Abstract

In this paper, a kind of surface plasmonic waveguide (SPW) with three circular air cores is presented. Based on the finite-difference frequency-domain (FDFD) method, dependence of the distribution of energy flux density, effective index, propagation length and mode area of the fundamental mode on the geometrical parameters and the working wavelengths is analyzed firstly. Then, comparison with the SPW which was proposed in our previous work has been carried out. Results show that this kind of three cores structure has better propagation properties than the double cores structure. To investigate the relative advantages of this kind of SPW over other previous reported SPWs, comparison with the SPW with a single wedge has been carried out. Results show that this kind of SPW has shorter propagation length and larger mode area. Finally, the possibility to overcome the large propagation loss by using a gain medium as core material is investigated. Since the propagation properties can be adjusted by the geometrical and electromagnetic parameters, this kind of surface plasmonic waveguide can be applied to the field of photonic components in the integrated optical circuits and sensors.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Atwater, “The promise of plasmonics,” Science 296, 56–63 (2007).
  2. H. Rather, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Springer-Verlag, Berlin, 1988).
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef]
  4. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [CrossRef]
  5. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
    [CrossRef]
  6. S. A. Maier, “Plasmonics: The promise of highly integrated optical devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1671–1677 (2006).
  7. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
    [CrossRef]
  8. H. X. Zhang, Y. Gu, and Q. H. Gong, “A visible-near infrared tunable waveguide based on plasmonic gold nanoshell,” Chinese Physics B 17(7), 2567–2573 (2008).
  9. E. N. Economou, “Surface plasmon in thin films,” Phys. Rev. 182(2), 539–554 (1969).
    [CrossRef]
  10. P. Berini, “Plasmon polariton modes guided by a metal film of finite width,” Opt. Lett. 24(15), 1011–1013 (1999).
    [CrossRef]
  11. J. Jung, T. Sondergaard, and S. I. Bozhevolnyi, “Theoretical analysis of square surface plasmon-polariton waveguides for long-range polarization-independent waveguiding,” Phys. Rev. B 76(3), 035434 (2007).
    [CrossRef]
  12. J. Guo and R. Adato, “Control of 2D plasmon-polariton mode with dielectric nanolayers,” Opt. Express 16(2), 1232–1237 (2008), http://www.opticsexpress.org/abstract.cfm?uri=oe-16-2-1232 .
    [CrossRef]
  13. K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82(8), 1158–1160 (2003).
    [CrossRef]
  14. F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, “Propagation properties of guided waves in index-guided two-dimensional optical waveguides,” Appl. Phys. Lett. 86(21), 211101 (2005).
    [CrossRef]
  15. R. Gordon and A. G. Brolo, “Increased cut-off wavelength for a subwavelength hole in a real metal,” Opt. Express 13(6), 1933–1938 (2005), http://www.opticsexpress.org/abstract.cfm?uri=oe-13-6-1933 .
    [CrossRef]
  16. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two- dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
    [CrossRef]
  17. L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13(17), 6645–6650 (2005), http://www.opticsexpress.org/abstract.cfm?uri=oe-13-17-6645 .
    [CrossRef]
  18. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on riangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87(6), 061106 (2005).
    [CrossRef]
  19. E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100(2), 023901 (2008).
    [CrossRef]
