Abstract

Theory of the energy evolution in laser resonators with saturated gain and non-saturated loss is revisited. An explicit analytical expression for the output energy/average power in terms of the gain saturation energy, cavity loss and small signal gain parameters is derived for a ring cavity configuration.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. E. Siegman, Lasers (University Science Books, 1986).
  2. L. F. Mollenauer, and J. P. Gordon, Solitons in Optical Fibers: Fundamentals and Applications (Academic Press (2006).
  3. A. C. Newell, and J. V. Moloney, Nonlinear Optics (Addison-Wesley Publishing Company, Redwood City,CA, 1992).
  4. A. Hasegawa, and Y. Kodama, Solitons in Optical Communications (Clarendon, Oxford, 1995).
  5. V. E. Zakharov, and E. S. Wabnitz, Optical Solitons: Theoretical Challenges and Industrial Perspectives (Springer-Verlag, Heidelberg, 1998).
  6. H. A. Haus, “Theory of mode locking with a slow saturable absorber,” IEEE J. Quantum Electron. 11(9), 736–746 (1975).
    [CrossRef]
  7. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Analytic theory of additive pulse and Kerr lens mode locking,” IEEE J. Quantum Electron. 28(10), 2086–2096 (1992), Sh. Namiki, E. P. Ippen, H. A. Haus, and C. X. Yu, “C. X. Yu, “Energy rate equations for mode-locked lasers,” J. Opt. Soc. Am. B 14(8), 2099 (1997).
    [CrossRef]
  8. A. M. Dunlop, W. J. Firth, D. R. Heatley, and E. M. Wright, “Generalized mean-field or master equation for nonlinear cavities with transverse effects,” Opt. Lett. 21(11), 770–772 (1996).
    [CrossRef] [PubMed]
  9. J. N. Kutz, “Mode-locked soliton lasers,” SIAM Rev. 48(4), 629–678 (2006).
    [CrossRef]
  10. N. Akhmediev, and A. Ankiewicz, eds., Dissipative Solitons, Lecture Notes in Physics, (Springer, Berlin-Heidelberg, 2005) Vol. 661.
  11. N. Akhmediev, and A. Ankiewicz, eds., Dissipative Solitons: From optics to biology and medicine, Lecture Notes in Physics, (Springer, Berlin-Heidelberg, 2008). Vol. 751.
  12. J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(4), 4783–4796 (1997).
    [CrossRef]
  13. A. I. Chernykh and S. K. Turitsyn, “Soliton and collapse regimes of pulse generation in passively mode-locking laser systems,” Opt. Lett. 20(4), 398 (1995).
    [CrossRef] [PubMed]
  14. L. Kramer, E. A. Kuznetsov, S. Popp, and S. K. Turitsyn, ““Optical pulse collapse in defocusing active medium,” Pisma ZETF 61, 887–892 (1995) (,” JETP Lett. 61, 904 (1995).
  15. I. S. Aranson and L. Kramer, “The world of the complex Ginzburg Landau equation,” Rev. Mod. Phys. 74(1), 99–143 (2002).
    [CrossRef]
  16. N. N. Rosanov, Spatial Hysteresis and Optical Patterns (Springer, Berlin, 2002).
  17. W. W. Rigrod, “Saturation effects in high-gain lasers,” J. Appl. Phys. 36(8), 2487–2490 (1965).
    [CrossRef]
  18. F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
    [CrossRef] [PubMed]

2006 (1)

J. N. Kutz, “Mode-locked soliton lasers,” SIAM Rev. 48(4), 629–678 (2006).
[CrossRef]

2004 (1)

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[CrossRef] [PubMed]

2002 (1)

I. S. Aranson and L. Kramer, “The world of the complex Ginzburg Landau equation,” Rev. Mod. Phys. 74(1), 99–143 (2002).
[CrossRef]

1997 (2)

J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(4), 4783–4796 (1997).
[CrossRef]

