Lett. 31, 1997–1999 (2006).

Nicholson, J.

Nicholson, J. W.

Okuno, T.

Onae, A.

Onishi, M.

Schibli, T. R.

Swann, W. C.

J. J. McFerran, W. C. Swann, B. R. Washburn, and N. R. Newbury, “Elimination of pump-induced frequency jitter on fiber-laser frequency combs,” Opt. Lett. 31, 1997–1999 (2006).

Tamura, K.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[Crossref]

Tauser, F.

Telle, H. R.

Udem, T.

R. Holzwarth, M. Zimmermann, T. Udem, and T. W. Hänsch, “Optical clockworks and the measurement of laser frequencies with a mode-locked frequency comb,” IEEE J. Quantum Electron. 37, 1482–1492 (2001).
[Crossref]

Veng, T.

Wandt, D.

Washburn, B. R.

B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jrgensen, “Phase-locked erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29, 250–252 (2004).
[Crossref] [PubMed]

J. J. McFerran, W. C. Swann, B. R. Washburn, and N. R. Newbury, “Elimination of pump-induced frequency jitter on fiber-laser frequency combs,” Opt. Lett. 31, 1997–1999 (2006).

Westbrook, P.

Wisk, P.

Yablon, A.

Yan, M.

Yan, M. F.

Ye, J.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nature Photonics 2, 355–359 (2008).
[Crossref]

J. L. Hall, J. Ye, S. A. Diddams, L. Ma, S. T. Cundiff, and D. J. Jones, “Ultrasensitive spectroscopy, the ultrastable lasers, the ultrafast lasers, and the seriously nonlinear fiber: A new alliance for physics and metrology,” IEEE J. Quantum Electron. 37, 1493–1501 (2001).
[Crossref]

Yost, D. C.

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nature Photonics 2, 355–359 (2008).
[Crossref]

Zimmermann, M.

R. Holzwarth, M. Zimmermann, T. Udem, and T. W. Hänsch, “Optical clockworks and the measurement of laser frequencies with a mode-locked frequency comb,” IEEE J. Quantum Electron. 37, 1482–1492 (2001).
[Crossref]

Zinth, W.

Appl. Phys. B (1)

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[Crossref]

IEEE J. Quantum Electron. (2)

R. Holzwarth, M. Zimmermann, T. Udem, and T. W. Hänsch, “Optical clockworks and the measurement of laser frequencies with a mode-locked frequency comb,” IEEE J. Quantum Electron. 37, 1482–1492 (2001).
[Crossref]

J. L. Hall, J. Ye, S. A. Diddams, L. Ma, S. T. Cundiff, and D. J. Jones, “Ultrasensitive spectroscopy, the ultrastable lasers, the ultrafast lasers, and the seriously nonlinear fiber: A new alliance for physics and metrology,” IEEE J. Quantum Electron. 37, 1493–1501 (2001).
[Crossref]

Nature Photonics (1)

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nature Photonics 2, 355–359 (2008).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Hardware configuration of Er-doped fiber frequency comb. DCF: dispersion compensating fiber, I: isolator, LD: laser diode, WDM: wavelength-division multiplexer, EDF: Er-doped fiber, HNLF: highly nonlinear fiber, SMF: single-mode fiber, L: lens, HWP: half-wave plate, PPLN: periodically poled lithium niobate, LP: linear polarizer, BPF: optical band pass filter, PD: photodetector.

Fig. 2.
Fig. 2.

Dispersion control diagrams. (a) Chirp profile of a previous scheme designed by the authors. The Er-doped fiber (EDF) used here has a small core diameter of 4 µm for negative chirp. (b) Chirp profile of the current scheme using a dispersion compensation fiber of negative dispersion. The used EDF has a 8 µm diameter for positive chirp. (c) Broadened spectra measured at the end facet of each Er-doped fiber amplifier for both the cases of (a) and (b). HI1060 indicates the guide fibers comprising the WDM wavelength-division multiplexers appearing in Fig. 1.

Fig. 3.
Fig. 3.

Optical spectra of amplified spontaneous emission due to Fresnel reflection. (a) Without isolation. (b) With an optical isolator. The inset shows the typical emission spectrum of the Er-doped fiber.

Fig. 4.
Fig. 4.

Linewidth measurement of the phase-locked signal of fceo. (a) The coherent peak measured at 1 Hz resolution bandwidth. (b) The same coherent peak at 1.9 mHz resolution with 500 s sampling time. The inset in (a) shows a resolution-limited linewidth of below 1 Hz. The inset in (b) is a 100 ms record of the stabilized fceo.

Fig. 5.
Fig. 5.

Frequency error of the stabilized carrier-envelope-offset frequency with a gate time of 1 second. (a) Long-term drift of fceo before (red) and after (blue) stabilization (b) Magnified view of the stabilized fceo .

Metrics