  20. A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express 16(8), 5252–5260 (2008), http://www.opticsexpress.org/abstract.cfm?uri=oe-16-8-5252 .
    [CrossRef]
  21. W. R. Xue, Y. N. Guo, P. Li, and W. M. Zhang, “Propagation Properties of a Surface Plasmonic Waveguide with double elliptical air cores,” Opt. Express 16(14), 10710–10720 (2008), http://www.opticsexpress.org/abstract.cfm?uri=oe-16-14-10710 .
    [CrossRef]
  22. J. Q. Lu and A. A. Maradudin, “Channel plasmons,” Phys. Rev. B 42(17), 11159–11165 (1990).
    [CrossRef]
  23. L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Opt. Lett. 31(14), 2133–2135 (2006).
    [CrossRef]
  24. D. F. P. Pile and D. K. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Opt. Lett. 29(10), 1069–1071 (2004).
    [CrossRef]
  25. I. Lee, J. Jung, J. Park, H. Kim, and B. Lee, “Dispersion characteristics of channel plasmon polariton waveguides with step-trench-type grooves,” Opt. Express 15(25), 16596–16603 (2007), http://www.opticsexpress.org/abstract.cfm?uri=oe-15-25-16596 .
    [CrossRef]
  26. G. P. Wang and B. Wang, “Metal heterostructure-based nanophotonic devices: finite-difference time-domain numerical simulations,” J. Opt. Soc. Am. B 23(8), 1660–1665 (2006).
    [CrossRef]
  27. B. Wang and G. P. Wang, “Planar metal heterostructures for nanoplasmonic waveguides,” Appl. Phys. Lett. 90(1), 013114 (2007).
    [CrossRef]
  28. D. Arbel and M. Orenstein, “Plasmonic modes in W-shaped metal-coated silicon grooves,” Opt. Express 16(5), 3114–3119 (2008), http://www.opticsexpress.org/abstract.cfm?uri=oe-16-5-3114 .
    [CrossRef]
  29. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21(12), 2442–2446 (2004).
    [CrossRef]
  30. A. N. Sudarkin and P. A. Demkovich, “Excitation of surface electromagnetic waves on the boundary of a metal with an amplifying medium,” Sov. Phys. Tech. Phys. 34, 764–766 (1989).
  31. M. P. Nezhad, K. Tetz, and Y. Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express 12(17), 4072–4079 (2004), http://www.opticsexpress.org/abstract.cfm?uri=oe-12-17-4072 .
    [CrossRef]
  32. I. Avrutsky, “Surface plasmons at nanoscale relief gratings between a metal and a dielectric medium with optical gain,” Phys. Rev. B 70(15), 155416 (2004).
    [CrossRef]
  33. N. M. Lawandy, “Localized surface plasmon singularities in amplifying media,” Appl. Phys. Lett. 85(21), 5040–5042 (2004).
    [CrossRef]
  34. S. A. Maier, “Gain-assisted propagation of electromagnetic energy in subwavelength surface plasmon polariton gap waveguides,” Opt. Commun. 258(2), 295–299 (2006).
    [CrossRef]
  35. D. S. Citrin, “Plasmon-polariton transport in metal-nanoparticle chains embedded in a gain medium,” Opt. Lett. 31(1), 98–100 (2006).
    [CrossRef]
  36. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  37. Z. Zhu and T. G. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Opt. Express 10(17), 853–864 (2002), http://www.opticsexpress.org/abstract.cfm?uri=oe-10-17-853 .
  38. S. Guo, F. Wu, S. Albin, H. Tai, and R. S. Rogowski, “Loss and dispersion analysis of microstructured fibers by finite-difference method,” Opt. Express 12(15), 3341–3352 (2004), http://www.opticsexpress.org/abstract.cfm?uri=oe-12-15-3341 .
    [CrossRef]
  39. C. P. Yu and H. C. Chang, “Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers,” Opt. Express 12(25), 6165–6177 (2004), http://www.opticsexpress.org/abstract.cfm?uri=oe-12-25-6165 .
    [CrossRef]
  40. W. E. Arnoldi, “The principle of minimized iteration in the solution of matrix eigenvalue problems,” Q. Appl. Math. 9, 17–29 (1951).
  41. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett. 22(7), 475–477 (1997).
    [CrossRef]
  42. M. Yan and M. Qiu, “Guided plasmon polariton at 2D metal coners,” J. Opt. Soc. Am. B 24(9), 2333–2342 (2007).
    [CrossRef]
  43. E. D. Palik, Handbook of Optical Constants of Solids(Academic, New York, 1985).