H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Analytic theory of additive pulse and Kerr lens mode locking,” IEEE J. Quantum Electron. 28(10), 2086–2096 (1992), Sh. Namiki, E. P. Ippen, H. A. Haus, and C. X. Yu, “C. X. Yu, “Energy rate equations for mode-locked lasers,” J. Opt. Soc. Am. B 14(8), 2099 (1997).
[CrossRef]

1996 (1)

1995 (2)

A. I. Chernykh and S. K. Turitsyn, “Soliton and collapse regimes of pulse generation in passively mode-locking laser systems,” Opt. Lett. 20(4), 398 (1995).
[CrossRef] [PubMed]

L. Kramer, E. A. Kuznetsov, S. Popp, and S. K. Turitsyn, ““Optical pulse collapse in defocusing active medium,” Pisma ZETF 61, 887–892 (1995) (,” JETP Lett. 61, 904 (1995).

1975 (1)

H. A. Haus, “Theory of mode locking with a slow saturable absorber,” IEEE J. Quantum Electron. 11(9), 736–746 (1975).
[CrossRef]

1965 (1)

W. W. Rigrod, “Saturation effects in high-gain lasers,” J. Appl. Phys. 36(8), 2487–2490 (1965).
[CrossRef]

Afanasjev, V. V.

J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(4), 4783–4796 (1997).
[CrossRef]

Akhmediev, N. N.

J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(4), 4783–4796 (1997).
[CrossRef]

Aranson, I. S.

I. S. Aranson and L. Kramer, “The world of the complex Ginzburg Landau equation,” Rev. Mod. Phys. 74(1), 99–143 (2002).
[CrossRef]

Buckley, J. R.

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[CrossRef] [PubMed]

Chernykh, A. I.

Clark, W. G.

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[CrossRef] [PubMed]

Dunlop, A. M.

Firth, W. J.

Fujimoto, J. G.

Haus, H. A.

Heatley, D. R.

Ilday, F. O.

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[CrossRef] [PubMed]

Ippen, E. P.

Kramer, L.

I. S. Aranson and L. Kramer, “The world of the complex Ginzburg Landau equation,” Rev. Mod. Phys. 74(1), 99–143 (2002).
[CrossRef]

L. Kramer, E. A. Kuznetsov, S. Popp, and S. K. Turitsyn, ““Optical pulse collapse in defocusing active medium,” Pisma ZETF 61, 887–892 (1995) (,” JETP Lett. 61, 904 (1995).

Kutz, J. N.

J. N. Kutz, “Mode-locked soliton lasers,” SIAM Rev. 48(4), 629–678 (2006).
[CrossRef]

Kuznetsov, E. A.

L. Kramer, E. A. Kuznetsov, S. Popp, and S. K. Turitsyn, ““Optical pulse collapse in defocusing active medium,” Pisma ZETF 61, 887–892 (1995) (,” JETP Lett. 61, 904 (1995).

Popp, S.

L. Kramer, E. A. Kuznetsov, S. Popp, and S. K. Turitsyn, ““Optical pulse collapse in defocusing active medium,” Pisma ZETF 61, 887–892 (1995) (,” JETP Lett. 61, 904 (1995).

Rigrod, W. W.

W. W. Rigrod, “Saturation effects in high-gain lasers,” J. Appl. Phys. 36(8), 2487–2490 (1965).
[CrossRef]

Soto-Crespo, J. M.

J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(4), 4783–4796 (1997).
[CrossRef]

Turitsyn, S. K.

A. I. Chernykh and S. K. Turitsyn, “Soliton and collapse regimes of pulse generation in passively mode-locking laser systems,” Opt. Lett. 20(4), 398 (1995).
[CrossRef] [PubMed]

L. Kramer, E. A. Kuznetsov, S. Popp, and S. K. Turitsyn, ““Optical pulse collapse in defocusing active medium,” Pisma ZETF 61, 887–892 (1995) (,” JETP Lett. 61, 904 (1995).

Wabnitz, S.

J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(4), 4783–4796 (1997).
[CrossRef]

Wise, F. W.

