Abstract

Acousto-optic (AO) tunable second harmonic generation (SHG) was proposed in periodically poled lithium niobate (PPLN). The acoustic wave could either be induced from an external transducer or self-generated in PPLN driving with a cross-field radio frequency field. The reciprocal vector of PPLN compensates the SHG wave-vector mismatch when quasi-phase- matching (QPM) condition is satisfied, while phonons with suitable frequencies may affect it by scattering photons to different polarization state. The QPM SHG and AO polarization rotation are coupled together. Second harmonic waves’ intensities, polarization states and even phases thus could be manipulated instantly through AO interaction.

© 2009 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef]
  2. A. Sihvola, "Metamaterials in electromagnetics," Metmat. 1, 2-11 (2007).
  3. N. B. Ming, J. F. Hong, and D. Feng, "The growth striations and ferroelectric domain structures in Czochralski-grown LiNbO3 single," J. Mater. Sci. 17, 1663-1670 (1982).
    [CrossRef]
  4. M. M. Fejer, G. A. Margel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: tuning and tolerances," J. Quantum Electron. 28, 2631-2654 (1992).
    [CrossRef]
  5. Y. Q. Lu, M. Xiao, and G. J. Salamo, "Coherent microwave generation in a nonlinear photonic crystal," J. Quantum Electron. 38, 481-485 (2002).
    [CrossRef]
  6. V. Berger, "Nonlinear photonic crystals," Phys. Rev. Lett. 81, 4136-4139 (1998).
    [CrossRef]
  7. Y. Q. Qin, C. Zhang, Y. Y. Zhu, X. P. Hu, and G. Zhao, "Wave-front engineering by huygens-fresnel principle for nonlinear optical interactions in domain engineered structures," Phys. Rev. Lett. 100, 063902 (2008).
    [CrossRef]
  8. Y. Q. Lu, Y. Y. Zhu, Y. F. Chen, S. N. Zhu, N. B. Ming, and Y. J. Feng, "Optical properties of an ionic-type phononic crystal," Science 284, 1822 (1999).
    [CrossRef]
  9. P. St. J. Russell and W. F. Liu, "Acousto-optic superlattice modulation in fiber Bragg gratings," J. Opt. Soc. Am. A 17, 1421-1429 (2000).
    [CrossRef]
  10. S. Krishnamurthy and P. V. Santos, "Optical modulation in photonic band gap structures by surface acoustic waves," J. Appl. Phys. 96, 1803 (2004).
    [CrossRef]
  11. H. Gnewuch, N. K. Zayer, C. N. Pannell, G. W. Ross, and P. G. R. Smith, "Broadband monolithic acousto-optic tunable filter," Opt. Lett. 25, 305 (2000).
    [CrossRef]
  12. Y. Kong, B. Li, Y. Chen, Z. Huang, S. Chen, L. Zhang, S. Liu, J. Xu, H. Liu, Y. Wang, W. Yan, W. Zhang and G. Zhang, "The highly optical damage resistance of lithium niobate crystals doping with Mg near its second threshold," OSA TOPS 87, 53-57 (2003).
  13. Yariv and P. Yeh, Optical Waves in Crystals (John Wiley and Sons, New York, 1984), Chap. 9.
  14. Y. Y. Zhu, N. B. Ming, W. H. Jiang, and Y. A. Shui, "Acoustic superlattice of LiNbO3 crystals and its applications to bulk-wave transducers for ultrasonic generation and detection up to 800 MHz," Appl. Phys. Lett. 53, 1381-1383 (1988).
    [CrossRef]
  15. Y. Y. Zhu, S. N. Zhu, Y. Q. Qin, and N. B. Ming, "Further studies on ultrasonic excitation in an acoustic superlattice," J. Appl. Phys. 79, 2221-2224 (1996).
    [CrossRef]
  16. C. P. Huang, Q. J. Wang, and Y. Y. Zhu, "Cascaded frequency doubling and electro-optic coupling in a single optical superlattice," Appl. Phys. B 80, 741-744 (2005).
    [CrossRef]
  17. Y. Kong, X. F. Chen, and Y. Xia, "Competition of frequency conversion and polarization coupling in periodically poled lithium niobate," Appl. Phys. B 91, 479-482 (2008).
    [CrossRef]

