Abstract

We present an extended optical characterization of an adaptive microfluidic silicone-membrane lens at a wavelength of 633 nm, respectively 660 nm. Two different membrane variations; one with a homogeneous membrane thickness, and one with a shaped cross section, have been realized. This paper includes the theoretical predictions of the optical performance via FEM simulation and ray tracing, and a subsequent orientation dependent experimental analysis of the lens quality which is measured with an MTF setup and a Mach-Zehnder interferometer. The influence of the fabrication process on the optical performance is also characterized by the membrane deformation in the non-deflected state. The lens with the homogeneous membrane of 5 mm in diameter and an aperture of 2.5 mm indicates an almost orientation independent image quality of 117 linepairs/mm at a contrast of 50%. The shaped membrane lenses show a minimum wave front error of WFERMS=24 nm, and the lenses with a planar membrane of WFERMS=31 nm at an aperture of 2.125 mm.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
    [CrossRef]
  2. Optotune, “Electrical focus tunable lens EL-6-22,“ Datasheet, (2008).
  3. H. Ren, D. Fox, P. A. Anderson, B. Wu, and S.-T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14(18), 8031–8036 (2006).
    [CrossRef]
  4. F. Schneider, C. Müller, and U. Wallrabe, “A low cost adaptive silicone membrane lens,” J. Opt. A, Pure Appl. Opt. 10(4), 044002 (2008).
    [CrossRef]
  5. F. Schneider, J. Draheim, C. Müller and U. Wallrabe, “Optimization of an adaptive PDMS-membrane lens with an integrated actuator,” Sens. Actuators A: Phys., doi:10.1016/j.sna.2008.07.006 (2008).
  6. Q. Yang, P. Kobrin, C. Seabury, S. Narayanaswamy, and W. Christian, “Mechanical modeling of fluid-driven polymer lenses,” Appl. Opt. 47(20), 3658–3668 (2008).
    [CrossRef]
  7. A. Werber and H. Zappe, “Tunable, microfluidic microlenses,” Appl. Opt . 44,3238-3245 (2005).
    [CrossRef] [PubMed]
  8. S Bhattacharya, A Datta, J. M. Berg, and S Gangopadhyay, “Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength,” J. Microelectromech. Syst. 14, 590–597 (2005).
    [CrossRef]
  9. F. Schneider, T. Fellner, J. Wilde, and U. Wallrabe, “Mechanical properties of silicones for MEMS,” J. Micromech. Microeng. 18(6), 065008 (2008).
    [CrossRef]
  10. M. Born, and E. Wolf, Principles of Optics, (Pergamon Press, New York, 1959).
  11. S. Reichelt and H. Zappe, “Combined Twyman-Green and Mach-Zehnder interferometer for microlens testing,” Appl. Opt. 44(27), 5786–5792 (2005).
    [CrossRef]

2008 (3)

F. Schneider, C. Müller, and U. Wallrabe, “A low cost adaptive silicone membrane lens,” J. Opt. A, Pure Appl. Opt. 10(4), 044002 (2008).
[CrossRef]

F. Schneider, T. Fellner, J. Wilde, and U. Wallrabe, “Mechanical properties of silicones for MEMS,” J. Micromech. Microeng. 18(6), 065008 (2008).
[CrossRef]

Q. Yang, P. Kobrin, C. Seabury, S. Narayanaswamy, and W. Christian, “Mechanical modeling of fluid-driven polymer lenses,” Appl. Opt. 47(20), 3658–3668 (2008).
[CrossRef]

2006 (1)

2005 (3)

S. Reichelt and H. Zappe, “Combined Twyman-Green and Mach-Zehnder interferometer for microlens testing,” Appl. Opt. 44(27), 5786–5792 (2005).
[CrossRef]

A. Werber and H. Zappe, “Tunable, microfluidic microlenses,” Appl. Opt . 44,3238-3245 (2005).
[CrossRef] [PubMed]

S Bhattacharya, A Datta, J. M. Berg, and S Gangopadhyay, “Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength,” J. Microelectromech. Syst. 14, 590–597 (2005).
[CrossRef]

2000 (1)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[CrossRef]

Anderson, P. A.

Berg, J. M.

S Bhattacharya, A Datta, J. M. Berg, and S Gangopadhyay, “Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength,” J. Microelectromech. Syst. 14, 590–597 (2005).
[CrossRef]

Berge, B.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[CrossRef]

Bhattacharya, S

S Bhattacharya, A Datta, J. M. Berg, and S Gangopadhyay, “Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength,” J. Microelectromech. Syst. 14, 590–597 (2005).
[CrossRef]

Christian, W.

Datta, A

S Bhattacharya, A Datta, J. M. Berg, and S Gangopadhyay, “Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength,” J. Microelectromech. Syst. 14, 590–597 (2005).
[CrossRef]

Fellner, T.

F. Schneider, T. Fellner, J. Wilde, and U. Wallrabe, “Mechanical properties of silicones for MEMS,” J. Micromech. Microeng. 18(6), 065008 (2008).
[CrossRef]

Fox, D.

Gangopadhyay, S

S Bhattacharya, A Datta, J. M. Berg, and S Gangopadhyay, “Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength,” J. Microelectromech. Syst. 14, 590–597 (2005).
[CrossRef]

Kobrin, P.

Müller, C.

F. Schneider, C. Müller, and U. Wallrabe, “A low cost adaptive silicone membrane lens,” J. Opt. A, Pure Appl. Opt. 10(4), 044002 (2008).
[CrossRef]

Narayanaswamy, S.

Peseux, J.

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[CrossRef]

Reichelt, S.

Ren, H.

Schneider, F.