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[CrossRef] [PubMed]

Wright, E. M.

IEEE J. Quantum Electron. (1)

H. A. Haus, “Theory of mode locking with a slow saturable absorber,” IEEE J. Quantum Electron. 11(9), 736–746 (1975).
[CrossRef]

J. Appl. Phys. (1)

W. W. Rigrod, “Saturation effects in high-gain lasers,” J. Appl. Phys. 36(8), 2487–2490 (1965).
[CrossRef]

J. Opt. Soc. Am. B (1)

JETP Lett. (1)

L. Kramer, E. A. Kuznetsov, S. Popp, and S. K. Turitsyn, ““Optical pulse collapse in defocusing active medium,” Pisma ZETF 61, 887–892 (1995) (,” JETP Lett. 61, 904 (1995).

Opt. Lett. (2)

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(4), 4783–4796 (1997).
[CrossRef]

Phys. Rev. Lett. (1)

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

I. S. Aranson and L. Kramer, “The world of the complex Ginzburg Landau equation,” Rev. Mod. Phys. 74(1), 99–143 (2002).
[CrossRef]

SIAM Rev. (1)

J. N. Kutz, “Mode-locked soliton lasers,” SIAM Rev. 48(4), 629–678 (2006).
[CrossRef]

Other (8)

N. Akhmediev, and A. Ankiewicz, eds., Dissipative Solitons, Lecture Notes in Physics, (Springer, Berlin-Heidelberg, 2005) Vol. 661.

N. Akhmediev, and A. Ankiewicz, eds., Dissipative Solitons: From optics to biology and medicine, Lecture Notes in Physics, (Springer, Berlin-Heidelberg, 2008). Vol. 751.

A. E. Siegman, Lasers (University Science Books, 1986).

L. F. Mollenauer, and J. P. Gordon, Solitons in Optical Fibers: Fundamentals and Applications (Academic Press (2006).

A. C. Newell, and J. V. Moloney, Nonlinear Optics (Addison-Wesley Publishing Company, Redwood City,CA, 1992).

A. Hasegawa, and Y. Kodama, Solitons in Optical Communications (Clarendon, Oxford, 1995).

V. E. Zakharov, and E. S. Wabnitz, Optical Solitons: Theoretical Challenges and Industrial Perspectives (Springer-Verlag, Heidelberg, 1998).

N. N. Rosanov, Spatial Hysteresis and Optical Patterns (Springer, Berlin, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The inverse function x=fs1(y) for different values of the parameter s.

Fig. 2
Fig. 2

Contour plot of the normalized energy E/Esat in the plane (gain, R); here s = 0.03.

Fig. 4
Fig. 4

Normalized energy E/Esat vs. the reflectivity R for different gains and s.

Fig. 3
Fig. 3

Normalized energy E/Esat as a function of an effective gain for different R and s.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

iAz+n=2(i)nβnn!nAtn+γ|A|2A=i   (g(A)2α2)A
g(A)=g01+Pav/Psat=g01+E/Esat,Pav=1TR|A(t)|2dt,   E=PavTR,   Esat=PsatTR.
dEdz=g0E1+E/EsatαE
E(z)Esat[1s(1+E(z)Esat)]1s=exp[(g0α)(zz0)],s=αg0.
E(z)Esat[1s(1+E(z)Esat)]1s=exp[(g0α)(zz0)]=G(z)×E(0)Esat[1s(1+E(0)Esat)]1s.
E(z)=Esat×fs1[G(z)fs(E(0)Esat)] .
E(0)Esat=R2×fs1{Gfs[R1fs1(Gfs(E(0)Esat))]}
Eout=Esat×g0αα×1RR×sinh{α[L(g0α)+lnR]2g0}sinh{αL(g0α)+(αg0)lnR]2g0}
Eout=(1R)×Esat×1ss×1Rs×exp[sΔG(L)]1R1s×exp[sΔG(L)]=Eout(R,L,s)
Eout/Esat(1R)×1ss,

Metrics