2008 (2)

Y. Q. Qin, C. Zhang, Y. Y. Zhu, X. P. Hu, and G. Zhao, "Wave-front engineering by huygens-fresnel principle for nonlinear optical interactions in domain engineered structures," Phys. Rev. Lett. 100, 063902 (2008).
[CrossRef]

Y. Kong, X. F. Chen, and Y. Xia, "Competition of frequency conversion and polarization coupling in periodically poled lithium niobate," Appl. Phys. B 91, 479-482 (2008).
[CrossRef]

2007 (1)

A. Sihvola, "Metamaterials in electromagnetics," Metmat. 1, 2-11 (2007).

2005 (1)

C. P. Huang, Q. J. Wang, and Y. Y. Zhu, "Cascaded frequency doubling and electro-optic coupling in a single optical superlattice," Appl. Phys. B 80, 741-744 (2005).
[CrossRef]

2004 (1)

S. Krishnamurthy and P. V. Santos, "Optical modulation in photonic band gap structures by surface acoustic waves," J. Appl. Phys. 96, 1803 (2004).
[CrossRef]

2003 (1)

Y. Kong, B. Li, Y. Chen, Z. Huang, S. Chen, L. Zhang, S. Liu, J. Xu, H. Liu, Y. Wang, W. Yan, W. Zhang and G. Zhang, "The highly optical damage resistance of lithium niobate crystals doping with Mg near its second threshold," OSA TOPS 87, 53-57 (2003).

2002 (1)

Y. Q. Lu, M. Xiao, and G. J. Salamo, "Coherent microwave generation in a nonlinear photonic crystal," J. Quantum Electron. 38, 481-485 (2002).
[CrossRef]

2000 (2)

1999 (1)

Y. Q. Lu, Y. Y. Zhu, Y. F. Chen, S. N. Zhu, N. B. Ming, and Y. J. Feng, "Optical properties of an ionic-type phononic crystal," Science 284, 1822 (1999).
[CrossRef]

1998 (1)

V. Berger, "Nonlinear photonic crystals," Phys. Rev. Lett. 81, 4136-4139 (1998).
[CrossRef]

1996 (1)

Y. Y. Zhu, S. N. Zhu, Y. Q. Qin, and N. B. Ming, "Further studies on ultrasonic excitation in an acoustic superlattice," J. Appl. Phys. 79, 2221-2224 (1996).
[CrossRef]

1992 (1)

M. M. Fejer, G. A. Margel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: tuning and tolerances," J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

1988 (1)

Y. Y. Zhu, N. B. Ming, W. H. Jiang, and Y. A. Shui, "Acoustic superlattice of LiNbO3 crystals and its applications to bulk-wave transducers for ultrasonic generation and detection up to 800 MHz," Appl. Phys. Lett. 53, 1381-1383 (1988).
[CrossRef]

1987 (1)

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef]

1982 (1)

N. B. Ming, J. F. Hong, and D. Feng, "The growth striations and ferroelectric domain structures in Czochralski-grown LiNbO3 single," J. Mater. Sci. 17, 1663-1670 (1982).
[CrossRef]

Berger, V.

V. Berger, "Nonlinear photonic crystals," Phys. Rev. Lett. 81, 4136-4139 (1998).
[CrossRef]

Byer, R. L.

M. M. Fejer, G. A. Margel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: tuning and tolerances," J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

Chen, S.

Y. Kong, B. Li, Y. Chen, Z. Huang, S. Chen, L. Zhang, S. Liu, J. Xu, H. Liu, Y. Wang, W. Yan, W. Zhang and G. Zhang, "The highly optical damage resistance of lithium niobate crystals doping with Mg near its second threshold," OSA TOPS 87, 53-57 (2003).

Chen, X. F.

Y. Kong, X. F. Chen, and Y. Xia, "Competition of frequency conversion and polarization coupling in periodically poled lithium niobate," Appl. Phys. B 91, 479-482 (2008).
[CrossRef]

Chen, Y.