F. Schneider, T. Fellner, J. Wilde, and U. Wallrabe, “Mechanical properties of silicones for MEMS,” J. Micromech. Microeng. 18(6), 065008 (2008).
[CrossRef]

F. Schneider, C. Müller, and U. Wallrabe, “A low cost adaptive silicone membrane lens,” J. Opt. A, Pure Appl. Opt. 10(4), 044002 (2008).
[CrossRef]

Seabury, C.

Wallrabe, U.

F. Schneider, C. Müller, and U. Wallrabe, “A low cost adaptive silicone membrane lens,” J. Opt. A, Pure Appl. Opt. 10(4), 044002 (2008).
[CrossRef]

F. Schneider, T. Fellner, J. Wilde, and U. Wallrabe, “Mechanical properties of silicones for MEMS,” J. Micromech. Microeng. 18(6), 065008 (2008).
[CrossRef]

Werber, A.

A. Werber and H. Zappe, “Tunable, microfluidic microlenses,” Appl. Opt . 44,3238-3245 (2005).
[CrossRef] [PubMed]

Wilde, J.

F. Schneider, T. Fellner, J. Wilde, and U. Wallrabe, “Mechanical properties of silicones for MEMS,” J. Micromech. Microeng. 18(6), 065008 (2008).
[CrossRef]

Wu, B.

Wu, S.-T.

Yang, Q.

Zappe, H.

Appl. Opt (1)

A. Werber and H. Zappe, “Tunable, microfluidic microlenses,” Appl. Opt . 44,3238-3245 (2005).
[CrossRef] [PubMed]

Appl. Opt. (2)

Eur. Phys. J. E (1)

B. Berge and J. Peseux, “Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E 3(2), 159–163 (2000).
[CrossRef]

J. Microelectromech. Syst. (1)

S Bhattacharya, A Datta, J. M. Berg, and S Gangopadhyay, “Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength,” J. Microelectromech. Syst. 14, 590–597 (2005).
[CrossRef]

J. Micromech. Microeng. (1)

F. Schneider, T. Fellner, J. Wilde, and U. Wallrabe, “Mechanical properties of silicones for MEMS,” J. Micromech. Microeng. 18(6), 065008 (2008).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

F. Schneider, C. Müller, and U. Wallrabe, “A low cost adaptive silicone membrane lens,” J. Opt. A, Pure Appl. Opt. 10(4), 044002 (2008).
[CrossRef]

Opt. Express (1)

Other (3)

F. Schneider, J. Draheim, C. Müller and U. Wallrabe, “Optimization of an adaptive PDMS-membrane lens with an integrated actuator,” Sens. Actuators A: Phys., doi:10.1016/j.sna.2008.07.006 (2008).

Optotune, “Electrical focus tunable lens EL-6-22,“ Datasheet, (2008).

M. Born, and E. Wolf, Principles of Optics, (Pergamon Press, New York, 1959).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Schematic assembly of the liquid lens with a piezo-actuator.

Fig. 2.
Fig. 2.

Schematic of the different membrane shapes. a) homogeneous membrane, b) inhomogeneous membrane

Fig. 3.
Fig. 3.

FEM simulation model for the horizontal and vertical lens orientation.

Fig. 4.
Fig. 4.

Simulated wave front error WFERMS of lenses with homogeneous membrane thicknesses as a function of the focal length f lens in horizontal lens orientation. Variation of the membrane thickness t membr. Exemplarily the interferogramm is shown for a membrane thickness of 150 µm at a focal length of 200 mm. λ simulation=633 nm

Fig. 5.
Fig. 5.

Simulated wave front error WFERMS of lenses with homogeneous membranes as a function of the focal length f lens in vertical lens orientation. Variation of the membrane thickness t membr. Exemplarily the interferogramm is shown for a membrane thickness of 150 µm at a focal length of 200 mm. λ simulation=633 nm

Fig. 6.
Fig. 6.

Simulated wave front error of the lens with a inhomogeneous membrane as a function of the focal length. Variation of the residual membrane thickness t resid at a radius of curvature R membr of 10 mm.

Fig. 7.
Fig. 7.

Deformation of the homogeneous membranes directly after the casting process. Continuous measurement of two lenses with exemplarily shown error bars. The left diagram shows exemplarily the Zygo measurement result for t membr=300 µm.

Fig. 8.
Fig. 8.

Simulated lens chamber behaviour for a) a homogeneous membrane of t membr=300 µm at 1.4% volume shrinkage and b) an inhomogeneous one with t resid=50 µm and R membr=4.71 mm at 2.0% volume shrinkage.

Fig. 9.
Fig. 9.

Deflection of the inhomogeneous membranes directly after the casting process for a radius of curvature R membr of 9.3 mm. Continuous measurement with exemplarily shown error bars. The left diagram shows exemplarily the Zygo measurement result for t resid=50 µm and R membr=4.71 mm.

Fig. 10.
Fig. 10.

Measurement setup and resolution of a lens in horizontal orientation with 5 mm diameter in linepairs/mm (lp/mm) at 50% contrast as a function of the focal length for diverse membrane thicknesses t membr.

Fig. 11.
Fig. 11.

Resolution of a lens in vertical orientation with 5 mm diameter in linepairs/mm (lp/mm) at 50% contrast as a function of the focal length for diverse membrane thicknesses t membr. Inset: USAF 1951 test chart for t membr=50 µm at 200 mm focal length.

Fig. 12.
Fig. 12.

Wave front error of lenses with a homogeneous membranes as a function of the focal length for diverse membrane thicknesses tmembr. λ measure=633 nm

Fig. 13.
Fig. 13.

Wave front error of lenses with inhomogeneous membranes as a function of the focal length for diverse residual membrane thicknesses t resid at R membr=9.3 mm. λ measure=633 nm

Metrics