Abstract

The photoluminescence properties of a ZnO nanobelt are investigated. Both the band-edge emission and the green-yellow emission bands have a series of eigenmodes. The theoretical results demonstrate that in the band-edge emission region the photoluminescence modes are determined by the polariton modes. In the green-yellow band there is no coupling between the photons and excitons and the photoluminescence modes are determined by the transverse Fabry-Perot modes. The photoluminescence spectra at different spots confirm that the Fabry-Perot modes are determined by the transverse size. Furthermore, the fitting results show in the waveband in the ultraviolet and visible band the quality-factor Q of the cavity is decreased from 280 to 70 with the increase of the wavelength.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
    [CrossRef]
  2. J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
    [CrossRef]
  3. D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395(6697), 53–55 (1998).
    [CrossRef]
  4. R. Houdré, R. P. Stanley, U. Oesterle, and M. Ilegems, “Room-temperature cavity polaritons in a semiconductor microcavity,” Phys. Rev. B 49(23), 16761–16764 (1994).
    [CrossRef]
  5. X. C. Shen, Spectroscopy and Optical properties of Semiconductor (Science Press, Beijing, 2002).
  6. M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. D. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305(5688), 1269–1273 (2004).
    [CrossRef]
  7. L. K. v. Vugt, S. Ruhle, P. Ravindram, H. C. Gerritsen, L. Kuipers, and D. Vanmaekelbergh, “Exciton polariton confined ina ZnO nanowire cavity,” Phys. Rev. Lett. 97, 147401 1–4 (2006).
  8. H. X. Jiang, J. Y. Lin, K. C. Zeng, and W. Yang, “Optical resonance modes in GaN pyramid microcavities,” Appl. Phys. Lett. 75(6), 763–765 (1999).
    [CrossRef]
  9. M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
    [CrossRef]
  10. S. Rühle, L. K. van Vugt, H. Y. Li, N. A. Keizer, L. Kuipers, and D. Vanmaekelbergh, “ “Nature of sub-band gap luminescent eigienmodes in a ZnO nanowire,” Nano Lett. 8(1), 119–123 (2008).
    [CrossRef]
  11. L. X. Sun, Z. H. Chen, Q. Ren, K. Yu, L. Bai, W. Zhou, H. Xiong, Z. Q. Zhu, and X. Shen, “Direct observation of whispering gallery modes polariton and their dispersion in a ZnO tapered microcavity,” Phys. Rev. Lett. 100(15), 156403 (2008).
    [CrossRef]
  12. E. Feigenbaum and M. Orenstein, “Optical 3D cavity modes below the diffraction-limit using slow-wave surface-plasmon-polaritons,” Opt. Express 15(5), 2607–2612 (2007).
    [CrossRef]
  13. D. J. Sirbuly, M. Law, H. Q. Yan, and P. D. Yang, “Semiconductor nanowires for subwavelength photonics integration,” J. Phys. Chem. B 109(32), 15190–15213 (2005).
    [CrossRef]
  14. M. A. Reshchikov, J. Q. Xie, B. Hertog, and A. Osinsky, “Yellow Luminescence in ZnO layers grown on sapphire,” J. Appl. Phys. 103(10), 103514 (2008).
    [CrossRef]
  15. A. v. Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, “The luminescence of nanocrystalline ZnO particles: the mechanism of the ultraviolet and visible emission,” J. Lumin. 87–89, 454–456 (2000).
    [CrossRef]
  16. A. Janotti and C. G. V. de Walle, “Oxygen vacancies in ZnO,” Appl. Phys. Lett. 87(12), 122102 (2005).
    [CrossRef]
  17. J. Lagois, “Depth-dependent eigenenergies and damping of excitonic polaritons near a semiconductor surface,” Phys. Rev. B 23(10), 5511–5520 (1981).
    [CrossRef]
  18. B. Gil and A. V. Kavokin, “Giant exciton-light coupling in ZnO quantum dots,” Appl. Phys. Lett. 81(4), 748–750 (2002).
    [CrossRef]

2008 (3)

S. Rühle, L. K. van Vugt, H. Y. Li, N. A. Keizer, L. Kuipers, and D. Vanmaekelbergh, “ “Nature of sub-band gap luminescent eigienmodes in a ZnO nanowire,” Nano Lett. 8(1), 119–123 (2008).
[CrossRef]