Y. Kong, B. Li, Y. Chen, Z. Huang, S. Chen, L. Zhang, S. Liu, J. Xu, H. Liu, Y. Wang, W. Yan, W. Zhang and G. Zhang, "The highly optical damage resistance of lithium niobate crystals doping with Mg near its second threshold," OSA TOPS 87, 53-57 (2003).

Chen, Y. F.

Y. Q. Lu, Y. Y. Zhu, Y. F. Chen, S. N. Zhu, N. B. Ming, and Y. J. Feng, "Optical properties of an ionic-type phononic crystal," Science 284, 1822 (1999).
[CrossRef]

Fejer, M. M.

M. M. Fejer, G. A. Margel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: tuning and tolerances," J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

Feng, D.

N. B. Ming, J. F. Hong, and D. Feng, "The growth striations and ferroelectric domain structures in Czochralski-grown LiNbO3 single," J. Mater. Sci. 17, 1663-1670 (1982).
[CrossRef]

Feng, Y. J.

Y. Q. Lu, Y. Y. Zhu, Y. F. Chen, S. N. Zhu, N. B. Ming, and Y. J. Feng, "Optical properties of an ionic-type phononic crystal," Science 284, 1822 (1999).
[CrossRef]

Gnewuch, H.

Hong, J. F.

N. B. Ming, J. F. Hong, and D. Feng, "The growth striations and ferroelectric domain structures in Czochralski-grown LiNbO3 single," J. Mater. Sci. 17, 1663-1670 (1982).
[CrossRef]

Hu, X. P.

Y. Q. Qin, C. Zhang, Y. Y. Zhu, X. P. Hu, and G. Zhao, "Wave-front engineering by huygens-fresnel principle for nonlinear optical interactions in domain engineered structures," Phys. Rev. Lett. 100, 063902 (2008).
[CrossRef]

Huang, C. P.

C. P. Huang, Q. J. Wang, and Y. Y. Zhu, "Cascaded frequency doubling and electro-optic coupling in a single optical superlattice," Appl. Phys. B 80, 741-744 (2005).
[CrossRef]

Huang, Z.

Y. Kong, B. Li, Y. Chen, Z. Huang, S. Chen, L. Zhang, S. Liu, J. Xu, H. Liu, Y. Wang, W. Yan, W. Zhang and G. Zhang, "The highly optical damage resistance of lithium niobate crystals doping with Mg near its second threshold," OSA TOPS 87, 53-57 (2003).

Jiang, W. H.

Y. Y. Zhu, N. B. Ming, W. H. Jiang, and Y. A. Shui, "Acoustic superlattice of LiNbO3 crystals and its applications to bulk-wave transducers for ultrasonic generation and detection up to 800 MHz," Appl. Phys. Lett. 53, 1381-1383 (1988).
[CrossRef]

Jundt, D. H.

M. M. Fejer, G. A. Margel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: tuning and tolerances," J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

Kong, Y.

Y. Kong, X. F. Chen, and Y. Xia, "Competition of frequency conversion and polarization coupling in periodically poled lithium niobate," Appl. Phys. B 91, 479-482 (2008).
[CrossRef]

Y. Kong, B. Li, Y. Chen, Z. Huang, S. Chen, L. Zhang, S. Liu, J. Xu, H. Liu, Y. Wang, W. Yan, W. Zhang and G. Zhang, "The highly optical damage resistance of lithium niobate crystals doping with Mg near its second threshold," OSA TOPS 87, 53-57 (2003).

Krishnamurthy, S.

S. Krishnamurthy and P. V. Santos, "Optical modulation in photonic band gap structures by surface acoustic waves," J. Appl. Phys. 96, 1803 (2004).
[CrossRef]

Li, B.

Y. Kong, B. Li, Y. Chen, Z. Huang, S. Chen, L. Zhang, S. Liu, J. Xu, H. Liu, Y. Wang, W. Yan, W. Zhang and G. Zhang, "The highly optical damage resistance of lithium niobate crystals doping with Mg near its second threshold," OSA TOPS 87, 53-57 (2003).

Liu, H.

Y. Kong, B. Li, Y. Chen, Z. Huang, S. Chen, L. Zhang, S. Liu, J. Xu, H. Liu, Y. Wang, W. Yan, W. Zhang and G. Zhang, "The highly optical damage resistance of lithium niobate crystals doping with Mg near its second threshold," OSA TOPS 87, 53-57 (2003).