2008 (6)

2007 (5)

B. Wang and G. P. Wang, “Planar metal heterostructures for nanoplasmonic waveguides,” Appl. Phys. Lett. 90(1), 013114 (2007).
[CrossRef]

J. Jung, T. Sondergaard, and S. I. Bozhevolnyi, “Theoretical analysis of square surface plasmon-polariton waveguides for long-range polarization-independent waveguiding,” Phys. Rev. B 76(3), 035434 (2007).
[CrossRef]

H. A. Atwater, “The promise of plasmonics,” Science 296, 56–63 (2007).

M. Yan and M. Qiu, “Guided plasmon polariton at 2D metal coners,” J. Opt. Soc. Am. B 24(9), 2333–2342 (2007).
[CrossRef]

I. Lee, J. Jung, J. Park, H. Kim, and B. Lee, “Dispersion characteristics of channel plasmon polariton waveguides with step-trench-type grooves,” Opt. Express 15(25), 16596–16603 (2007), http://www.opticsexpress.org/abstract.cfm?uri=oe-15-25-16596 .
[CrossRef]

2006 (7)

D. S. Citrin, “Plasmon-polariton transport in metal-nanoparticle chains embedded in a gain medium,” Opt. Lett. 31(1), 98–100 (2006).
[CrossRef]

L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Opt. Lett. 31(14), 2133–2135 (2006).
[CrossRef]

G. P. Wang and B. Wang, “Metal heterostructure-based nanophotonic devices: finite-difference time-domain numerical simulations,” J. Opt. Soc. Am. B 23(8), 1660–1665 (2006).
[CrossRef]

S. A. Maier, “Gain-assisted propagation of electromagnetic energy in subwavelength surface plasmon polariton gap waveguides,” Opt. Commun. 258(2), 295–299 (2006).
[CrossRef]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef]

S. A. Maier, “Plasmonics: The promise of highly integrated optical devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1671–1677 (2006).

2005 (5)

F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, “Propagation properties of guided waves in index-guided two-dimensional optical waveguides,” Appl. Phys. Lett. 86(21), 211101 (2005).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on riangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87(6), 061106 (2005).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two- dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[CrossRef]

R. Gordon and A. G. Brolo, “Increased cut-off wavelength for a subwavelength hole in a real metal,” Opt. Express 13(6), 1933–1938 (2005), http://www.opticsexpress.org/abstract.cfm?uri=oe-13-6-1933 .
[CrossRef]

L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13(17), 6645–6650 (2005), http://www.opticsexpress.org/abstract.cfm?uri=oe-13-17-6645 .
[CrossRef]

2004 (7)

2003 (3)

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82(8), 1158–1160 (2003).
[CrossRef]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef]

2002 (1)

1999 (1)

1997 (1)

1990 (1)

J. Q. Lu and A. A. Maradudin, “Channel plasmons,” Phys. Rev. B 42(17), 11159–11165 (1990).
[CrossRef]

1989 (1)

A. N. Sudarkin and P. A. Demkovich, “Excitation of surface electromagnetic waves on the boundary of a metal with an amplifying medium,” Sov. Phys. Tech. Phys. 34, 764–766 (1989).

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

1969 (1)

E. N. Economou, “Surface plasmon in thin films,” Phys. Rev. 182(2), 539–554 (1969).
[CrossRef]

1951 (1)

W. E. Arnoldi, “The principle of minimized iteration in the solution of matrix eigenvalue problems,” Q. Appl. Math. 9, 17–29 (1951).

Adato, R.

Albin, S.

Arbel, D.

Arnoldi, W. E.

W. E. Arnoldi, “The principle of minimized iteration in the solution of matrix eigenvalue problems,” Q. Appl. Math. 9, 17–29 (1951).

Atwater, H. A.

H. A. Atwater, “The promise of plasmonics,” Science 296, 56–63 (2007).

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef]

Avrutsky, I.

I. Avrutsky, “Surface plasmons at nanoscale relief gratings between a metal and a dielectric medium with optical gain,” Phys. Rev. B 70(15), 155416 (2004).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef]

Berini, P.

Boltasseva, A.

Bozhevolnyi, S. I.

A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express 16(8), 5252–5260 (2008), http://www.opticsexpress.org/abstract.cfm?uri=oe-16-8-5252 .
[CrossRef]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100(2), 023901 (2008).
[CrossRef]

J. Jung, T. Sondergaard, and S. I. Bozhevolnyi, “Theoretical analysis of square surface plasmon-polariton waveguides for long-range polarization-independent waveguiding,” Phys. Rev. B 76(3), 035434 (2007).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef]

Brolo, A. G.

Brongersma, M. L.

Brown, T. G.

Catrysse, P. B.

Chang, H. C.

Chen, L.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Citrin, D. S.

Demkovich, P. A.

A. N. Sudarkin and P. A. Demkovich, “Excitation of surface electromagnetic waves on the boundary of a metal with an amplifying medium,” Sov. Phys. Tech. Phys. 34, 764–766 (1989).

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef]

Economou, E. N.

E. N. Economou, “Surface plasmon in thin films,” Phys. Rev. 182(2), 539–554 (1969).
[CrossRef]

Fainman, Y.

Fukui, M.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two- dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on riangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87(6), 061106 (2005).
[CrossRef]

García-Vidal, F. J.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100(2), 023901 (2008).
[CrossRef]

Gong, Q. H.

H. X. Zhang, Y. Gu, and Q. H. Gong, “A visible-near infrared tunable waveguide based on plasmonic gold nanoshell,” Chinese Physics B 17(7), 2567–2573 (2008).

Gordon, R.

Gramotnev, D. K.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on riangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87(6), 061106 (2005).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two- dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[CrossRef]

D. F. P. Pile and D. K. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Opt. Lett. 29(10), 1069–1071 (2004).
[CrossRef]

Gu, Y.

H. X. Zhang, Y. Gu, and Q. H. Gong, “A visible-near infrared tunable waveguide based on plasmonic gold nanoshell,” Chinese Physics B 17(7), 2567–2573 (2008).

Guo, J.

Guo, S.

Guo, Y. N.

Han, Z.

Haraguchi, M.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two- dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on riangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87(6), 061106 (2005).
[CrossRef]

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef]

He, S.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Jung, J.

J. Jung, T. Sondergaard, and S. I. Bozhevolnyi, “Theoretical analysis of square surface plasmon-polariton waveguides for long-range polarization-independent waveguiding,” Phys. Rev. B 76(3), 035434 (2007).
[CrossRef]

I. Lee, J. Jung, J. Park, H. Kim, and B. Lee, “Dispersion characteristics of channel plasmon polariton waveguides with step-trench-type grooves,” Opt. Express 15(25), 16596–16603 (2007), http://www.opticsexpress.org/abstract.cfm?uri=oe-15-25-16596 .
[CrossRef]

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef]

Kim, H.

Kobayashi, T.

F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, “Propagation properties of guided waves in index-guided two-dimensional optical waveguides,” Appl. Phys. Lett. 86(21), 211101 (2005).
[CrossRef]

J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett. 22(7), 475–477 (1997).
[CrossRef]

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef]

Kusunoki, F.

F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, “Propagation properties of guided waves in index-guided two-dimensional optical waveguides,” Appl. Phys. Lett. 86(21), 211101 (2005).
[CrossRef]

Laluet, J. Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef]

Lawandy, N. M.

N. M. Lawandy, “Localized surface plasmon singularities in amplifying media,” Appl. Phys. Lett. 85(21), 5040–5042 (2004).
[CrossRef]

Lee, B.

Lee, I.

Li, P.

Lipson, M.

Liu, L.

Lu, J. Q.

J. Q. Lu and A. A. Maradudin, “Channel plasmons,” Phys. Rev. B 42(17), 11159–11165 (1990).
[CrossRef]

Maier, S. A.

S. A. Maier, “Gain-assisted propagation of electromagnetic energy in subwavelength surface plasmon polariton gap waveguides,” Opt. Commun. 258(2), 295–299 (2006).
[CrossRef]

S. A. Maier, “Plasmonics: The promise of highly integrated optical devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1671–1677 (2006).

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef]

Maradudin, A. A.

J. Q. Lu and A. A. Maradudin, “Channel plasmons,” Phys. Rev. B 42(17), 11159–11165 (1990).
[CrossRef]

Martín-Moreno, L.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100(2), 023901 (2008).
[CrossRef]

Matsuo, S.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on riangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87(6), 061106 (2005).
[CrossRef]

Matsuzaki, Y.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two- dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[CrossRef]

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef]

Moreno, E.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100(2), 023901 (2008).
[CrossRef]

A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express 16(8), 5252–5260 (2008), http://www.opticsexpress.org/abstract.cfm?uri=oe-16-8-5252 .
[CrossRef]

Morimoto, A.

Nezhad, M. P.

Nielsen, R. B.

Ogawa, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two- dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on riangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87(6), 061106 (2005).
[CrossRef]

Okamoto, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on riangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87(6), 061106 (2005).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two- dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[CrossRef]

Orenstein, M.

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef]

Park, J.

Pile, D. F. P.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two- dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on riangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87(6), 061106 (2005).
[CrossRef]

D. F. P. Pile and D. K. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Opt. Lett. 29(10), 1069–1071 (2004).
[CrossRef]

Qiu, M.

Requicha, A. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef]

Rodrigo, S. G.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100(2), 023901 (2008).
[CrossRef]

A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express 16(8), 5252–5260 (2008), http://www.opticsexpress.org/abstract.cfm?uri=oe-16-8-5252 .
[CrossRef]

Rogowski, R. S.

Selker, M. D.

Shakya, J.

Sondergaard, T.

J. Jung, T. Sondergaard, and S. I. Bozhevolnyi, “Theoretical analysis of square surface plasmon-polariton waveguides for long-range polarization-independent waveguiding,” Phys. Rev. B 76(3), 035434 (2007).
[CrossRef]

Sudarkin, A. N.

A. N. Sudarkin and P. A. Demkovich, “Excitation of surface electromagnetic waves on the boundary of a metal with an amplifying medium,” Sov. Phys. Tech. Phys. 34, 764–766 (1989).

Tai, H.

Takahara, J.

F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, “Propagation properties of guided waves in index-guided two-dimensional optical waveguides,” Appl. Phys. Lett. 86(21), 211101 (2005).
[CrossRef]

J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett. 22(7), 475–477 (1997).
[CrossRef]

Taki, H.

Tanaka, K.

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82(8), 1158–1160 (2003).
[CrossRef]

Tanaka, M.

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82(8), 1158–1160 (2003).
[CrossRef]

Tetz, K.

Vernon, K. C.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two- dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[CrossRef]

Volkov, V. S.

A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express 16(8), 5252–5260 (2008), http://www.opticsexpress.org/abstract.cfm?uri=oe-16-8-5252 .
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef]

Wang, B.

Wang, G. P.

Wu, F.

Xue, W. R.

Yamagishi, S.

Yamaguchi, K.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two- dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[CrossRef]

Yan, M.

Yotsuya, T.

F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, “Propagation properties of guided waves in index-guided two-dimensional optical waveguides,” Appl. Phys. Lett. 86(21), 211101 (2005).
[CrossRef]

Yu, C. P.

Zhang, H. X.

H. X. Zhang, Y. Gu, and Q. H. Gong, “A visible-near infrared tunable waveguide based on plasmonic gold nanoshell,” Chinese Physics B 17(7), 2567–2573 (2008).

Zhang, W. M.

Zhu, Z.

Zia, R.

