Y. A. Akimov, K. Ostrikov, and E. P. Li, “Surface Plasmon Enhancement of Optical Absorption in Thin-Film Silicon Solar Cells,” Plasmonics 4, 107–113 (2009).
[Crossref]
J. B. Khurgin, G. Sun, and R. A. Soref, “Practical limits of absorption enhancement near metal nanoparticles,” Appl. Phys. Lett. 94, 071103 (2009).
[Crossref]
B. Sanden, “Solar solution: the next industrial revolution,” Materials Today 11, 22–24 (2008).
[Crossref]
C. Hägglund, M. Zäch, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92, 013113 (2008).
[Crossref]
C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92, 053110 (2008).
[Crossref]
L. Eurenius, C. Hägglund, B. Kasemo, E. Olsson, and D. Chakarov, “Grating formation by metal nanoparticle-mediated coupling of light into waveguided modes,” Nature Photonics2, 360–364 (2008).
[Crossref]
K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93, 191113 (2008).
[Crossref]
V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells,” Nano Lett. 8, 4391–4397 (2008).
[Crossref]
A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced Nanoplasmonic Optical Sensors with Reduced Substrate Effect,” Nano Lett. 8, 3893–3898 (2008).
[Crossref]
[PubMed]
A. Goetzberger, J. Goldschmidt, C., M. Peters, and P. Löper, “Light trapping, a new approach to spectrum splitting,” Sol. Energy Mater. Sol. Cells 92, 1570–1578 (2008).
[Crossref]
A. O. Pinchuk and G. C. Schatz, “Nanoparticle optical properties: Far- and near-field electrodynamic coupling in a chain of silver spherical nanoparticles,” Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 149, 251–258 (2008).
F. J. G. de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
[Crossref]
M. Laroche, S. Albaladejo, R. Gomez-Medina, and J. J. Saenz, “Tuning the optical response of nanocylinder arrays: An analytical study,” Phys. Rev. B 74, 245422 (2006).
[Crossref]
R. Gomez-Medina, M. Laroche, and J. J. Saenz, “Extraordinary optical reflection from sub-wavelength cylinder arrays,” Opt. Express 14, 3730–3737 (2006).
[Crossref]
[PubMed]
F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97, 206806 (2006).
[Crossref]
[PubMed]
D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[Crossref]
B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96, 7519–7526 (2004).
[Crossref]
M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells,” J. Photochem. Photobiol. A-Chem. 164, 3–14 (2004).
[Crossref]
I. A. Larkin, M. I. Stockman, M. Achermann, and V. I. Klimov, “Dipolar emitters at nanoscale proximity of metal surfaces: Giant enhancement of relaxation in microscopic theory,” Phys. Rev. B 69, 121403(R) (2004).
[Crossref]
C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: The importance of radiative dipole coupling in twodimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[Crossref]
U. Zhokhavets, R. Goldhahn, G. Gobsch, M. Al-Ibrahim, H. K. Roth, S. Sensfuss, E. Klemm, and D. A. M. Egbe “Anisotropic optical properties of conjugated polymer and polymer/fullerene films,” Thin Solid Films 444, 215–220 (2003).
[Crossref]
H. Hoppe, N. S. Sariciftci, and D. Meissner, “Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells,” Mol. Cryst. Liquid Cryst. 385, 233–239 (2002).
[Crossref]
L. A. A. Pettersson, S. Ghosh, and O. Inganas, “Optical anisotropy in thin films of poly(3,4-ethylenedioxythiophene)-poly(4-styrenesulfonate),” Organic Electronics 3, 143–148 (2002).
[Crossref]
H. J. Queisser, “Photovoltaic conversion at reduced dimensions,” Physica E 14, 1–10 (2002).
M. I. Alonso, K. Wakita, J. Pascual, M. Garriga, and N. Yamamoto, “Optical functions and electronic structure of CuInSe2, CuGaSe2, CuInS2, and CuGaS2,” Phys. Rev. B 63, 075203 (2001).
[Crossref]
B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[Crossref]
[PubMed]
H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69, 2327–2329 (1996).
[Crossref]
J. R. Bolton and M. D. Archer, “Requirements for Ideal Performance of Photochemical and Photovoltaic Solar Energy Converters,” J. Phys. Chem. 94, 8028–8036 (1990).
[Crossref]
P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]
I. A. Larkin, M. I. Stockman, M. Achermann, and V. I. Klimov, “Dipolar emitters at nanoscale proximity of metal surfaces: Giant enhancement of relaxation in microscopic theory,” Phys. Rev. B 69, 121403(R) (2004).
[Crossref]
Y. A. Akimov, K. Ostrikov, and E. P. Li, “Surface Plasmon Enhancement of Optical Absorption in Thin-Film Silicon Solar Cells,” Plasmonics 4, 107–113 (2009).
[Crossref]
M. Laroche, S. Albaladejo, R. Gomez-Medina, and J. J. Saenz, “Tuning the optical response of nanocylinder arrays: An analytical study,” Phys. Rev. B 74, 245422 (2006).
[Crossref]
U. Zhokhavets, R. Goldhahn, G. Gobsch, M. Al-Ibrahim, H. K. Roth, S. Sensfuss, E. Klemm, and D. A. M. Egbe “Anisotropic optical properties of conjugated polymer and polymer/fullerene films,” Thin Solid Films 444, 215–220 (2003).
[Crossref]
M. I. Alonso, K. Wakita, J. Pascual, M. Garriga, and N. Yamamoto, “Optical functions and electronic structure of CuInSe2, CuGaSe2, CuInS2, and CuGaS2,” Phys. Rev. B 63, 075203 (2001).
[Crossref]
J. R. Bolton and M. D. Archer, “Requirements for Ideal Performance of Photochemical and Photovoltaic Solar Energy Converters,” J. Phys. Chem. 94, 8028–8036 (1990).
[Crossref]
D. E. Aspnes, “Chapter 12. Optical properties.,” in Properties of Crystalline Silicon, R. Hull, ed. (INSPEC, IEE, London, 1999).
V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells,” Nano Lett. 8, 4391–4397 (2008).
[Crossref]
B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[Crossref]
[PubMed]
C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, Weinheim, 2004).
J. R. Bolton and M. D. Archer, “Requirements for Ideal Performance of Photochemical and Photovoltaic Solar Energy Converters,” J. Phys. Chem. 94, 8028–8036 (1990).
[Crossref]
K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93, 191113 (2008).
[Crossref]
L. Eurenius, C. Hägglund, B. Kasemo, E. Olsson, and D. Chakarov, “Grating formation by metal nanoparticle-mediated coupling of light into waveguided modes,” Nature Photonics2, 360–364 (2008).
[Crossref]
A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced Nanoplasmonic Optical Sensors with Reduced Substrate Effect,” Nano Lett. 8, 3893–3898 (2008).
[Crossref]
[PubMed]
P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]
F. J. G. de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
[Crossref]
B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[Crossref]
[PubMed]
A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced Nanoplasmonic Optical Sensors with Reduced Substrate Effect,” Nano Lett. 8, 3893–3898 (2008).
[Crossref]
[PubMed]
U. Zhokhavets, R. Goldhahn, G. Gobsch, M. Al-Ibrahim, H. K. Roth, S. Sensfuss, E. Klemm, and D. A. M. Egbe “Anisotropic optical properties of conjugated polymer and polymer/fullerene films,” Thin Solid Films 444, 215–220 (2003).
[Crossref]
L. Eurenius, C. Hägglund, B. Kasemo, E. Olsson, and D. Chakarov, “Grating formation by metal nanoparticle-mediated coupling of light into waveguided modes,” Nature Photonics2, 360–364 (2008).
[Crossref]
F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. von Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A-Appl. Mater. Scie. 205, 2844–2861 (0).
[Crossref]
D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[Crossref]
V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells,” Nano Lett. 8, 4391–4397 (2008).
[Crossref]
B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96, 7519–7526 (2004).
[Crossref]
A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced Nanoplasmonic Optical Sensors with Reduced Substrate Effect,” Nano Lett. 8, 3893–3898 (2008).
[Crossref]
[PubMed]
M. I. Alonso, K. Wakita, J. Pascual, M. Garriga, and N. Yamamoto, “Optical functions and electronic structure of CuInSe2, CuGaSe2, CuInS2, and CuGaS2,” Phys. Rev. B 63, 075203 (2001).
[Crossref]
L. A. A. Pettersson, S. Ghosh, and O. Inganas, “Optical anisotropy in thin films of poly(3,4-ethylenedioxythiophene)-poly(4-styrenesulfonate),” Organic Electronics 3, 143–148 (2002).
[Crossref]
U. Zhokhavets, R. Goldhahn, G. Gobsch, M. Al-Ibrahim, H. K. Roth, S. Sensfuss, E. Klemm, and D. A. M. Egbe “Anisotropic optical properties of conjugated polymer and polymer/fullerene films,” Thin Solid Films 444, 215–220 (2003).
[Crossref]
A. Goetzberger, J. Goldschmidt, C., M. Peters, and P. Löper, “Light trapping, a new approach to spectrum splitting,” Sol. Energy Mater. Sol. Cells 92, 1570–1578 (2008).
[Crossref]
U. Zhokhavets, R. Goldhahn, G. Gobsch, M. Al-Ibrahim, H. K. Roth, S. Sensfuss, E. Klemm, and D. A. M. Egbe “Anisotropic optical properties of conjugated polymer and polymer/fullerene films,” Thin Solid Films 444, 215–220 (2003).
[Crossref]
A. Goetzberger, J. Goldschmidt, C., M. Peters, and P. Löper, “Light trapping, a new approach to spectrum splitting,” Sol. Energy Mater. Sol. Cells 92, 1570–1578 (2008).
[Crossref]
M. Laroche, S. Albaladejo, R. Gomez-Medina, and J. J. Saenz, “Tuning the optical response of nanocylinder arrays: An analytical study,” Phys. Rev. B 74, 245422 (2006).
[Crossref]
R. Gomez-Medina, M. Laroche, and J. J. Saenz, “Extraordinary optical reflection from sub-wavelength cylinder arrays,” Opt. Express 14, 3730–3737 (2006).
[Crossref]
[PubMed]
F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. von Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A-Appl. Mater. Scie. 205, 2844–2861 (0).
[Crossref]
M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells,” J. Photochem. Photobiol. A-Chem. 164, 3–14 (2004).
[Crossref]
C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: The importance of radiative dipole coupling in twodimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[Crossref]
L. Eurenius, C. Hägglund, B. Kasemo, E. Olsson, and D. Chakarov, “Grating formation by metal nanoparticle-mediated coupling of light into waveguided modes,” Nature Photonics2, 360–364 (2008).
[Crossref]
A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced Nanoplasmonic Optical Sensors with Reduced Substrate Effect,” Nano Lett. 8, 3893–3898 (2008).
[Crossref]
[PubMed]
C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92, 053110 (2008).
[Crossref]
C. Hägglund, M. Zäch, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92, 013113 (2008).
[Crossref]
C. Hägglund, “Nanoparticle plasmon influence on the charge carrier generation in solar cells,” Doctoral Thesis (Chalmers University of Technology, Göteborg, 2008).
Carl Hägglund , Dept. of Applied Physics, Chalmers University of Technology, Fysikgränd 3, 41296 Göteborg, Sweden, S. Peter Apell and Bengt Kasemo are preparing a manuscript to be called “Maximized optical absorption in the thin film limit and its application to plasmon based 2D-photovoltaics”.
H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69, 2327–2329 (1996).
[Crossref]
F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. von Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A-Appl. Mater. Scie. 205, 2844–2861 (0).
[Crossref]
C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: The importance of radiative dipole coupling in twodimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[Crossref]
H. Hoppe, N. S. Sariciftci, and D. Meissner, “Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells,” Mol. Cryst. Liquid Cryst. 385, 233–239 (2002).
[Crossref]
C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, Weinheim, 2004).
L. A. A. Pettersson, S. Ghosh, and O. Inganas, “Optical anisotropy in thin films of poly(3,4-ethylenedioxythiophene)-poly(4-styrenesulfonate),” Organic Electronics 3, 143–148 (2002).
[Crossref]
P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]
C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: The importance of radiative dipole coupling in twodimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[Crossref]
A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced Nanoplasmonic Optical Sensors with Reduced Substrate Effect,” Nano Lett. 8, 3893–3898 (2008).
[Crossref]
[PubMed]
C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92, 053110 (2008).
[Crossref]
C. Hägglund, M. Zäch, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92, 013113 (2008).
[Crossref]
L. Eurenius, C. Hägglund, B. Kasemo, E. Olsson, and D. Chakarov, “Grating formation by metal nanoparticle-mediated coupling of light into waveguided modes,” Nature Photonics2, 360–364 (2008).
[Crossref]
C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: The importance of radiative dipole coupling in twodimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[Crossref]
J. B. Khurgin, G. Sun, and R. A. Soref, “Practical limits of absorption enhancement near metal nanoparticles,” Appl. Phys. Lett. 94, 071103 (2009).
[Crossref]
U. Zhokhavets, R. Goldhahn, G. Gobsch, M. Al-Ibrahim, H. K. Roth, S. Sensfuss, E. Klemm, and D. A. M. Egbe “Anisotropic optical properties of conjugated polymer and polymer/fullerene films,” Thin Solid Films 444, 215–220 (2003).
[Crossref]
I. A. Larkin, M. I. Stockman, M. Achermann, and V. I. Klimov, “Dipolar emitters at nanoscale proximity of metal surfaces: Giant enhancement of relaxation in microscopic theory,” Phys. Rev. B 69, 121403(R) (2004).
[Crossref]
U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Springer Series in Materials Science (Springer, New York,1995), Vol. 25.
B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[Crossref]
[PubMed]
B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[Crossref]
[PubMed]
I. A. Larkin, M. I. Stockman, M. Achermann, and V. I. Klimov, “Dipolar emitters at nanoscale proximity of metal surfaces: Giant enhancement of relaxation in microscopic theory,” Phys. Rev. B 69, 121403(R) (2004).
[Crossref]
M. Laroche, S. Albaladejo, R. Gomez-Medina, and J. J. Saenz, “Tuning the optical response of nanocylinder arrays: An analytical study,” Phys. Rev. B 74, 245422 (2006).
[Crossref]
R. Gomez-Medina, M. Laroche, and J. J. Saenz, “Extraordinary optical reflection from sub-wavelength cylinder arrays,” Opt. Express 14, 3730–3737 (2006).
[Crossref]
[PubMed]
B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[Crossref]
[PubMed]
F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. von Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A-Appl. Mater. Scie. 205, 2844–2861 (0).
[Crossref]
B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[Crossref]
[PubMed]
Y. A. Akimov, K. Ostrikov, and E. P. Li, “Surface Plasmon Enhancement of Optical Absorption in Thin-Film Silicon Solar Cells,” Plasmonics 4, 107–113 (2009).
[Crossref]
A. Goetzberger, J. Goldschmidt, C., M. Peters, and P. Löper, “Light trapping, a new approach to spectrum splitting,” Sol. Energy Mater. Sol. Cells 92, 1570–1578 (2008).
[Crossref]
This is an easily verified consequence of the governing equation. See for instance A. J. Mallinckrodt, “The Sinusoidally Forced, Linearly Damped, Simple Harmonic Oscillator” (2000), retrieved June 16, 2009, http://www.csupomona.edu/~ajm/classes/phyXXX/dho.pdf.
C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: The importance of radiative dipole coupling in twodimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[Crossref]
H. Hoppe, N. S. Sariciftci, and D. Meissner, “Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells,” Mol. Cryst. Liquid Cryst. 385, 233–239 (2002).
[Crossref]
L. Eurenius, C. Hägglund, B. Kasemo, E. Olsson, and D. Chakarov, “Grating formation by metal nanoparticle-mediated coupling of light into waveguided modes,” Nature Photonics2, 360–364 (2008).
[Crossref]
Y. A. Akimov, K. Ostrikov, and E. P. Li, “Surface Plasmon Enhancement of Optical Absorption in Thin-Film Silicon Solar Cells,” Plasmonics 4, 107–113 (2009).
[Crossref]
V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells,” Nano Lett. 8, 4391–4397 (2008).
[Crossref]
A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced Nanoplasmonic Optical Sensors with Reduced Substrate Effect,” Nano Lett. 8, 3893–3898 (2008).
[Crossref]
[PubMed]
M. I. Alonso, K. Wakita, J. Pascual, M. Garriga, and N. Yamamoto, “Optical functions and electronic structure of CuInSe2, CuGaSe2, CuInS2, and CuGaS2,” Phys. Rev. B 63, 075203 (2001).
[Crossref]
Carl Hägglund , Dept. of Applied Physics, Chalmers University of Technology, Fysikgränd 3, 41296 Göteborg, Sweden, S. Peter Apell and Bengt Kasemo are preparing a manuscript to be called “Maximized optical absorption in the thin film limit and its application to plasmon based 2D-photovoltaics”.
A. Goetzberger, J. Goldschmidt, C., M. Peters, and P. Löper, “Light trapping, a new approach to spectrum splitting,” Sol. Energy Mater. Sol. Cells 92, 1570–1578 (2008).
[Crossref]
C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92, 053110 (2008).
[Crossref]
L. A. A. Pettersson, S. Ghosh, and O. Inganas, “Optical anisotropy in thin films of poly(3,4-ethylenedioxythiophene)-poly(4-styrenesulfonate),” Organic Electronics 3, 143–148 (2002).
[Crossref]
B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96, 7519–7526 (2004).
[Crossref]
A. O. Pinchuk and G. C. Schatz, “Nanoparticle optical properties: Far- and near-field electrodynamic coupling in a chain of silver spherical nanoparticles,” Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 149, 251–258 (2008).
K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93, 191113 (2008).
[Crossref]
C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: The importance of radiative dipole coupling in twodimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[Crossref]
H. J. Queisser, “Photovoltaic conversion at reduced dimensions,” Physica E 14, 1–10 (2002).
B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96, 7519–7526 (2004).
[Crossref]
F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. von Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A-Appl. Mater. Scie. 205, 2844–2861 (0).
[Crossref]
U. Zhokhavets, R. Goldhahn, G. Gobsch, M. Al-Ibrahim, H. K. Roth, S. Sensfuss, E. Klemm, and D. A. M. Egbe “Anisotropic optical properties of conjugated polymer and polymer/fullerene films,” Thin Solid Films 444, 215–220 (2003).
[Crossref]
R. Gomez-Medina, M. Laroche, and J. J. Saenz, “Extraordinary optical reflection from sub-wavelength cylinder arrays,” Opt. Express 14, 3730–3737 (2006).
[Crossref]
[PubMed]
M. Laroche, S. Albaladejo, R. Gomez-Medina, and J. J. Saenz, “Tuning the optical response of nanocylinder arrays: An analytical study,” Phys. Rev. B 74, 245422 (2006).
[Crossref]
J. J. Sakurai, Modern Quantum Mechanics, Revised ed. (Addison-Wesley Publishing Company, Reading, Massachusetts, 1994).
B. Sanden, “Solar solution: the next industrial revolution,” Materials Today 11, 22–24 (2008).
[Crossref]
H. Hoppe, N. S. Sariciftci, and D. Meissner, “Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells,” Mol. Cryst. Liquid Cryst. 385, 233–239 (2002).
[Crossref]
D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[Crossref]
A. O. Pinchuk and G. C. Schatz, “Nanoparticle optical properties: Far- and near-field electrodynamic coupling in a chain of silver spherical nanoparticles,” Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 149, 251–258 (2008).
C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: The importance of radiative dipole coupling in twodimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[Crossref]
B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[Crossref]
[PubMed]
F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. von Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A-Appl. Mater. Scie. 205, 2844–2861 (0).
[Crossref]
U. Zhokhavets, R. Goldhahn, G. Gobsch, M. Al-Ibrahim, H. K. Roth, S. Sensfuss, E. Klemm, and D. A. M. Egbe “Anisotropic optical properties of conjugated polymer and polymer/fullerene films,” Thin Solid Films 444, 215–220 (2003).
[Crossref]
F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97, 206806 (2006).
[Crossref]
[PubMed]
J. B. Khurgin, G. Sun, and R. A. Soref, “Practical limits of absorption enhancement near metal nanoparticles,” Appl. Phys. Lett. 94, 071103 (2009).
[Crossref]
I. A. Larkin, M. I. Stockman, M. Achermann, and V. I. Klimov, “Dipolar emitters at nanoscale proximity of metal surfaces: Giant enhancement of relaxation in microscopic theory,” Phys. Rev. B 69, 121403(R) (2004).
[Crossref]
H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69, 2327–2329 (1996).
[Crossref]
J. B. Khurgin, G. Sun, and R. A. Soref, “Practical limits of absorption enhancement near metal nanoparticles,” Appl. Phys. Lett. 94, 071103 (2009).
[Crossref]
A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced Nanoplasmonic Optical Sensors with Reduced Substrate Effect,” Nano Lett. 8, 3893–3898 (2008).
[Crossref]
[PubMed]
V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells,” Nano Lett. 8, 4391–4397 (2008).
[Crossref]
C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: The importance of radiative dipole coupling in twodimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[Crossref]
U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Springer Series in Materials Science (Springer, New York,1995), Vol. 25.
F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. von Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A-Appl. Mater. Scie. 205, 2844–2861 (0).
[Crossref]
F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. von Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A-Appl. Mater. Scie. 205, 2844–2861 (0).
[Crossref]
M. I. Alonso, K. Wakita, J. Pascual, M. Garriga, and N. Yamamoto, “Optical functions and electronic structure of CuInSe2, CuGaSe2, CuInS2, and CuGaS2,” Phys. Rev. B 63, 075203 (2001).
[Crossref]
F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97, 206806 (2006).
[Crossref]
[PubMed]
M. I. Alonso, K. Wakita, J. Pascual, M. Garriga, and N. Yamamoto, “Optical functions and electronic structure of CuInSe2, CuGaSe2, CuInS2, and CuGaS2,” Phys. Rev. B 63, 075203 (2001).
[Crossref]
D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[Crossref]
C. Hägglund, M. Zäch, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92, 013113 (2008).
[Crossref]
C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92, 053110 (2008).
[Crossref]
C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: The importance of radiative dipole coupling in twodimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[Crossref]
U. Zhokhavets, R. Goldhahn, G. Gobsch, M. Al-Ibrahim, H. K. Roth, S. Sensfuss, E. Klemm, and D. A. M. Egbe “Anisotropic optical properties of conjugated polymer and polymer/fullerene films,” Thin Solid Films 444, 215–220 (2003).
[Crossref]
C. Hägglund, M. Zäch, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92, 013113 (2008).
[Crossref]
C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92, 053110 (2008).
[Crossref]
K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93, 191113 (2008).
[Crossref]
H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69, 2327–2329 (1996).
[Crossref]
D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[Crossref]
J. B. Khurgin, G. Sun, and R. A. Soref, “Practical limits of absorption enhancement near metal nanoparticles,” Appl. Phys. Lett. 94, 071103 (2009).
[Crossref]
B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96, 7519–7526 (2004).
[Crossref]
M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells,” J. Photochem. Photobiol. A-Chem. 164, 3–14 (2004).
[Crossref]
J. R. Bolton and M. D. Archer, “Requirements for Ideal Performance of Photochemical and Photovoltaic Solar Energy Converters,” J. Phys. Chem. 94, 8028–8036 (1990).
[Crossref]
C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: The importance of radiative dipole coupling in twodimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003).
[Crossref]
A. O. Pinchuk and G. C. Schatz, “Nanoparticle optical properties: Far- and near-field electrodynamic coupling in a chain of silver spherical nanoparticles,” Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 149, 251–258 (2008).
B. Sanden, “Solar solution: the next industrial revolution,” Materials Today 11, 22–24 (2008).
[Crossref]
H. Hoppe, N. S. Sariciftci, and D. Meissner, “Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells,” Mol. Cryst. Liquid Cryst. 385, 233–239 (2002).
[Crossref]
A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced Nanoplasmonic Optical Sensors with Reduced Substrate Effect,” Nano Lett. 8, 3893–3898 (2008).
[Crossref]
[PubMed]
V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells,” Nano Lett. 8, 4391–4397 (2008).
[Crossref]
L. Eurenius, C. Hägglund, B. Kasemo, E. Olsson, and D. Chakarov, “Grating formation by metal nanoparticle-mediated coupling of light into waveguided modes,” Nature Photonics2, 360–364 (2008).
[Crossref]
L. A. A. Pettersson, S. Ghosh, and O. Inganas, “Optical anisotropy in thin films of poly(3,4-ethylenedioxythiophene)-poly(4-styrenesulfonate),” Organic Electronics 3, 143–148 (2002).
[Crossref]
M. I. Alonso, K. Wakita, J. Pascual, M. Garriga, and N. Yamamoto, “Optical functions and electronic structure of CuInSe2, CuGaSe2, CuInS2, and CuGaS2,” Phys. Rev. B 63, 075203 (2001).
[Crossref]
I. A. Larkin, M. I. Stockman, M. Achermann, and V. I. Klimov, “Dipolar emitters at nanoscale proximity of metal surfaces: Giant enhancement of relaxation in microscopic theory,” Phys. Rev. B 69, 121403(R) (2004).
[Crossref]
M. Laroche, S. Albaladejo, R. Gomez-Medina, and J. J. Saenz, “Tuning the optical response of nanocylinder arrays: An analytical study,” Phys. Rev. B 74, 245422 (2006).
[Crossref]
P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]
F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97, 206806 (2006).
[Crossref]
[PubMed]
B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[Crossref]
[PubMed]
F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. von Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A-Appl. Mater. Scie. 205, 2844–2861 (0).
[Crossref]
Y. A. Akimov, K. Ostrikov, and E. P. Li, “Surface Plasmon Enhancement of Optical Absorption in Thin-Film Silicon Solar Cells,” Plasmonics 4, 107–113 (2009).
[Crossref]
F. J. G. de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
[Crossref]
A. Goetzberger, J. Goldschmidt, C., M. Peters, and P. Löper, “Light trapping, a new approach to spectrum splitting,” Sol. Energy Mater. Sol. Cells 92, 1570–1578 (2008).
[Crossref]
U. Zhokhavets, R. Goldhahn, G. Gobsch, M. Al-Ibrahim, H. K. Roth, S. Sensfuss, E. Klemm, and D. A. M. Egbe “Anisotropic optical properties of conjugated polymer and polymer/fullerene films,” Thin Solid Films 444, 215–220 (2003).
[Crossref]
This is an easily verified consequence of the governing equation. See for instance A. J. Mallinckrodt, “The Sinusoidally Forced, Linearly Damped, Simple Harmonic Oscillator” (2000), retrieved June 16, 2009, http://www.csupomona.edu/~ajm/classes/phyXXX/dho.pdf.
Carl Hägglund , Dept. of Applied Physics, Chalmers University of Technology, Fysikgränd 3, 41296 Göteborg, Sweden, S. Peter Apell and Bengt Kasemo are preparing a manuscript to be called “Maximized optical absorption in the thin film limit and its application to plasmon based 2D-photovoltaics”.
A reflective layer placed immediately behind the particle array results in destructive interference and reduced absorption in the PV layer.
C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, Weinheim, 2004).
D. E. Aspnes, “Chapter 12. Optical properties.,” in Properties of Crystalline Silicon, R. Hull, ed. (INSPEC, IEE, London, 1999).
H. J. Queisser, “Photovoltaic conversion at reduced dimensions,” Physica E 14, 1–10 (2002).
U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Springer Series in Materials Science (Springer, New York,1995), Vol. 25.
C. Hägglund, “Nanoparticle plasmon influence on the charge carrier generation in solar cells,” Doctoral Thesis (Chalmers University of Technology, Göteborg, 2008).
J. J. Sakurai, Modern Quantum Mechanics, Revised ed. (Addison-Wesley Publishing Company, Reading, Massachusetts, 1994).