Liu, S.

Y. Kong, B. Li, Y. Chen, Z. Huang, S. Chen, L. Zhang, S. Liu, J. Xu, H. Liu, Y. Wang, W. Yan, W. Zhang and G. Zhang, "The highly optical damage resistance of lithium niobate crystals doping with Mg near its second threshold," OSA TOPS 87, 53-57 (2003).

Liu, W. F.

Lu, Y. Q.

Y. Q. Lu, M. Xiao, and G. J. Salamo, "Coherent microwave generation in a nonlinear photonic crystal," J. Quantum Electron. 38, 481-485 (2002).
[CrossRef]

Y. Q. Lu, Y. Y. Zhu, Y. F. Chen, S. N. Zhu, N. B. Ming, and Y. J. Feng, "Optical properties of an ionic-type phononic crystal," Science 284, 1822 (1999).
[CrossRef]

Margel, G. A.

M. M. Fejer, G. A. Margel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: tuning and tolerances," J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

Ming, N. B.

Y. Q. Lu, Y. Y. Zhu, Y. F. Chen, S. N. Zhu, N. B. Ming, and Y. J. Feng, "Optical properties of an ionic-type phononic crystal," Science 284, 1822 (1999).
[CrossRef]

Y. Y. Zhu, S. N. Zhu, Y. Q. Qin, and N. B. Ming, "Further studies on ultrasonic excitation in an acoustic superlattice," J. Appl. Phys. 79, 2221-2224 (1996).
[CrossRef]

Y. Y. Zhu, N. B. Ming, W. H. Jiang, and Y. A. Shui, "Acoustic superlattice of LiNbO3 crystals and its applications to bulk-wave transducers for ultrasonic generation and detection up to 800 MHz," Appl. Phys. Lett. 53, 1381-1383 (1988).
[CrossRef]

N. B. Ming, J. F. Hong, and D. Feng, "The growth striations and ferroelectric domain structures in Czochralski-grown LiNbO3 single," J. Mater. Sci. 17, 1663-1670 (1982).
[CrossRef]

Pannell, C. N.

Qin, Y. Q.

Y. Q. Qin, C. Zhang, Y. Y. Zhu, X. P. Hu, and G. Zhao, "Wave-front engineering by huygens-fresnel principle for nonlinear optical interactions in domain engineered structures," Phys. Rev. Lett. 100, 063902 (2008).
[CrossRef]

Y. Y. Zhu, S. N. Zhu, Y. Q. Qin, and N. B. Ming, "Further studies on ultrasonic excitation in an acoustic superlattice," J. Appl. Phys. 79, 2221-2224 (1996).
[CrossRef]

Ross, G. W.

Russell, P. St. J.

Salamo, G. J.

Y. Q. Lu, M. Xiao, and G. J. Salamo, "Coherent microwave generation in a nonlinear photonic crystal," J. Quantum Electron. 38, 481-485 (2002).
[CrossRef]

Santos, P. V.

S. Krishnamurthy and P. V. Santos, "Optical modulation in photonic band gap structures by surface acoustic waves," J. Appl. Phys. 96, 1803 (2004).
[CrossRef]

Shui, Y. A.

Y. Y. Zhu, N. B. Ming, W. H. Jiang, and Y. A. Shui, "Acoustic superlattice of LiNbO3 crystals and its applications to bulk-wave transducers for ultrasonic generation and detection up to 800 MHz," Appl. Phys. Lett. 53, 1381-1383 (1988).
[CrossRef]

Sihvola, A.

A. Sihvola, "Metamaterials in electromagnetics," Metmat. 1, 2-11 (2007).

Smith, P. G. R.

Wang, Q. J.

C. P. Huang, Q. J. Wang, and Y. Y. Zhu, "Cascaded frequency doubling and electro-optic coupling in a single optical superlattice," Appl. Phys. B 80, 741-744 (2005).
[CrossRef]

Wang, Y.

