Abstract

Plasmonic nanostructures placed within or near photovoltaic (PV) layers are of high current interest for improving thin film solar cells. We demonstrate, by electrodynamics calculations, the feasibility of a new class of essentially two dimensional (2D) solar cells based on the very large optical cross sections of plasmonic nanoparticles. Conditions for inducing absorption in extremely thin PV layers via plasmon near-fields, are optimized in 2D-arrays of (i) core-shell particles, and (ii) plasmonic particles on planar layers. At the plasmon resonance, a pronounced optimum is found for the extinction coefficient of the PV material. We also characterize the influence of the dielectric environment, PV layer thickness and nanoparticle shape, size and spatial distribution. The response of the system is close to that of a 2D effective medium layer, and subject to a 50% absorption limit when the dielectric environment around the 2D layer is symmetric. In this case, a plasmon induced absorption of about 40% is demonstrated in PV layers as thin as 10 nm, using silver nanoparticle arrays of only 1 nm effective thickness. In an asymmetric environment, the useful absorption may be increased significantly for the same layer thicknesses. These new types of essentially 2D solar cells are concluded to have a large potential for reducing solar electricity costs.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Sanden, "Solar solution: the next industrial revolution," Materials Today 11, 22-24 (2008).
    [CrossRef]
  2. H. J. Queisser, "Photovoltaic conversion at reduced dimensions," Physica E 14, 1-10 (2002).
  3. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Springer Series in Materials Science (Springer, New York, 1995), Vol. 25.
  4. C. Hägglund, "Nanoparticle plasmon influence on the charge carrier generation in solar cells," Doctoral Thesis (Chalmers University of Technology, Göteborg, 2008).
  5. J. J. Sakurai, Modern Quantum Mechanics, Revised ed. (Addison-Wesley Publishing Company, Reading, Massachusetts, 1994).
  6. C. Hägglund, M. Zäch, and B. Kasemo, "Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons," Appl. Phys. Lett. 92, 013113 (2008).
    [CrossRef]
  7. C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, "Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons," Appl. Phys. Lett. 92, 053110 (2008).
    [CrossRef]
  8. L. Eurenius, C. Hägglund, B. Kasemo, E. Olsson, and D. Chakarov, "Grating formation by metal nanoparticle-mediated coupling of light into waveguided modes," Nat. Photonics 2, 360-364 (2008).
    [CrossRef]
  9. F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. von Plessen, and F. Lederer, "On the use of localized plasmon polaritons in solar cells," Phys. Status Solidi A-Appl. Mater. Scie. 205, 2844-2861 (2008).
    [CrossRef]
  10. K. R. Catchpole and A. Polman, "Design principles for particle plasmon enhanced solar cells," Appl. Phys. Lett. 93, 191113 (2008).
    [CrossRef]
  11. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, "Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells," Nano Lett. 8, 4391-4397 (2008).
    [CrossRef]
  12. Y. A. Akimov, K. Ostrikov, and E. P. Li, "Surface Plasmon Enhancement of Optical Absorption in Thin-Film Silicon Solar Cells," Plasmonics 4, 107-113 (2009).
    [CrossRef]
  13. H. R. Stuart and D. G. Hall, "Absorption enhancement in silicon-on-insulator waveguides using metal island films," Appl. Phys. Lett. 69, 2327-2329 (1996).
    [CrossRef]
  14. D. M. Schaadt, B. Feng, and E. T. Yu, "Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles," Appl. Phys. Lett. 86, 063106 (2005).
    [CrossRef]
  15. B. P. Rand, P. Peumans, and S. R. Forrest, "Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters," J. Appl. Phys. 96, 7519-7526 (2004).
    [CrossRef]
  16. J. B. Khurgin, G. Sun, and R. A. Soref, "Practical limits of absorption enhancement near metal nanoparticles," Appl. Phys. Lett. 94, 071103 (2009).
    [CrossRef]
  17. J. R. Bolton and M. D. Archer, "Requirements for Ideal Performance of Photochemical and Photovoltaic Solar Energy Converters," J. Phys. Chem. 94, 8028-8036 (1990).
    [CrossRef]
  18. M. Grätzel, "Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells," J. Photochem. Photobiol. A-Chem. 164, 3-14 (2004).
    [CrossRef]
  19. P. B. Johnson and R. W. Christy, "Optical-constants of noble-metals," Phys. Rev. B 6, 4370-4379 (1972).
    [CrossRef]
  20. F. Wang and Y. R. Shen, "General properties of local plasmons in metal nanostructures," Phys. Rev. Lett. 97, 206806 (2006).
    [CrossRef] [PubMed]
  21. D. E. Aspnes, "Chapter 12. Optical properties.," in Properties of Crystalline Silicon, R. Hull, ed. (INSPEC, IEE, London, 1999).
  22. L. A. A. Pettersson, S. Ghosh, and O. Inganas, "Optical anisotropy in thin films of poly(3,4-ethylenedioxythiophene)-poly(4-styrenesulfonate)," Organic Electronics 3, 143-148 (2002).
    [CrossRef]
  23. U. Zhokhavets, R. Goldhahn, G. Gobsch, M. Al-Ibrahim, H. K. Roth, S. Sensfuss, E. Klemm, and D. A. M. Egbe, "Anisotropic optical properties of conjugated polymer and polymer/fullerene films," Thin Solid Films 444, 215-220 (2003).
    [CrossRef]
  24. H. Hoppe, N. S. Sariciftci, and D. Meissner, "Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells," Mol. Cryst. Liquid Cryst. 385, 233-239 (2002).
    [CrossRef]
  25. M. I. Alonso, K. Wakita, J. Pascual, M. Garriga, and N. Yamamoto, "Optical functions and electronic structure of CuInSe2, CuGaSe2, CuInS2, and CuGaS2," Phys. Rev. B 63, 075203 (2001).
    [CrossRef]
  26. A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, "Enhanced Nanoplasmonic Optical Sensors with Reduced Substrate Effect," Nano Lett. 8, 3893-3898 (2008).
    [CrossRef] [PubMed]
  27. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, "Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance," Phys. Rev. Lett. 84, 4721-4724 (2000).
    [CrossRef] [PubMed]
  28. This is an easily verified consequence of the governing equation. See for instance A. J. Mallinckrodt, "The Sinusoidally Forced, Linearly Damped, Simple Harmonic Oscillator" (2000), retrieved June 16, 2009, http://www.csupomona.edu/~ajm/classes/phyXXX/dho.pdf.
  29. R. Gomez-Medina, M. Laroche, and J. J. Saenz, "Extraordinary optical reflection from sub-wavelength cylinder arrays," Opt. Express 14, 3730-3737 (2006).
    [CrossRef] [PubMed]
  30. M. Laroche, S. Albaladejo, R. Gomez-Medina, and J. J. Saenz, "Tuning the optical response of nanocylinder arrays: An analytical study," Phys. Rev. B 74, 245422 (2006).
    [CrossRef]
  31. F. J. G. de Abajo, "Colloquium: Light scattering by particle and hole arrays," Rev. Mod. Phys. 79, 1267-1290 (2007).
    [CrossRef]
  32. Carl Hägglund, Dept. of Applied Physics, Chalmers University of Technology, Fysikgränd 3, 41296 Göteborg, Sweden, S. Peter Apell and Bengt Kasemo are preparing a manuscript to be called "Maximized optical absorption in the thin film limit and its application to plasmon based 2D-photovoltaics".
  33. A reflective layer placed immediately behind the particle array results in destructive interference and reduced absorption in the PV layer.
  34. A. Goetzberger, J. Goldschmidt, C., M. Peters, and P. Löper, "Light trapping, a new approach to spectrum splitting," Sol. Energy Mater. Sol. Cells 92,1570-1578 (2008).
    [CrossRef]
  35. A. O. Pinchuk and G. C. Schatz, "Nanoparticle optical properties: Far- and near-field electrodynamic coupling in a chain of silver spherical nanoparticles," Mater. Sci. Eng. B-Adv. Funct.Solid-State Mater. 149, 251-258 (2008).
  36. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, Weinheim, 2004).
  37. C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, "Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays," J. Phys. Chem. B 107, 7337-7342 (2003).
    [CrossRef]
  38. I. A. Larkin, M. I. Stockman, M. Achermann, and V. I. Klimov, "Dipolar emitters at nanoscale proximity of metal surfaces: Giant enhancement of relaxation in microscopic theory," Phys. Rev. B 69, 121403(R) (2004).
    [CrossRef]

2009 (2)

Y. A. Akimov, K. Ostrikov, and E. P. Li, "Surface Plasmon Enhancement of Optical Absorption in Thin-Film Silicon Solar Cells," Plasmonics 4, 107-113 (2009).
[CrossRef]

J. B. Khurgin, G. Sun, and R. A. Soref, "Practical limits of absorption enhancement near metal nanoparticles," Appl. Phys. Lett. 94, 071103 (2009).
[CrossRef]

2008 (10)

B. Sanden, "Solar solution: the next industrial revolution," Materials Today 11, 22-24 (2008).
[CrossRef]

C. Hägglund, M. Zäch, and B. Kasemo, "Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons," Appl. Phys. Lett. 92, 013113 (2008).
[CrossRef]

C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, "Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons," Appl. Phys. Lett. 92, 053110 (2008).
[CrossRef]

L. Eurenius, C. Hägglund, B. Kasemo, E. Olsson, and D. Chakarov, "Grating formation by metal nanoparticle-mediated coupling of light into waveguided modes," Nat. Photonics 2, 360-364 (2008).
[CrossRef]

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. von Plessen, and F. Lederer, "On the use of localized plasmon polaritons in solar cells," Phys. Status Solidi A-Appl. Mater. Scie. 205, 2844-2861 (2008).
[CrossRef]

K. R. Catchpole and A. Polman, "Design principles for particle plasmon enhanced solar cells," Appl. Phys. Lett. 93, 191113 (2008).
[CrossRef]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, "Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells," Nano Lett. 8, 4391-4397 (2008).
[CrossRef]

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, "Enhanced Nanoplasmonic Optical Sensors with Reduced Substrate Effect," Nano Lett. 8, 3893-3898 (2008).
[CrossRef] [PubMed]

A. Goetzberger, J. Goldschmidt, C., M. Peters, and P. Löper, "Light trapping, a new approach to spectrum splitting," Sol. Energy Mater. Sol. Cells 92,1570-1578 (2008).
[CrossRef]

A. O. Pinchuk and G. C. Schatz, "Nanoparticle optical properties: Far- and near-field electrodynamic coupling in a chain of silver spherical nanoparticles," Mater. Sci. Eng. B-Adv. Funct.Solid-State Mater. 149, 251-258 (2008).

2007 (1)

F. J. G. de Abajo, "Colloquium: Light scattering by particle and hole arrays," Rev. Mod. Phys. 79, 1267-1290 (2007).
[CrossRef]

2006 (3)

M. Laroche, S. Albaladejo, R. Gomez-Medina, and J. J. Saenz, "Tuning the optical response of nanocylinder arrays: An analytical study," Phys. Rev. B 74, 245422 (2006).
[CrossRef]

R. Gomez-Medina, M. Laroche, and J. J. Saenz, "Extraordinary optical reflection from sub-wavelength cylinder arrays," Opt. Express 14, 3730-3737 (2006).
[CrossRef] [PubMed]

F. Wang and Y. R. Shen, "General properties of local plasmons in metal nanostructures," Phys. Rev. Lett. 97, 206806 (2006).
[CrossRef] [PubMed]

2005 (1)

D. M. Schaadt, B. Feng, and E. T. Yu, "Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles," Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

2004 (2)

B. P. Rand, P. Peumans, and S. R. Forrest, "Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters," J. Appl. Phys. 96, 7519-7526 (2004).
[CrossRef]

M. Grätzel, "Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells," J. Photochem. Photobiol. A-Chem. 164, 3-14 (2004).
[CrossRef]

2003 (2)

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, "Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays," J. Phys. Chem. B 107, 7337-7342 (2003).
[CrossRef]

U. Zhokhavets, R. Goldhahn, G. Gobsch, M. Al-Ibrahim, H. K. Roth, S. Sensfuss, E. Klemm, and D. A. M. Egbe, "Anisotropic optical properties of conjugated polymer and polymer/fullerene films," Thin Solid Films 444, 215-220 (2003).
[CrossRef]

2002 (3)

H. Hoppe, N. S. Sariciftci, and D. Meissner, "Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells," Mol. Cryst. Liquid Cryst. 385, 233-239 (2002).
[CrossRef]

L. A. A. Pettersson, S. Ghosh, and O. Inganas, "Optical anisotropy in thin films of poly(3,4-ethylenedioxythiophene)-poly(4-styrenesulfonate)," Organic Electronics 3, 143-148 (2002).
[CrossRef]

H. J. Queisser, "Photovoltaic conversion at reduced dimensions," Physica E 14, 1-10 (2002).

2001 (1)

M. I. Alonso, K. Wakita, J. Pascual, M. Garriga, and N. Yamamoto, "Optical functions and electronic structure of CuInSe2, CuGaSe2, CuInS2, and CuGaS2," Phys. Rev. B 63, 075203 (2001).
[CrossRef]

2000 (1)

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, "Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance," Phys. Rev. Lett. 84, 4721-4724 (2000).
[CrossRef] [PubMed]

1996 (1)

H. R. Stuart and D. G. Hall, "Absorption enhancement in silicon-on-insulator waveguides using metal island films," Appl. Phys. Lett. 69, 2327-2329 (1996).
[CrossRef]

1990 (1)

J. R. Bolton and M. D. Archer, "Requirements for Ideal Performance of Photochemical and Photovoltaic Solar Energy Converters," J. Phys. Chem. 94, 8028-8036 (1990).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, "Optical-constants of noble-metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Akimov, Y. A.

Y. A. Akimov, K. Ostrikov, and E. P. Li, "Surface Plasmon Enhancement of Optical Absorption in Thin-Film Silicon Solar Cells," Plasmonics 4, 107-113 (2009).
[CrossRef]

Albaladejo, S.

M. Laroche, S. Albaladejo, R. Gomez-Medina, and J. J. Saenz, "Tuning the optical response of nanocylinder arrays: An analytical study," Phys. Rev. B 74, 245422 (2006).
[CrossRef]

Al-Ibrahim, M.

U. Zhokhavets, R. Goldhahn, G. Gobsch, M. Al-Ibrahim, H. K. Roth, S. Sensfuss, E. Klemm, and D. A. M. Egbe, "Anisotropic optical properties of conjugated polymer and polymer/fullerene films," Thin Solid Films 444, 215-220 (2003).
[CrossRef]

Alonso, M. I.

M. I. Alonso, K. Wakita, J. Pascual, M. Garriga, and N. Yamamoto, "Optical functions and electronic structure of CuInSe2, CuGaSe2, CuInS2, and CuGaS2," Phys. Rev. B 63, 075203 (2001).
[CrossRef]

Archer, M. D.

J. R. Bolton and M. D. Archer, "Requirements for Ideal Performance of Photochemical and Photovoltaic Solar Energy Converters," J. Phys. Chem. 94, 8028-8036 (1990).
[CrossRef]

Atwater, H. A.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, "Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells," Nano Lett. 8, 4391-4397 (2008).
[CrossRef]

Aussenegg, F. R.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, "Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance," Phys. Rev. Lett. 84, 4721-4724 (2000).
[CrossRef] [PubMed]

Bolton, J. R.

J. R. Bolton and M. D. Archer, "Requirements for Ideal Performance of Photochemical and Photovoltaic Solar Energy Converters," J. Phys. Chem. 94, 8028-8036 (1990).
[CrossRef]

Catchpole, K. R.

K. R. Catchpole and A. Polman, "Design principles for particle plasmon enhanced solar cells," Appl. Phys. Lett. 93, 191113 (2008).
[CrossRef]

Chakarov, D.

L. Eurenius, C. Hägglund, B. Kasemo, E. Olsson, and D. Chakarov, "Grating formation by metal nanoparticle-mediated coupling of light into waveguided modes," Nat. Photonics 2, 360-364 (2008).
[CrossRef]

Chen, S.

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, "Enhanced Nanoplasmonic Optical Sensors with Reduced Substrate Effect," Nano Lett. 8, 3893-3898 (2008).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, "Optical-constants of noble-metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

de Abajo, F. J. G.

F. J. G. de Abajo, "Colloquium: Light scattering by particle and hole arrays," Rev. Mod. Phys. 79, 1267-1290 (2007).
[CrossRef]

Ditlbacher, H.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, "Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance," Phys. Rev. Lett. 84, 4721-4724 (2000).
[CrossRef] [PubMed]

Dmitriev, A.

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, "Enhanced Nanoplasmonic Optical Sensors with Reduced Substrate Effect," Nano Lett. 8, 3893-3898 (2008).
[CrossRef] [PubMed]

Egbe, D. A. M.

U. Zhokhavets, R. Goldhahn, G. Gobsch, M. Al-Ibrahim, H. K. Roth, S. Sensfuss, E. Klemm, and D. A. M. Egbe, "Anisotropic optical properties of conjugated polymer and polymer/fullerene films," Thin Solid Films 444, 215-220 (2003).
[CrossRef]

Eurenius, L.

L. Eurenius, C. Hägglund, B. Kasemo, E. Olsson, and D. Chakarov, "Grating formation by metal nanoparticle-mediated coupling of light into waveguided modes," Nat. Photonics 2, 360-364 (2008).
[CrossRef]

Fahr, S.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. von Plessen, and F. Lederer, "On the use of localized plasmon polaritons in solar cells," Phys. Status Solidi A-Appl. Mater. Scie. 205, 2844-2861 (2008).
[CrossRef]

Feng, B.

D. M. Schaadt, B. Feng, and E. T. Yu, "Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles," Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

Ferry, V. E.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, "Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells," Nano Lett. 8, 4391-4397 (2008).
[CrossRef]

Forrest, S. R.

B. P. Rand, P. Peumans, and S. R. Forrest, "Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters," J. Appl. Phys. 96, 7519-7526 (2004).
[CrossRef]

Fredriksson, H.

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, "Enhanced Nanoplasmonic Optical Sensors with Reduced Substrate Effect," Nano Lett. 8, 3893-3898 (2008).
[CrossRef] [PubMed]

Garriga, M.

M. I. Alonso, K. Wakita, J. Pascual, M. Garriga, and N. Yamamoto, "Optical functions and electronic structure of CuInSe2, CuGaSe2, CuInS2, and CuGaS2," Phys. Rev. B 63, 075203 (2001).
[CrossRef]

Ghosh, S.

L. A. A. Pettersson, S. Ghosh, and O. Inganas, "Optical anisotropy in thin films of poly(3,4-ethylenedioxythiophene)-poly(4-styrenesulfonate)," Organic Electronics 3, 143-148 (2002).
[CrossRef]

Gobsch, G.

U. Zhokhavets, R. Goldhahn, G. Gobsch, M. Al-Ibrahim, H. K. Roth, S. Sensfuss, E. Klemm, and D. A. M. Egbe, "Anisotropic optical properties of conjugated polymer and polymer/fullerene films," Thin Solid Films 444, 215-220 (2003).
[CrossRef]

Goetzberger, A.

A. Goetzberger, J. Goldschmidt, C., M. Peters, and P. Löper, "Light trapping, a new approach to spectrum splitting," Sol. Energy Mater. Sol. Cells 92,1570-1578 (2008).
[CrossRef]

Goldhahn, R.

U. Zhokhavets, R. Goldhahn, G. Gobsch, M. Al-Ibrahim, H. K. Roth, S. Sensfuss, E. Klemm, and D. A. M. Egbe, "Anisotropic optical properties of conjugated polymer and polymer/fullerene films," Thin Solid Films 444, 215-220 (2003).
[CrossRef]

Goldschmidt, J.

A. Goetzberger, J. Goldschmidt, C., M. Peters, and P. Löper, "Light trapping, a new approach to spectrum splitting," Sol. Energy Mater. Sol. Cells 92,1570-1578 (2008).
[CrossRef]

Gomez-Medina, R.

M. Laroche, S. Albaladejo, R. Gomez-Medina, and J. J. Saenz, "Tuning the optical response of nanocylinder arrays: An analytical study," Phys. Rev. B 74, 245422 (2006).
[CrossRef]

R. Gomez-Medina, M. Laroche, and J. J. Saenz, "Extraordinary optical reflection from sub-wavelength cylinder arrays," Opt. Express 14, 3730-3737 (2006).
[CrossRef] [PubMed]

Graener, H.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. von Plessen, and F. Lederer, "On the use of localized plasmon polaritons in solar cells," Phys. Status Solidi A-Appl. Mater. Scie. 205, 2844-2861 (2008).
[CrossRef]

Grätzel, M.

M. Grätzel, "Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells," J. Photochem. Photobiol. A-Chem. 164, 3-14 (2004).
[CrossRef]

Gunnarsson, L.

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, "Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays," J. Phys. Chem. B 107, 7337-7342 (2003).
[CrossRef]

Hägglund, C.

C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, "Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons," Appl. Phys. Lett. 92, 053110 (2008).
[CrossRef]

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, "Enhanced Nanoplasmonic Optical Sensors with Reduced Substrate Effect," Nano Lett. 8, 3893-3898 (2008).
[CrossRef] [PubMed]

C. Hägglund, M. Zäch, and B. Kasemo, "Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons," Appl. Phys. Lett. 92, 013113 (2008).
[CrossRef]

L. Eurenius, C. Hägglund, B. Kasemo, E. Olsson, and D. Chakarov, "Grating formation by metal nanoparticle-mediated coupling of light into waveguided modes," Nat. Photonics 2, 360-364 (2008).
[CrossRef]

Hall, D. G.

H. R. Stuart and D. G. Hall, "Absorption enhancement in silicon-on-insulator waveguides using metal island films," Appl. Phys. Lett. 69, 2327-2329 (1996).
[CrossRef]

Hallermann, F.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. von Plessen, and F. Lederer, "On the use of localized plasmon polaritons in solar cells," Phys. Status Solidi A-Appl. Mater. Scie. 205, 2844-2861 (2008).
[CrossRef]

Haynes, C. L.

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, "Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays," J. Phys. Chem. B 107, 7337-7342 (2003).
[CrossRef]

Hoppe, H.

H. Hoppe, N. S. Sariciftci, and D. Meissner, "Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells," Mol. Cryst. Liquid Cryst. 385, 233-239 (2002).
[CrossRef]

Inganas, O.

L. A. A. Pettersson, S. Ghosh, and O. Inganas, "Optical anisotropy in thin films of poly(3,4-ethylenedioxythiophene)-poly(4-styrenesulfonate)," Organic Electronics 3, 143-148 (2002).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, "Optical-constants of noble-metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Kall, M.

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, "Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays," J. Phys. Chem. B 107, 7337-7342 (2003).
[CrossRef]

Käll, M.

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, "Enhanced Nanoplasmonic Optical Sensors with Reduced Substrate Effect," Nano Lett. 8, 3893-3898 (2008).
[CrossRef] [PubMed]

Kasemo, B.

C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, "Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons," Appl. Phys. Lett. 92, 053110 (2008).
[CrossRef]

C. Hägglund, M. Zäch, and B. Kasemo, "Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons," Appl. Phys. Lett. 92, 013113 (2008).
[CrossRef]

L. Eurenius, C. Hägglund, B. Kasemo, E. Olsson, and D. Chakarov, "Grating formation by metal nanoparticle-mediated coupling of light into waveguided modes," Nat. Photonics 2, 360-364 (2008).
[CrossRef]

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, "Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays," J. Phys. Chem. B 107, 7337-7342 (2003).
[CrossRef]

Khurgin, J. B.

J. B. Khurgin, G. Sun, and R. A. Soref, "Practical limits of absorption enhancement near metal nanoparticles," Appl. Phys. Lett. 94, 071103 (2009).
[CrossRef]

Klemm, E.

U. Zhokhavets, R. Goldhahn, G. Gobsch, M. Al-Ibrahim, H. K. Roth, S. Sensfuss, E. Klemm, and D. A. M. Egbe, "Anisotropic optical properties of conjugated polymer and polymer/fullerene films," Thin Solid Films 444, 215-220 (2003).
[CrossRef]

Krenn, J. R.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, "Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance," Phys. Rev. Lett. 84, 4721-4724 (2000).
[CrossRef] [PubMed]

Lamprecht, B.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, "Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance," Phys. Rev. Lett. 84, 4721-4724 (2000).
[CrossRef] [PubMed]

Laroche, M.

R. Gomez-Medina, M. Laroche, and J. J. Saenz, "Extraordinary optical reflection from sub-wavelength cylinder arrays," Opt. Express 14, 3730-3737 (2006).
[CrossRef] [PubMed]

M. Laroche, S. Albaladejo, R. Gomez-Medina, and J. J. Saenz, "Tuning the optical response of nanocylinder arrays: An analytical study," Phys. Rev. B 74, 245422 (2006).
[CrossRef]

Lechner, R. T.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, "Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance," Phys. Rev. Lett. 84, 4721-4724 (2000).
[CrossRef] [PubMed]

Lederer, F.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. von Plessen, and F. Lederer, "On the use of localized plasmon polaritons in solar cells," Phys. Status Solidi A-Appl. Mater. Scie. 205, 2844-2861 (2008).
[CrossRef]

Leitner, A.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, "Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance," Phys. Rev. Lett. 84, 4721-4724 (2000).
[CrossRef] [PubMed]

Li, E. P.

Y. A. Akimov, K. Ostrikov, and E. P. Li, "Surface Plasmon Enhancement of Optical Absorption in Thin-Film Silicon Solar Cells," Plasmonics 4, 107-113 (2009).
[CrossRef]

McFarland, A. D.

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, "Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays," J. Phys. Chem. B 107, 7337-7342 (2003).
[CrossRef]

Meissner, D.

H. Hoppe, N. S. Sariciftci, and D. Meissner, "Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells," Mol. Cryst. Liquid Cryst. 385, 233-239 (2002).
[CrossRef]

Olsson, E.

L. Eurenius, C. Hägglund, B. Kasemo, E. Olsson, and D. Chakarov, "Grating formation by metal nanoparticle-mediated coupling of light into waveguided modes," Nat. Photonics 2, 360-364 (2008).
[CrossRef]

Ostrikov, K.

Y. A. Akimov, K. Ostrikov, and E. P. Li, "Surface Plasmon Enhancement of Optical Absorption in Thin-Film Silicon Solar Cells," Plasmonics 4, 107-113 (2009).
[CrossRef]

Pacifici, D.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, "Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells," Nano Lett. 8, 4391-4397 (2008).
[CrossRef]

Pakizeh, T.

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, "Enhanced Nanoplasmonic Optical Sensors with Reduced Substrate Effect," Nano Lett. 8, 3893-3898 (2008).
[CrossRef] [PubMed]

Pascual, J.

M. I. Alonso, K. Wakita, J. Pascual, M. Garriga, and N. Yamamoto, "Optical functions and electronic structure of CuInSe2, CuGaSe2, CuInS2, and CuGaS2," Phys. Rev. B 63, 075203 (2001).
[CrossRef]

Petersson, G.

C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, "Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons," Appl. Phys. Lett. 92, 053110 (2008).
[CrossRef]

Pettersson, L. A. A.

L. A. A. Pettersson, S. Ghosh, and O. Inganas, "Optical anisotropy in thin films of poly(3,4-ethylenedioxythiophene)-poly(4-styrenesulfonate)," Organic Electronics 3, 143-148 (2002).
[CrossRef]

Peumans, P.

B. P. Rand, P. Peumans, and S. R. Forrest, "Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters," J. Appl. Phys. 96, 7519-7526 (2004).
[CrossRef]

Pinchuk, A. O.

A. O. Pinchuk and G. C. Schatz, "Nanoparticle optical properties: Far- and near-field electrodynamic coupling in a chain of silver spherical nanoparticles," Mater. Sci. Eng. B-Adv. Funct.Solid-State Mater. 149, 251-258 (2008).

Polman, A.

K. R. Catchpole and A. Polman, "Design principles for particle plasmon enhanced solar cells," Appl. Phys. Lett. 93, 191113 (2008).
[CrossRef]

Prikulis, J.

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, "Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays," J. Phys. Chem. B 107, 7337-7342 (2003).
[CrossRef]

Queisser, H. J.

H. J. Queisser, "Photovoltaic conversion at reduced dimensions," Physica E 14, 1-10 (2002).

Rand, B. P.

B. P. Rand, P. Peumans, and S. R. Forrest, "Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters," J. Appl. Phys. 96, 7519-7526 (2004).
[CrossRef]

Rockstuhl, C.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. von Plessen, and F. Lederer, "On the use of localized plasmon polaritons in solar cells," Phys. Status Solidi A-Appl. Mater. Scie. 205, 2844-2861 (2008).
[CrossRef]

Roth, H. K.

U. Zhokhavets, R. Goldhahn, G. Gobsch, M. Al-Ibrahim, H. K. Roth, S. Sensfuss, E. Klemm, and D. A. M. Egbe, "Anisotropic optical properties of conjugated polymer and polymer/fullerene films," Thin Solid Films 444, 215-220 (2003).
[CrossRef]

Saenz, J. J.

R. Gomez-Medina, M. Laroche, and J. J. Saenz, "Extraordinary optical reflection from sub-wavelength cylinder arrays," Opt. Express 14, 3730-3737 (2006).
[CrossRef] [PubMed]

M. Laroche, S. Albaladejo, R. Gomez-Medina, and J. J. Saenz, "Tuning the optical response of nanocylinder arrays: An analytical study," Phys. Rev. B 74, 245422 (2006).
[CrossRef]

Sanden, B.

B. Sanden, "Solar solution: the next industrial revolution," Materials Today 11, 22-24 (2008).
[CrossRef]

Sariciftci, N. S.

H. Hoppe, N. S. Sariciftci, and D. Meissner, "Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells," Mol. Cryst. Liquid Cryst. 385, 233-239 (2002).
[CrossRef]

Schaadt, D. M.

D. M. Schaadt, B. Feng, and E. T. Yu, "Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles," Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

Schatz, G. C.

A. O. Pinchuk and G. C. Schatz, "Nanoparticle optical properties: Far- and near-field electrodynamic coupling in a chain of silver spherical nanoparticles," Mater. Sci. Eng. B-Adv. Funct.Solid-State Mater. 149, 251-258 (2008).

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, "Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays," J. Phys. Chem. B 107, 7337-7342 (2003).
[CrossRef]

Schider, G.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, "Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance," Phys. Rev. Lett. 84, 4721-4724 (2000).
[CrossRef] [PubMed]

Seifert, G.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. von Plessen, and F. Lederer, "On the use of localized plasmon polaritons in solar cells," Phys. Status Solidi A-Appl. Mater. Scie. 205, 2844-2861 (2008).
[CrossRef]

Sensfuss, S.

U. Zhokhavets, R. Goldhahn, G. Gobsch, M. Al-Ibrahim, H. K. Roth, S. Sensfuss, E. Klemm, and D. A. M. Egbe, "Anisotropic optical properties of conjugated polymer and polymer/fullerene films," Thin Solid Films 444, 215-220 (2003).
[CrossRef]

Shen, Y. R.

F. Wang and Y. R. Shen, "General properties of local plasmons in metal nanostructures," Phys. Rev. Lett. 97, 206806 (2006).
[CrossRef] [PubMed]

Soref, R. A.

J. B. Khurgin, G. Sun, and R. A. Soref, "Practical limits of absorption enhancement near metal nanoparticles," Appl. Phys. Lett. 94, 071103 (2009).
[CrossRef]

Stuart, H. R.

H. R. Stuart and D. G. Hall, "Absorption enhancement in silicon-on-insulator waveguides using metal island films," Appl. Phys. Lett. 69, 2327-2329 (1996).
[CrossRef]

Sun, G.

J. B. Khurgin, G. Sun, and R. A. Soref, "Practical limits of absorption enhancement near metal nanoparticles," Appl. Phys. Lett. 94, 071103 (2009).
[CrossRef]

Sutherland, D. S.

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, "Enhanced Nanoplasmonic Optical Sensors with Reduced Substrate Effect," Nano Lett. 8, 3893-3898 (2008).
[CrossRef] [PubMed]

Sweatlock, L. A.

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, "Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells," Nano Lett. 8, 4391-4397 (2008).
[CrossRef]

Van Duyne, R. P.

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, "Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays," J. Phys. Chem. B 107, 7337-7342 (2003).
[CrossRef]

von Plessen, G.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. von Plessen, and F. Lederer, "On the use of localized plasmon polaritons in solar cells," Phys. Status Solidi A-Appl. Mater. Scie. 205, 2844-2861 (2008).
[CrossRef]

Wackerow, S.

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. von Plessen, and F. Lederer, "On the use of localized plasmon polaritons in solar cells," Phys. Status Solidi A-Appl. Mater. Scie. 205, 2844-2861 (2008).
[CrossRef]

Wakita, K.

M. I. Alonso, K. Wakita, J. Pascual, M. Garriga, and N. Yamamoto, "Optical functions and electronic structure of CuInSe2, CuGaSe2, CuInS2, and CuGaS2," Phys. Rev. B 63, 075203 (2001).
[CrossRef]

Wang, F.

F. Wang and Y. R. Shen, "General properties of local plasmons in metal nanostructures," Phys. Rev. Lett. 97, 206806 (2006).
[CrossRef] [PubMed]

Yamamoto, N.

M. I. Alonso, K. Wakita, J. Pascual, M. Garriga, and N. Yamamoto, "Optical functions and electronic structure of CuInSe2, CuGaSe2, CuInS2, and CuGaS2," Phys. Rev. B 63, 075203 (2001).
[CrossRef]

Yu, E. T.

D. M. Schaadt, B. Feng, and E. T. Yu, "Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles," Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

Zäch, M.

C. Hägglund, M. Zäch, and B. Kasemo, "Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons," Appl. Phys. Lett. 92, 013113 (2008).
[CrossRef]

C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, "Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons," Appl. Phys. Lett. 92, 053110 (2008).
[CrossRef]

Zhao, L. L.

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, "Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays," J. Phys. Chem. B 107, 7337-7342 (2003).
[CrossRef]

Zhokhavets, U.

U. Zhokhavets, R. Goldhahn, G. Gobsch, M. Al-Ibrahim, H. K. Roth, S. Sensfuss, E. Klemm, and D. A. M. Egbe, "Anisotropic optical properties of conjugated polymer and polymer/fullerene films," Thin Solid Films 444, 215-220 (2003).
[CrossRef]

Appl. Phys. Lett. (6)

C. Hägglund, M. Zäch, and B. Kasemo, "Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons," Appl. Phys. Lett. 92, 013113 (2008).
[CrossRef]

C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, "Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons," Appl. Phys. Lett. 92, 053110 (2008).
[CrossRef]

K. R. Catchpole and A. Polman, "Design principles for particle plasmon enhanced solar cells," Appl. Phys. Lett. 93, 191113 (2008).
[CrossRef]

H. R. Stuart and D. G. Hall, "Absorption enhancement in silicon-on-insulator waveguides using metal island films," Appl. Phys. Lett. 69, 2327-2329 (1996).
[CrossRef]

D. M. Schaadt, B. Feng, and E. T. Yu, "Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles," Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

J. B. Khurgin, G. Sun, and R. A. Soref, "Practical limits of absorption enhancement near metal nanoparticles," Appl. Phys. Lett. 94, 071103 (2009).
[CrossRef]

J. Appl. Phys. (1)

B. P. Rand, P. Peumans, and S. R. Forrest, "Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters," J. Appl. Phys. 96, 7519-7526 (2004).
[CrossRef]

J. Photochem. Photobiol. A-Chem. (1)

M. Grätzel, "Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells," J. Photochem. Photobiol. A-Chem. 164, 3-14 (2004).
[CrossRef]

J. Phys. Chem. (1)

J. R. Bolton and M. D. Archer, "Requirements for Ideal Performance of Photochemical and Photovoltaic Solar Energy Converters," J. Phys. Chem. 94, 8028-8036 (1990).
[CrossRef]

J. Phys. Chem. B (1)

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, "Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays," J. Phys. Chem. B 107, 7337-7342 (2003).
[CrossRef]

Materials Today (1)

B. Sanden, "Solar solution: the next industrial revolution," Materials Today 11, 22-24 (2008).
[CrossRef]

Mol. Cryst. Liquid Cryst. (1)

H. Hoppe, N. S. Sariciftci, and D. Meissner, "Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells," Mol. Cryst. Liquid Cryst. 385, 233-239 (2002).
[CrossRef]

Nano Lett. (2)

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, "Enhanced Nanoplasmonic Optical Sensors with Reduced Substrate Effect," Nano Lett. 8, 3893-3898 (2008).
[CrossRef] [PubMed]

V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, "Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells," Nano Lett. 8, 4391-4397 (2008).
[CrossRef]

Nat. Photonics (1)

L. Eurenius, C. Hägglund, B. Kasemo, E. Olsson, and D. Chakarov, "Grating formation by metal nanoparticle-mediated coupling of light into waveguided modes," Nat. Photonics 2, 360-364 (2008).
[CrossRef]

Opt. Express (1)

Organic Electronics (1)

L. A. A. Pettersson, S. Ghosh, and O. Inganas, "Optical anisotropy in thin films of poly(3,4-ethylenedioxythiophene)-poly(4-styrenesulfonate)," Organic Electronics 3, 143-148 (2002).
[CrossRef]

Phys. Rev. B (3)

M. I. Alonso, K. Wakita, J. Pascual, M. Garriga, and N. Yamamoto, "Optical functions and electronic structure of CuInSe2, CuGaSe2, CuInS2, and CuGaS2," Phys. Rev. B 63, 075203 (2001).
[CrossRef]

M. Laroche, S. Albaladejo, R. Gomez-Medina, and J. J. Saenz, "Tuning the optical response of nanocylinder arrays: An analytical study," Phys. Rev. B 74, 245422 (2006).
[CrossRef]

P. B. Johnson and R. W. Christy, "Optical-constants of noble-metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Phys. Rev. Lett. (2)

F. Wang and Y. R. Shen, "General properties of local plasmons in metal nanostructures," Phys. Rev. Lett. 97, 206806 (2006).
[CrossRef] [PubMed]

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, "Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance," Phys. Rev. Lett. 84, 4721-4724 (2000).
[CrossRef] [PubMed]

Phys. Status Solidi A-Appl. Mater. Scie. (1)

F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. von Plessen, and F. Lederer, "On the use of localized plasmon polaritons in solar cells," Phys. Status Solidi A-Appl. Mater. Scie. 205, 2844-2861 (2008).
[CrossRef]

Physica E (1)

H. J. Queisser, "Photovoltaic conversion at reduced dimensions," Physica E 14, 1-10 (2002).

Plasmonics (1)

Y. A. Akimov, K. Ostrikov, and E. P. Li, "Surface Plasmon Enhancement of Optical Absorption in Thin-Film Silicon Solar Cells," Plasmonics 4, 107-113 (2009).
[CrossRef]

Rev. Mod. Phys. (1)

F. J. G. de Abajo, "Colloquium: Light scattering by particle and hole arrays," Rev. Mod. Phys. 79, 1267-1290 (2007).
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

A. Goetzberger, J. Goldschmidt, C., M. Peters, and P. Löper, "Light trapping, a new approach to spectrum splitting," Sol. Energy Mater. Sol. Cells 92,1570-1578 (2008).
[CrossRef]

Solid-State Mater. (1)

A. O. Pinchuk and G. C. Schatz, "Nanoparticle optical properties: Far- and near-field electrodynamic coupling in a chain of silver spherical nanoparticles," Mater. Sci. Eng. B-Adv. Funct.Solid-State Mater. 149, 251-258 (2008).

Thin Solid Films (1)

U. Zhokhavets, R. Goldhahn, G. Gobsch, M. Al-Ibrahim, H. K. Roth, S. Sensfuss, E. Klemm, and D. A. M. Egbe, "Anisotropic optical properties of conjugated polymer and polymer/fullerene films," Thin Solid Films 444, 215-220 (2003).
[CrossRef]

Other (9)

This is an easily verified consequence of the governing equation. See for instance A. J. Mallinckrodt, "The Sinusoidally Forced, Linearly Damped, Simple Harmonic Oscillator" (2000), retrieved June 16, 2009, http://www.csupomona.edu/~ajm/classes/phyXXX/dho.pdf.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, Weinheim, 2004).

I. A. Larkin, M. I. Stockman, M. Achermann, and V. I. Klimov, "Dipolar emitters at nanoscale proximity of metal surfaces: Giant enhancement of relaxation in microscopic theory," Phys. Rev. B 69, 121403(R) (2004).
[CrossRef]

Carl Hägglund, Dept. of Applied Physics, Chalmers University of Technology, Fysikgränd 3, 41296 Göteborg, Sweden, S. Peter Apell and Bengt Kasemo are preparing a manuscript to be called "Maximized optical absorption in the thin film limit and its application to plasmon based 2D-photovoltaics".

A reflective layer placed immediately behind the particle array results in destructive interference and reduced absorption in the PV layer.

D. E. Aspnes, "Chapter 12. Optical properties.," in Properties of Crystalline Silicon, R. Hull, ed. (INSPEC, IEE, London, 1999).

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Springer Series in Materials Science (Springer, New York, 1995), Vol. 25.

C. Hägglund, "Nanoparticle plasmon influence on the charge carrier generation in solar cells," Doctoral Thesis (Chalmers University of Technology, Göteborg, 2008).

J. J. Sakurai, Modern Quantum Mechanics, Revised ed. (Addison-Wesley Publishing Company, Reading, Massachusetts, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Representations of the simulated metal (grey) plasmonic nanoparticle arrays, in contact with the PV absorbing material (blue), the latter in the form of shells around or as a layer underneath the plasmonic particles. A plane wave is incident along positive x, with its E-field in parallel with z. The boundary conditions simulate infinite periodicities Λy and Λz in the y-and z-coordinates, respectively. The particles are spheroidal or hemi-spheroidal, with major semi-axis a along z, b along y and minor semi-axis c along the propagation direction x. Unless otherwise stated the metal particle volume is 25600 nm3, corresponding to an effective thickness of 1 nm for 160 nm average particle spacing. In (a), each metal particle constitutes the core of a core-shell structure, where the shell is absorbing. The shell is defined by a spheroid having semi-axes lengths a+d, b+d and c+d, in the z, y and x-directions, respectively. The reference for this system is an identical array, but with the metal cores replaced by the same absorbing material as in the shells. In (b), hemi-spheroidal metal particles are placed on top of a planar absorbing layer of thickness d. The reference for this system is obtained by removing the metal.

Fig. 2.
Fig. 2.

Absorption A in a PV shell, plasmon induced absorption ΔA, far-field transmittance T and reflectance R for arrays of core-shell particles. The array constants are Λy =Λz =480 nm in (a) and (b), Λy =Λz =160 nm in (c) and (d), and Λy =Λz =110 nm in (e) and (f). The dependence on the shell extinction coefficient κ at the plasmon resonance is shown in the left column [(a), (c) and (e)] for a fixed plasmon resonance wavelength of 900 nm. The dependence on wavelength is shown in the right column, for the extinction coefficients maximizing A in the left column. These values are κ=0.014 in (b), κ=0.14 in (d) and κ=0.27 in (f), respectively.

Fig. 3.
Fig. 3.

(a) Plasmon induced absorption for arrays of core-shell particles, in the metal cores (Amet , +-symbols) and absorbing shells with d=10 nm (ΔA, no symbols), as a function of κ. The refractive indices of the dielectric environment and the shell are ne =n=1.5, respectively, and the array constants (Λy, Λz ) are varied as shown in nm units. In (b), the peak values ∇A(κ o) and the optimal extinction coefficients κ o, are shown as functions of the average particle spacing (ΛyΛz )1/2. The data for (b) were obtained by using the spline interpolated curves shown in (a). The lines in (b) are drawn between data points from the square arrays (Λy =Λz ), but data points for the asymmetric arrays are also included (see symbols).

Fig. 4.
Fig. 4.

(a) Plasmon induced absorption in the metal cores (Amet , with +-symbols) and in the PV shells (ΔA, no symbols) for arrays of core-shell particles with Λy =Λz =250 nm. The refractive indices of the dielectric environment and the shell are ne =n=1.5, respectively, and the shell thickness is varied. The solid lines are for oblate particles (semi-axes a=b>c), and the dashed lines are for a prolate particle (semi-axes a>b=c) of the same core volume, oriented with their longest axis in the E-field direction. (b) The optimal value κo of the extinction coefficient is shown as a function of the inverse PV layer thickness d, interpolated from the data shown in (a) for the oblate core-shell structures, and for the data of planar PV layers presented in Fig. 7. The inset equations are used for the fitted lines.

Fig. 5.
Fig. 5.

Cuts through core-shell particles (x-z plane) showing the distribution of absorption rates in the Ag cores and in (a) a weakly absorbing PV shell and (b) a PV shell with a close to optimal extinction coefficient (giving ΔA>40%). The conditions are otherwise as for Fig. 3, with symmetric particle spacings of 160 nm. The streamlines show the associated Poynting vector energy flow.

Fig. 6.
Fig. 6.

Plasmon induced absorption in the metal core (+-symbols) and PV shell for a shell thickness fixed to d=10 nm, and varying refractive indices according to the (ne, n) pairs indicated. Conditions are otherwise as in Fig. 4.

Fig. 7.
Fig. 7.

Plasmon induced absorption in an array of metal hemi-spheroids (Amet , with +-symbols) and in the planar PV layer underneath (ΔA, no symbols), as a function of the PV layer extinction coefficient. The array constants are fixed at Λy =Λz =250 nm. In (a), the refractive indices are ni =n=ns =1.5, and the layer thickness is varied according to the inset. In (b), the layer thickness is kept constant at d=10 nm, and the refractive indices are varied according to the triplets (ni, n, ns ) as indicated.

Fig. 8.
Fig. 8.

Absorption (A in PV layer, Amet in particles) and other quantities (far-field transmittance T and reflectance R) for a 10 nm thick planar CIS layer with a square array of Ag hemispheroids placed on top. The hemi-spheroid volume was taken to the value used elsewhere in this study (25600 nm3), and the particle eccentricity was adjusted to position the resonance at about 900 nm wavelength. Refractive indices of ni =3 and ns =1.5 were assumed in front of and behind the film, respectively. The array constants were chosen to Λy =Λz =120 nm, which roughly maximize the plasmon induced absorption ΔA for this system. The reference absorption Aref is included for a clear comparison.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ Q=Q Qref ,
Δ Q=ΔA=AAref,
κo=dd+κo,inf

Metrics