Appl. Phys. Lett. (6)

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82(8), 1158–1160 (2003).
[CrossRef]

F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, “Propagation properties of guided waves in index-guided two-dimensional optical waveguides,” Appl. Phys. Lett. 86(21), 211101 (2005).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on riangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87(6), 061106 (2005).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two- dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005).
[CrossRef]

B. Wang and G. P. Wang, “Planar metal heterostructures for nanoplasmonic waveguides,” Appl. Phys. Lett. 90(1), 013114 (2007).
[CrossRef]

N. M. Lawandy, “Localized surface plasmon singularities in amplifying media,” Appl. Phys. Lett. 85(21), 5040–5042 (2004).
[CrossRef]

Chinese Physics B (1)

H. X. Zhang, Y. Gu, and Q. H. Gong, “A visible-near infrared tunable waveguide based on plasmonic gold nanoshell,” Chinese Physics B 17(7), 2567–2573 (2008).

IEEE J. Sel. Top. Quantum Electron. (1)

S. A. Maier, “Plasmonics: The promise of highly integrated optical devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1671–1677 (2006).

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

Nat. Mater. (1)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003).
[CrossRef]

Nature (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef]

Opt. Commun. (1)

S. A. Maier, “Gain-assisted propagation of electromagnetic energy in subwavelength surface plasmon polariton gap waveguides,” Opt. Commun. 258(2), 295–299 (2006).
[CrossRef]

Opt. Express (11)

C. P. Yu and H. C. Chang, “Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers,” Opt. Express 12(25), 6165–6177 (2004), http://www.opticsexpress.org/abstract.cfm?uri=oe-12-25-6165 .
[CrossRef]

R. Gordon and A. G. Brolo, “Increased cut-off wavelength for a subwavelength hole in a real metal,” Opt. Express 13(6), 1933–1938 (2005), http://www.opticsexpress.org/abstract.cfm?uri=oe-13-6-1933 .
[CrossRef]

L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13(17), 6645–6650 (2005), http://www.opticsexpress.org/abstract.cfm?uri=oe-13-17-6645 .
[CrossRef]

Z. Zhu and T. G. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Opt. Express 10(17), 853–864 (2002), http://www.opticsexpress.org/abstract.cfm?uri=oe-10-17-853 .

S. Guo, F. Wu, S. Albin, H. Tai, and R. S. Rogowski, “Loss and dispersion analysis of microstructured fibers by finite-difference method,” Opt. Express 12(15), 3341–3352 (2004), http://www.opticsexpress.org/abstract.cfm?uri=oe-12-15-3341 .
[CrossRef]

M. P. Nezhad, K. Tetz, and Y. Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express 12(17), 4072–4079 (2004), http://www.opticsexpress.org/abstract.cfm?uri=oe-12-17-4072 .
[CrossRef]

I. Lee, J. Jung, J. Park, H. Kim, and B. Lee, “Dispersion characteristics of channel plasmon polariton waveguides with step-trench-type grooves,” Opt. Express 15(25), 16596–16603 (2007), http://www.opticsexpress.org/abstract.cfm?uri=oe-15-25-16596 .
[CrossRef]

J. Guo and R. Adato, “Control of 2D plasmon-polariton mode with dielectric nanolayers,” Opt. Express 16(2), 1232–1237 (2008), http://www.opticsexpress.org/abstract.cfm?uri=oe-16-2-1232 .
[CrossRef]

D. Arbel and M. Orenstein, “Plasmonic modes in W-shaped metal-coated silicon grooves,” Opt. Express 16(5), 3114–3119 (2008), http://www.opticsexpress.org/abstract.cfm?uri=oe-16-5-3114 .
[CrossRef]

A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express 16(8), 5252–5260 (2008), http://www.opticsexpress.org/abstract.cfm?uri=oe-16-8-5252 .
[CrossRef]

W. R. Xue, Y. N. Guo, P. Li, and W. M. Zhang, “Propagation Properties of a Surface Plasmonic Waveguide with double elliptical air cores,” Opt. Express 16(14), 10710–10720 (2008), http://www.opticsexpress.org/abstract.cfm?uri=oe-16-14-10710 .
[CrossRef]

Opt. Lett. (5)

Phys. Rev. (1)

E. N. Economou, “Surface plasmon in thin films,” Phys. Rev. 182(2), 539–554 (1969).
[CrossRef]

Phys. Rev. B (4)

J. Jung, T. Sondergaard, and S. I. Bozhevolnyi, “Theoretical analysis of square surface plasmon-polariton waveguides for long-range polarization-independent waveguiding,” Phys. Rev. B 76(3), 035434 (2007).
[CrossRef]

J. Q. Lu and A. A. Maradudin, “Channel plasmons,” Phys. Rev. B 42(17), 11159–11165 (1990).
[CrossRef]

I. Avrutsky, “Surface plasmons at nanoscale relief gratings between a metal and a dielectric medium with optical gain,” Phys. Rev. B 70(15), 155416 (2004).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett. (1)

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100(2), 023901 (2008).
[CrossRef]

Q. Appl. Math. (1)

W. E. Arnoldi, “The principle of minimized iteration in the solution of matrix eigenvalue problems,” Q. Appl. Math. 9, 17–29 (1951).

Science (2)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef]

H. A. Atwater, “The promise of plasmonics,” Science 296, 56–63 (2007).

Sov. Phys. Tech. Phys. (1)

A. N. Sudarkin and P. A. Demkovich, “Excitation of surface electromagnetic waves on the boundary of a metal with an amplifying medium,” Sov. Phys. Tech. Phys. 34, 764–766 (1989).

Other (2)

H. Rather, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Springer-Verlag, Berlin, 1988).

E. D. Palik, Handbook of Optical Constants of Solids(Academic, New York, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Cross section of the proposed surface plasmonic waveguide with three circular air cores. (a) 2a>r, (b) 2a=r and (c) 2a<r

Fig. 2.
Fig. 2.

Analytic and simulated normalized (a) real part and (b) imaginary part of propagation constant of an optical fiber [41] with a finite metallic core for the 0th-order TM mode. Here, a is the radius of the core, λ 0 is the working wavelength, and k 0=2π/λ 0.

Fig. 3.
Fig. 3.

The distribution of the field (a) Hx , (b) Hy and (c) Sy on the cross section when a=60 nm, h=85 nm, r=120 nm at λ=705.0 nm. Dashed lines in (a), (b) and (c) indicate the outline of the structure.

Fig. 4.
Fig. 4.

Dependence of (a–c) Re(neff ), (d–f) Lprop and (g–i) Am on h when r=2a - 5 nm, 2a and 2a+5 nm at λ=705.0 nm.

Fig. 5.
Fig. 5.

Dependence of (a–c) Re(neff ), (d–f) Lprop and (g–i) Am on h when r=2a=100 nm, 120 nm and 140 nm at λ=632.8 nm, 705.0 nm, 800.0 nm.

Fig. 6.
Fig. 6.

Dependence of (a–b) Re(neff ), (c–d) Lprop and (e–f) Am on h when a=0 nm, 60 nm, r=120 nm at λ=632.8 nm, 705.0 nm, 800.0 nm.

Fig. 7.
Fig. 7.

The cross section of the SPW with a single wedge (a), the distribution of the field (b) Hx , (c) Hy and (d) Sz on the cross section when r=100 nm, c=85 nm, at λ=705.0 nm. Dashed lines in (b), (c) and (d) indicate the outline of the structure.

Fig. 8.
Fig. 8.

Dependence of (a) Re(neff ), (b) Lprop and (c) Am on c (or h) when r=100 nm at λ=705.0 nm.

Fig. 9.
Fig. 9.

Dependence of (a) Re(neff ), (b) Lprop and (c) Am on h in the different cases.

Fig. 10.
Fig. 10.

The distribution of the field Sz when λ=1550 nm, a=60 nm, r=120 nm with (a) εcore =11.56-0.000j, (b) εcore =11.56-0.025j, (c) εcore =11.56-0.050j, and (d) εcore =1.00-0.000j.

Tables (1)

Tables Icon

Table 1. The dielectric constants of the SPW.

Metrics