Y. Kong, B. Li, Y. Chen, Z. Huang, S. Chen, L. Zhang, S. Liu, J. Xu, H. Liu, Y. Wang, W. Yan, W. Zhang and G. Zhang, "The highly optical damage resistance of lithium niobate crystals doping with Mg near its second threshold," OSA TOPS 87, 53-57 (2003).

Xia, Y.

Y. Kong, X. F. Chen, and Y. Xia, "Competition of frequency conversion and polarization coupling in periodically poled lithium niobate," Appl. Phys. B 91, 479-482 (2008).
[CrossRef]

Xiao, M.

Y. Q. Lu, M. Xiao, and G. J. Salamo, "Coherent microwave generation in a nonlinear photonic crystal," J. Quantum Electron. 38, 481-485 (2002).
[CrossRef]

Xu, J.

Y. Kong, B. Li, Y. Chen, Z. Huang, S. Chen, L. Zhang, S. Liu, J. Xu, H. Liu, Y. Wang, W. Yan, W. Zhang and G. Zhang, "The highly optical damage resistance of lithium niobate crystals doping with Mg near its second threshold," OSA TOPS 87, 53-57 (2003).

Yablonovitch, E.

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef]

Yan, W.

Y. Kong, B. Li, Y. Chen, Z. Huang, S. Chen, L. Zhang, S. Liu, J. Xu, H. Liu, Y. Wang, W. Yan, W. Zhang and G. Zhang, "The highly optical damage resistance of lithium niobate crystals doping with Mg near its second threshold," OSA TOPS 87, 53-57 (2003).

Zayer, N. K.

Zhang, C.

Y. Q. Qin, C. Zhang, Y. Y. Zhu, X. P. Hu, and G. Zhao, "Wave-front engineering by huygens-fresnel principle for nonlinear optical interactions in domain engineered structures," Phys. Rev. Lett. 100, 063902 (2008).
[CrossRef]

Zhang, G.

Y. Kong, B. Li, Y. Chen, Z. Huang, S. Chen, L. Zhang, S. Liu, J. Xu, H. Liu, Y. Wang, W. Yan, W. Zhang and G. Zhang, "The highly optical damage resistance of lithium niobate crystals doping with Mg near its second threshold," OSA TOPS 87, 53-57 (2003).

Zhang, L.

Y. Kong, B. Li, Y. Chen, Z. Huang, S. Chen, L. Zhang, S. Liu, J. Xu, H. Liu, Y. Wang, W. Yan, W. Zhang and G. Zhang, "The highly optical damage resistance of lithium niobate crystals doping with Mg near its second threshold," OSA TOPS 87, 53-57 (2003).

Zhang, W.

Y. Kong, B. Li, Y. Chen, Z. Huang, S. Chen, L. Zhang, S. Liu, J. Xu, H. Liu, Y. Wang, W. Yan, W. Zhang and G. Zhang, "The highly optical damage resistance of lithium niobate crystals doping with Mg near its second threshold," OSA TOPS 87, 53-57 (2003).

Zhao, G.

Y. Q. Qin, C. Zhang, Y. Y. Zhu, X. P. Hu, and G. Zhao, "Wave-front engineering by huygens-fresnel principle for nonlinear optical interactions in domain engineered structures," Phys. Rev. Lett. 100, 063902 (2008).
[CrossRef]

Zhu, S. N.

Y. Q. Lu, Y. Y. Zhu, Y. F. Chen, S. N. Zhu, N. B. Ming, and Y. J. Feng, "Optical properties of an ionic-type phononic crystal," Science 284, 1822 (1999).
[CrossRef]

Y. Y. Zhu, S. N. Zhu, Y. Q. Qin, and N. B. Ming, "Further studies on ultrasonic excitation in an acoustic superlattice," J. Appl. Phys. 79, 2221-2224 (1996).
[CrossRef]

Zhu, Y. Y.