L. X. Sun, Z. H. Chen, Q. Ren, K. Yu, L. Bai, W. Zhou, H. Xiong, Z. Q. Zhu, and X. Shen, “Direct observation of whispering gallery modes polariton and their dispersion in a ZnO tapered microcavity,” Phys. Rev. Lett. 100(15), 156403 (2008).
[CrossRef]

M. A. Reshchikov, J. Q. Xie, B. Hertog, and A. Osinsky, “Yellow Luminescence in ZnO layers grown on sapphire,” J. Appl. Phys. 103(10), 103514 (2008).
[CrossRef]

2007 (1)

2005 (2)

A. Janotti and C. G. V. de Walle, “Oxygen vacancies in ZnO,” Appl. Phys. Lett. 87(12), 122102 (2005).
[CrossRef]

D. J. Sirbuly, M. Law, H. Q. Yan, and P. D. Yang, “Semiconductor nanowires for subwavelength photonics integration,” J. Phys. Chem. B 109(32), 15190–15213 (2005).
[CrossRef]

2004 (2)

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef]

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. D. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305(5688), 1269–1273 (2004).
[CrossRef]

2002 (1)

B. Gil and A. V. Kavokin, “Giant exciton-light coupling in ZnO quantum dots,” Appl. Phys. Lett. 81(4), 748–750 (2002).
[CrossRef]

2001 (1)

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[CrossRef]

2000 (1)

A. v. Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, “The luminescence of nanocrystalline ZnO particles: the mechanism of the ultraviolet and visible emission,” J. Lumin. 87–89, 454–456 (2000).
[CrossRef]

1999 (1)

H. X. Jiang, J. Y. Lin, K. C. Zeng, and W. Yang, “Optical resonance modes in GaN pyramid microcavities,” Appl. Phys. Lett. 75(6), 763–765 (1999).
[CrossRef]

1998 (1)

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395(6697), 53–55 (1998).
[CrossRef]

1994 (1)

R. Houdré, R. P. Stanley, U. Oesterle, and M. Ilegems, “Room-temperature cavity polaritons in a semiconductor microcavity,” Phys. Rev. B 49(23), 16761–16764 (1994).
[CrossRef]

1992 (1)

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
[CrossRef]

1981 (1)

J. Lagois, “Depth-dependent eigenenergies and damping of excitonic polaritons near a semiconductor surface,” Phys. Rev. B 23(10), 5511–5520 (1981).
[CrossRef]

Rühle, S.

S. Rühle, L. K. van Vugt, H. Y. Li, N. A. Keizer, L. Kuipers, and D. Vanmaekelbergh, “ “Nature of sub-band gap luminescent eigienmodes in a ZnO nanowire,” Nano Lett. 8(1), 119–123 (2008).
[CrossRef]

Arakawa, Y.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
[CrossRef]

Bai, L.

L. X. Sun, Z. H. Chen, Q. Ren, K. Yu, L. Bai, W. Zhou, H. Xiong, Z. Q. Zhu, and X. Shen, “Direct observation of whispering gallery modes polariton and their dispersion in a ZnO tapered microcavity,” Phys. Rev. Lett. 100(15), 156403 (2008).
[CrossRef]

Bradley, D. D. C.

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395(6697), 53–55 (1998).
[CrossRef]

Chen, Z. H.

L. X. Sun, Z. H. Chen, Q. Ren, K. Yu, L. Bai, W. Zhou, H. Xiong, Z. Q. Zhu, and X. Shen, “Direct observation of whispering gallery modes polariton and their dispersion in a ZnO tapered microcavity,” Phys. Rev. Lett. 100(15), 156403 (2008).
[CrossRef]

de Walle, C. G. V.

A. Janotti and C. G. V. de Walle, “Oxygen vacancies in ZnO,” Appl. Phys. Lett. 87(12), 122102 (2005).
[CrossRef]

Feick, H.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[CrossRef]

Feigenbaum, E.

Forchel, A.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef]

Gil, B.

B. Gil and A. V. Kavokin, “Giant exciton-light coupling in ZnO quantum dots,” Appl. Phys. Lett. 81(4), 748–750 (2002).
[CrossRef]

Goldberger, J.

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. D. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305(5688), 1269–1273 (2004).
[CrossRef]

Hertog, B.

M. A. Reshchikov, J. Q. Xie, B. Hertog, and A. Osinsky, “Yellow Luminescence in ZnO layers grown on sapphire,” J. Appl. Phys. 103(10), 103514 (2008).
[CrossRef]

Hofmann, C.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef]

Houdré, R.

R. Houdré, R. P. Stanley, U. Oesterle, and M. Ilegems, “Room-temperature cavity polaritons in a semiconductor microcavity,” Phys. Rev. B 49(23), 16761–16764 (1994).
[CrossRef]

Huang, M. H.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[CrossRef]

Ilegems, M.

R. Houdré, R. P. Stanley, U. Oesterle, and M. Ilegems, “Room-temperature cavity polaritons in a semiconductor microcavity,” Phys. Rev. B 49(23), 16761–16764 (1994).
[CrossRef]

Ishikawa, A.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
[CrossRef]

Janotti, A.

A. Janotti and C. G. V. de Walle, “Oxygen vacancies in ZnO,” Appl. Phys. Lett. 87(12), 122102 (2005).
[CrossRef]

Jiang, H. X.

H. X. Jiang, J. Y. Lin, K. C. Zeng, and W. Yang, “Optical resonance modes in GaN pyramid microcavities,” Appl. Phys. Lett. 75(6), 763–765 (1999).
[CrossRef]

Johnson, J. C.

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. D. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305(5688), 1269–1273 (2004).
[CrossRef]

Kavokin, A. V.

B. Gil and A. V. Kavokin, “Giant exciton-light coupling in ZnO quantum dots,” Appl. Phys. Lett. 81(4), 748–750 (2002).
[CrossRef]

Keizer, N. A.

S. Rühle, L. K. van Vugt, H. Y. Li, N. A. Keizer, L. Kuipers, and D. Vanmaekelbergh, “ “Nature of sub-band gap luminescent eigienmodes in a ZnO nanowire,” Nano Lett. 8(1), 119–123 (2008).
[CrossRef]

Keldysh, L. V.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef]

Kind, H.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[CrossRef]

Kuhn, S.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef]

Kuipers, L.

S. Rühle, L. K. van Vugt, H. Y. Li, N. A. Keizer, L. Kuipers, and D. Vanmaekelbergh, “ “Nature of sub-band gap luminescent eigienmodes in a ZnO nanowire,” Nano Lett. 8(1), 119–123 (2008).
[CrossRef]

Kulakovskii, V. D.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef]

Lagois, J.

J. Lagois, “Depth-dependent eigenenergies and damping of excitonic polaritons near a semiconductor surface,” Phys. Rev. B 23(10), 5511–5520 (1981).
[CrossRef]

Law, M.

D. J. Sirbuly, M. Law, H. Q. Yan, and P. D. Yang, “Semiconductor nanowires for subwavelength photonics integration,” J. Phys. Chem. B 109(32), 15190–15213 (2005).
[CrossRef]

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. D. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305(5688), 1269–1273 (2004).
[CrossRef]

Li, H. Y.

S. Rühle, L. K. van Vugt, H. Y. Li, N. A. Keizer, L. Kuipers, and D. Vanmaekelbergh, “ “Nature of sub-band gap luminescent eigienmodes in a ZnO nanowire,” Nano Lett. 8(1), 119–123 (2008).
[CrossRef]

Lidzey, D. G.

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395(6697), 53–55 (1998).
[CrossRef]

Lin, J. Y.

H. X. Jiang, J. Y. Lin, K. C. Zeng, and W. Yang, “Optical resonance modes in GaN pyramid microcavities,” Appl. Phys. Lett. 75(6), 763–765 (1999).
[CrossRef]

Löffler, A.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef]

Mao, S.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[CrossRef]

Meijerink, A.

A. v. Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, “The luminescence of nanocrystalline ZnO particles: the mechanism of the ultraviolet and visible emission,” J. Lumin. 87–89, 454–456 (2000).
[CrossRef]

Meulenkamp, E. A.

A. v. Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, “The luminescence of nanocrystalline ZnO particles: the mechanism of the ultraviolet and visible emission,” J. Lumin. 87–89, 454–456 (2000).
[CrossRef]

Nishioka, M.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
[CrossRef]

Oesterle, U.

R. Houdré, R. P. Stanley, U. Oesterle, and M. Ilegems, “Room-temperature cavity polaritons in a semiconductor microcavity,” Phys. Rev. B 49(23), 16761–16764 (1994).
[CrossRef]

Orenstein, M.

Osinsky, A.

M. A. Reshchikov, J. Q. Xie, B. Hertog, and A. Osinsky, “Yellow Luminescence in ZnO layers grown on sapphire,” J. Appl. Phys. 103(10), 103514 (2008).
[CrossRef]

Reinecke, T. L.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef]

Reithmaier, J. P.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef]

Reitzenstein, S.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef]

Ren, Q.

L. X. Sun, Z. H. Chen, Q. Ren, K. Yu, L. Bai, W. Zhou, H. Xiong, Z. Q. Zhu, and X. Shen, “Direct observation of whispering gallery modes polariton and their dispersion in a ZnO tapered microcavity,” Phys. Rev. Lett. 100(15), 156403 (2008).
[CrossRef]

Reshchikov, M. A.

M. A. Reshchikov, J. Q. Xie, B. Hertog, and A. Osinsky, “Yellow Luminescence in ZnO layers grown on sapphire,” J. Appl. Phys. 103(10), 103514 (2008).
[CrossRef]

Russo, R.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[CrossRef]

Saykally, R. J.

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. D. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305(5688), 1269–1273 (2004).
[CrossRef]

Sek, G.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef]

Shen, X.

L. X. Sun, Z. H. Chen, Q. Ren, K. Yu, L. Bai, W. Zhou, H. Xiong, Z. Q. Zhu, and X. Shen, “Direct observation of whispering gallery modes polariton and their dispersion in a ZnO tapered microcavity,” Phys. Rev. Lett. 100(15), 156403 (2008).
[CrossRef]

Sirbuly, D. J.

D. J. Sirbuly, M. Law, H. Q. Yan, and P. D. Yang, “Semiconductor nanowires for subwavelength photonics integration,” J. Phys. Chem. B 109(32), 15190–15213 (2005).
[CrossRef]

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. D. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305(5688), 1269–1273 (2004).
[CrossRef]

Skolnick, M. S.

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395(6697), 53–55 (1998).
[CrossRef]

Stanley, R. P.

R. Houdré, R. P. Stanley, U. Oesterle, and M. Ilegems, “Room-temperature cavity polaritons in a semiconductor microcavity,” Phys. Rev. B 49(23), 16761–16764 (1994).
[CrossRef]

Sun, L. X.

L. X. Sun, Z. H. Chen, Q. Ren, K. Yu, L. Bai, W. Zhou, H. Xiong, Z. Q. Zhu, and X. Shen, “Direct observation of whispering gallery modes polariton and their dispersion in a ZnO tapered microcavity,” Phys. Rev. Lett. 100(15), 156403 (2008).
[CrossRef]

v. Dijken, A.

A. v. Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, “The luminescence of nanocrystalline ZnO particles: the mechanism of the ultraviolet and visible emission,” J. Lumin. 87–89, 454–456 (2000).
[CrossRef]

van Vugt, L. K.

S. Rühle, L. K. van Vugt, H. Y. Li, N. A. Keizer, L. Kuipers, and D. Vanmaekelbergh, “ “Nature of sub-band gap luminescent eigienmodes in a ZnO nanowire,” Nano Lett. 8(1), 119–123 (2008).
[CrossRef]

Vanmaekelbergh, D.

S. Rühle, L. K. van Vugt, H. Y. Li, N. A. Keizer, L. Kuipers, and D. Vanmaekelbergh, “ “Nature of sub-band gap luminescent eigienmodes in a ZnO nanowire,” Nano Lett. 8(1), 119–123 (2008).
[CrossRef]

A. v. Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, “The luminescence of nanocrystalline ZnO particles: the mechanism of the ultraviolet and visible emission,” J. Lumin. 87–89, 454–456 (2000).
[CrossRef]

Virgili, T.

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395(6697), 53–55 (1998).
[CrossRef]

Walker, S.

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395(6697), 53–55 (1998).
[CrossRef]

Weber, E.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[CrossRef]

Weisbuch, C.

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
[CrossRef]

Whittaker, D. M.

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395(6697), 53–55 (1998).
[CrossRef]

Wu, Y. Y.

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[CrossRef]

Xie, J. Q.

M. A. Reshchikov, J. Q. Xie, B. Hertog, and A. Osinsky, “Yellow Luminescence in ZnO layers grown on sapphire,” J. Appl. Phys. 103(10), 103514 (2008).
[CrossRef]

Xiong, H.

L. X. Sun, Z. H. Chen, Q. Ren, K. Yu, L. Bai, W. Zhou, H. Xiong, Z. Q. Zhu, and X. Shen, “Direct observation of whispering gallery modes polariton and their dispersion in a ZnO tapered microcavity,” Phys. Rev. Lett. 100(15), 156403 (2008).
[CrossRef]

Yan, H. Q.

D. J. Sirbuly, M. Law, H. Q. Yan, and P. D. Yang, “Semiconductor nanowires for subwavelength photonics integration,” J. Phys. Chem. B 109(32), 15190–15213 (2005).
[CrossRef]

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[CrossRef]

Yang, P. D.

D. J. Sirbuly, M. Law, H. Q. Yan, and P. D. Yang, “Semiconductor nanowires for subwavelength photonics integration,” J. Phys. Chem. B 109(32), 15190–15213 (2005).
[CrossRef]

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. D. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305(5688), 1269–1273 (2004).
[CrossRef]

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[CrossRef]

Yang, W.

H. X. Jiang, J. Y. Lin, K. C. Zeng, and W. Yang, “Optical resonance modes in GaN pyramid microcavities,” Appl. Phys. Lett. 75(6), 763–765 (1999).
[CrossRef]

Yu, K.

L. X. Sun, Z. H. Chen, Q. Ren, K. Yu, L. Bai, W. Zhou, H. Xiong, Z. Q. Zhu, and X. Shen, “Direct observation of whispering gallery modes polariton and their dispersion in a ZnO tapered microcavity,” Phys. Rev. Lett. 100(15), 156403 (2008).
[CrossRef]

Zeng, K. C.

H. X. Jiang, J. Y. Lin, K. C. Zeng, and W. Yang, “Optical resonance modes in GaN pyramid microcavities,” Appl. Phys. Lett. 75(6), 763–765 (1999).
[CrossRef]

Zhou, W.

L. X. Sun, Z. H. Chen, Q. Ren, K. Yu, L. Bai, W. Zhou, H. Xiong, Z. Q. Zhu, and X. Shen, “Direct observation of whispering gallery modes polariton and their dispersion in a ZnO tapered microcavity,” Phys. Rev. Lett. 100(15), 156403 (2008).
[CrossRef]

Zhu, Z. Q.

L. X. Sun, Z. H. Chen, Q. Ren, K. Yu, L. Bai, W. Zhou, H. Xiong, Z. Q. Zhu, and X. Shen, “Direct observation of whispering gallery modes polariton and their dispersion in a ZnO tapered microcavity,” Phys. Rev. Lett. 100(15), 156403 (2008).
[CrossRef]

Appl. Phys. Lett. (3)

H. X. Jiang, J. Y. Lin, K. C. Zeng, and W. Yang, “Optical resonance modes in GaN pyramid microcavities,” Appl. Phys. Lett. 75(6), 763–765 (1999).
[CrossRef]

A. Janotti and C. G. V. de Walle, “Oxygen vacancies in ZnO,” Appl. Phys. Lett. 87(12), 122102 (2005).
[CrossRef]

B. Gil and A. V. Kavokin, “Giant exciton-light coupling in ZnO quantum dots,” Appl. Phys. Lett. 81(4), 748–750 (2002).
[CrossRef]

J. Appl. Phys. (1)

M. A. Reshchikov, J. Q. Xie, B. Hertog, and A. Osinsky, “Yellow Luminescence in ZnO layers grown on sapphire,” J. Appl. Phys. 103(10), 103514 (2008).
[CrossRef]

J. Lumin. (1)

A. v. Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, “The luminescence of nanocrystalline ZnO particles: the mechanism of the ultraviolet and visible emission,” J. Lumin. 87–89, 454–456 (2000).
[CrossRef]

J. Phys. Chem. B (1)

D. J. Sirbuly, M. Law, H. Q. Yan, and P. D. Yang, “Semiconductor nanowires for subwavelength photonics integration,” J. Phys. Chem. B 109(32), 15190–15213 (2005).
[CrossRef]

Nano Lett. (1)

S. Rühle, L. K. van Vugt, H. Y. Li, N. A. Keizer, L. Kuipers, and D. Vanmaekelbergh, “ “Nature of sub-band gap luminescent eigienmodes in a ZnO nanowire,” Nano Lett. 8(1), 119–123 (2008).
[CrossRef]

Nature (2)

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef]

D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, “Strong exciton-photon coupling in an organic semiconductor microcavity,” Nature 395(6697), 53–55 (1998).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (2)

R. Houdré, R. P. Stanley, U. Oesterle, and M. Ilegems, “Room-temperature cavity polaritons in a semiconductor microcavity,” Phys. Rev. B 49(23), 16761–16764 (1994).
[CrossRef]

J. Lagois, “Depth-dependent eigenenergies and damping of excitonic polaritons near a semiconductor surface,” Phys. Rev. B 23(10), 5511–5520 (1981).
[CrossRef]

Phys. Rev. Lett. (2)

L. X. Sun, Z. H. Chen, Q. Ren, K. Yu, L. Bai, W. Zhou, H. Xiong, Z. Q. Zhu, and X. Shen, “Direct observation of whispering gallery modes polariton and their dispersion in a ZnO tapered microcavity,” Phys. Rev. Lett. 100(15), 156403 (2008).
[CrossRef]

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69(23), 3314–3317 (1992).
[CrossRef]

Science (2)

M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292(5523), 1897–1899 (2001).
[CrossRef]

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. D. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science 305(5688), 1269–1273 (2004).
[CrossRef]

Other (2)

L. K. v. Vugt, S. Ruhle, P. Ravindram, H. C. Gerritsen, L. Kuipers, and D. Vanmaekelbergh, “Exciton polariton confined ina ZnO nanowire cavity,” Phys. Rev. Lett. 97, 147401 1–4 (2006).

X. C. Shen, Spectroscopy and Optical properties of Semiconductor (Science Press, Beijing, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

The SEM images of the local part in the nanobelt.

Fig. 2.
Fig. 2.

Photoluminescence spectra at spot A of the ZnO nanobelt with an excitation intensity of 2.1×105 W/cm2. (a) Whole photoluminescence spectrum. (b) Band-edge photoluminescence.

Fig. 3.
Fig. 3.

Photoluminescence spectra at spot A of ZnO nanobelt with a excitation intensity of 2.1×105 (cyan), 1.1×105 (black), 5.4×104 (red), 2.1×104 (green), and 2.1×103 W/cm2 (blue), respectively (a) Whole photoluminescence spectra. (b) Band-edge photoluminescence. (c) Green-yellow band photoluminescence.

Fig. 4.
Fig. 4.

The mode energy of the confined photon versus the transverse wave vector in the nanobelt. This figure also shows comparison between theoretical and experimental modes. (a) From 3.30 eV to 2.80 eV. (b) From 2.80 eV to 1.82 eV. In the luminescence spectrum 10 modes are not observed between 3.06 eV and 2.94 eV, and 3 modes cannot be determined between 2.41 eV and 2.36 eV.

Fig. 5.
Fig. 5.

Fitting of the photoluminescence spectra with the Lorentzians at the waveband of 3.19, 2.84 and 2.26 eV. The quality factor Q at 3.193 eV (arrow C), 2.841 eV (arrow B) and 2.259 eV (arrow A) is 280, 135 and 77, respectively. The spectra were some parts of the spectrum in Fig. 1.

Fig. 6.
Fig. 6.

The comparison of the luminescence spectra at spots A (green), B (red) and C (black) with the same measurement condition as in Fig. 2. (a) Whole photoluminescence spectra. (b) Band-edge photoluminescence. (c) Green-yellow band photoluminescence. In the inset of (c) there are 10 periods between the arrow P and Q for the black spectrum or between the arrow P’ and Q’ for the red spectrum.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ε(ω,k)=ε(1+Σj=A,B,CΩjfjωj,T2ω2)=c2(kt2+kT2+kL2)ω2

Metrics