Y. Q. Qin, C. Zhang, Y. Y. Zhu, X. P. Hu, and G. Zhao, "Wave-front engineering by huygens-fresnel principle for nonlinear optical interactions in domain engineered structures," Phys. Rev. Lett. 100, 063902 (2008).
[CrossRef]

C. P. Huang, Q. J. Wang, and Y. Y. Zhu, "Cascaded frequency doubling and electro-optic coupling in a single optical superlattice," Appl. Phys. B 80, 741-744 (2005).
[CrossRef]

Y. Q. Lu, Y. Y. Zhu, Y. F. Chen, S. N. Zhu, N. B. Ming, and Y. J. Feng, "Optical properties of an ionic-type phononic crystal," Science 284, 1822 (1999).
[CrossRef]

Y. Y. Zhu, S. N. Zhu, Y. Q. Qin, and N. B. Ming, "Further studies on ultrasonic excitation in an acoustic superlattice," J. Appl. Phys. 79, 2221-2224 (1996).
[CrossRef]

Y. Y. Zhu, N. B. Ming, W. H. Jiang, and Y. A. Shui, "Acoustic superlattice of LiNbO3 crystals and its applications to bulk-wave transducers for ultrasonic generation and detection up to 800 MHz," Appl. Phys. Lett. 53, 1381-1383 (1988).
[CrossRef]

Appl. Phys. B (2)

C. P. Huang, Q. J. Wang, and Y. Y. Zhu, "Cascaded frequency doubling and electro-optic coupling in a single optical superlattice," Appl. Phys. B 80, 741-744 (2005).
[CrossRef]

Y. Kong, X. F. Chen, and Y. Xia, "Competition of frequency conversion and polarization coupling in periodically poled lithium niobate," Appl. Phys. B 91, 479-482 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

Y. Y. Zhu, N. B. Ming, W. H. Jiang, and Y. A. Shui, "Acoustic superlattice of LiNbO3 crystals and its applications to bulk-wave transducers for ultrasonic generation and detection up to 800 MHz," Appl. Phys. Lett. 53, 1381-1383 (1988).
[CrossRef]

J. Appl. Phys. (2)

Y. Y. Zhu, S. N. Zhu, Y. Q. Qin, and N. B. Ming, "Further studies on ultrasonic excitation in an acoustic superlattice," J. Appl. Phys. 79, 2221-2224 (1996).
[CrossRef]

S. Krishnamurthy and P. V. Santos, "Optical modulation in photonic band gap structures by surface acoustic waves," J. Appl. Phys. 96, 1803 (2004).
[CrossRef]

J. Mater. Sci. (1)

N. B. Ming, J. F. Hong, and D. Feng, "The growth striations and ferroelectric domain structures in Czochralski-grown LiNbO3 single," J. Mater. Sci. 17, 1663-1670 (1982).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Quantum Electron. (2)

M. M. Fejer, G. A. Margel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: tuning and tolerances," J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

Y. Q. Lu, M. Xiao, and G. J. Salamo, "Coherent microwave generation in a nonlinear photonic crystal," J. Quantum Electron. 38, 481-485 (2002).
[CrossRef]

Metmat. (1)

A. Sihvola, "Metamaterials in electromagnetics," Metmat. 1, 2-11 (2007).

Opt. Lett. (1)

OSA TOPS (1)

Y. Kong, B. Li, Y. Chen, Z. Huang, S. Chen, L. Zhang, S. Liu, J. Xu, H. Liu, Y. Wang, W. Yan, W. Zhang and G. Zhang, "The highly optical damage resistance of lithium niobate crystals doping with Mg near its second threshold," OSA TOPS 87, 53-57 (2003).

Phys. Rev. Lett. (3)

E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef]

V. Berger, "Nonlinear photonic crystals," Phys. Rev. Lett. 81, 4136-4139 (1998).
[CrossRef]

Y. Q. Qin, C. Zhang, Y. Y. Zhu, X. P. Hu, and G. Zhao, "Wave-front engineering by huygens-fresnel principle for nonlinear optical interactions in domain engineered structures," Phys. Rev. Lett. 100, 063902 (2008).
[CrossRef]

Science (1)

Y. Q. Lu, Y. Y. Zhu, Y. F. Chen, S. N. Zhu, N. B. Ming, and Y. J. Feng, "Optical properties of an ionic-type phononic crystal," Science 284, 1822 (1999).
[CrossRef]

Other (1)

Yariv and P. Yeh, Optical Waves in Crystals (John Wiley and Sons, New York, 1984), Chap. 9.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics