Abstract

Yb3+-Er3+ co-doped fluoride nanoparticles have been prepared. When pumped by 975 nm laser diode into absorption band of Yb3+, the laser-induced temperature rise up to 800°C has been detected in the nanoparticles by measuring the ratio of the intensities of the thermalised up-conversion luminescence bands 2H11/24I15/2 and 4S3/24I15/2 of Er3+. These results show that a controlled optical heating of the nanoparticles and their surrounding nano-volumes can be realised, while the location and temperature rise of the nanoparticles and heated nano-volumes can be detected distantly by means of luminescence.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007).
    [CrossRef]
  2. H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, “Ordered, uniform-sized ZnO nanolaser arrays,” Appl. Phys. Lett. 91(18), 181112 (2007).
    [CrossRef]
  3. J. Zhang, Y. Fu, and J. R. Lakowicz, “Luminescent images of single gold nanoparticles and their labeling on silica beads,” Opt. Express 15(20), 13415–13420 (2007).
    [CrossRef]
  4. D. Matsuura, “Red, green and blue up-conversion luminescence of trivalent rare earth ion-doped Y2O3 nanocrystals,” Appl. Phys. Lett. 81(24), 4526–4528 (2002).
    [CrossRef]
  5. M. Mortier and G. Patriarche, “Oxide glass used as inorganic template for fluorescent fluoride nano-particle synthesis,” Opt. Mater. 28(12), 1401–1404 (2006).
    [CrossRef]
  6. V. K. Tikhomirov, M. Mortier, P. Gredin, G. Patriarche, C. Görller-Walrand, and V. V. Moshchalkov, “Preparation and up-conversion luminescence of 8 nm rare-earth doped fluoride nanoparticles,” Opt. Express 16(19), 14544–14549 (2008).
    [CrossRef]
  7. L. Aigouy, G. Tessier, M. Mortier, and B. Charlot, “Scanning thermal imaging of microelectronic circuits with a fluorescent nanoprobe,” Appl. Phys. Lett. 87(18), 184105 (2005).
    [CrossRef]
  8. V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxyfluoride glass-ceramics,” Appl. Phys. Lett. 81(11), 1937–1939 (2002).
    [CrossRef]
  9. V. D. Rodríguez, V. K. Tikhomirov, J. Méndez-Ramos, J. del-Castillo, and C. Görller-Walrand, “Measurement of quantum yield of up-conversion Luminescence in Er(3+)-doped nano-glass-ceramics,” J. Nanosci. Nanotechnol. 9(3), 2072–2075 (2009).
    [CrossRef]
  10. F. Auzel, “Up-conversion and anti-Stokes processes with d and f ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
    [CrossRef]
  11. D. J. M. Bevan, J. Strähle, and O. Greis, “The cystal structure of tveitite an ordered yttrofluorite mineral,” J. Solid State Chem. 44(1), 75–81 (1982).
    [CrossRef]
  12. A. de Camargo, J. Possato, L. Nunes, E. Botero, E. Andreeta, D. Garcia, and J. Eiras, “Infrared to visible frequency up-conversion temperature sensor based on Er3+-doped PLZT transparent ceramics,” Solid State Commun. 137(1-2), 1–5 (2006).
    [CrossRef]
  13. H. Kusama, O. J. Sovers, and T. Yoshioka, “Line shift method for phosphor temperature measurement,” Jpn. J. Appl. Phys. 15(12), 2349–2358 (1976).
    [CrossRef]
  14. T. Hayakawa, M. Hayakawa, and M. Nogami, “Estimation of the fs laser spot temperature inside TeO2-ZnO-Nb2O5 glass by using up-conversion green fluorescence of Er3+ ions,” J. Alloy. Comp. 451(1-2), 77–80 (2008).
    [CrossRef]
  15. H. Desirena, E. De la Rosa, A. Shulzgen, S. Shabet, and N. Peyghambarian, “Er3+ and Yb3+ concentration effect in the spectroscopic properties and energy transfer in Yb3+/Er3+ co-doped tellurite glasses,” J. Phys. D Appl. Phys. 41(9), 095102 (2008).
    [CrossRef]
  16. D. Saurel, V. K. Tikhomirov, V. V. Moshchalkov, C. Görller-Walrand, and K. Driesen, “Zeeman splitting and confinement effects in Er3+-doped nano-glass-ceramics in magnetic fields up to 50 Tesla,” Appl. Phys. Lett. 92(17), 171101 (2008).
    [CrossRef]

2009

V. D. Rodríguez, V. K. Tikhomirov, J. Méndez-Ramos, J. del-Castillo, and C. Görller-Walrand, “Measurement of quantum yield of up-conversion Luminescence in Er(3+)-doped nano-glass-ceramics,” J. Nanosci. Nanotechnol. 9(3), 2072–2075 (2009).
[CrossRef]

2008

T. Hayakawa, M. Hayakawa, and M. Nogami, “Estimation of the fs laser spot temperature inside TeO2-ZnO-Nb2O5 glass by using up-conversion green fluorescence of Er3+ ions,” J. Alloy. Comp. 451(1-2), 77–80 (2008).
[CrossRef]

H. Desirena, E. De la Rosa, A. Shulzgen, S. Shabet, and N. Peyghambarian, “Er3+ and Yb3+ concentration effect in the spectroscopic properties and energy transfer in Yb3+/Er3+ co-doped tellurite glasses,” J. Phys. D Appl. Phys. 41(9), 095102 (2008).
[CrossRef]

D. Saurel, V. K. Tikhomirov, V. V. Moshchalkov, C. Görller-Walrand, and K. Driesen, “Zeeman splitting and confinement effects in Er3+-doped nano-glass-ceramics in magnetic fields up to 50 Tesla,” Appl. Phys. Lett. 92(17), 171101 (2008).
[CrossRef]

V. K. Tikhomirov, M. Mortier, P. Gredin, G. Patriarche, C. Görller-Walrand, and V. V. Moshchalkov, “Preparation and up-conversion luminescence of 8 nm rare-earth doped fluoride nanoparticles,” Opt. Express 16(19), 14544–14549 (2008).
[CrossRef]

2007

J. Zhang, Y. Fu, and J. R. Lakowicz, “Luminescent images of single gold nanoparticles and their labeling on silica beads,” Opt. Express 15(20), 13415–13420 (2007).
[CrossRef]

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007).
[CrossRef]

H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, “Ordered, uniform-sized ZnO nanolaser arrays,” Appl. Phys. Lett. 91(18), 181112 (2007).
[CrossRef]

2006

M. Mortier and G. Patriarche, “Oxide glass used as inorganic template for fluorescent fluoride nano-particle synthesis,” Opt. Mater. 28(12), 1401–1404 (2006).
[CrossRef]

A. de Camargo, J. Possato, L. Nunes, E. Botero, E. Andreeta, D. Garcia, and J. Eiras, “Infrared to visible frequency up-conversion temperature sensor based on Er3+-doped PLZT transparent ceramics,” Solid State Commun. 137(1-2), 1–5 (2006).
[CrossRef]

2005

L. Aigouy, G. Tessier, M. Mortier, and B. Charlot, “Scanning thermal imaging of microelectronic circuits with a fluorescent nanoprobe,” Appl. Phys. Lett. 87(18), 184105 (2005).
[CrossRef]

2004

F. Auzel, “Up-conversion and anti-Stokes processes with d and f ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[CrossRef]

2002

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxyfluoride glass-ceramics,” Appl. Phys. Lett. 81(11), 1937–1939 (2002).
[CrossRef]

D. Matsuura, “Red, green and blue up-conversion luminescence of trivalent rare earth ion-doped Y2O3 nanocrystals,” Appl. Phys. Lett. 81(24), 4526–4528 (2002).
[CrossRef]

1982

D. J. M. Bevan, J. Strähle, and O. Greis, “The cystal structure of tveitite an ordered yttrofluorite mineral,” J. Solid State Chem. 44(1), 75–81 (1982).
[CrossRef]

1976

H. Kusama, O. J. Sovers, and T. Yoshioka, “Line shift method for phosphor temperature measurement,” Jpn. J. Appl. Phys. 15(12), 2349–2358 (1976).
[CrossRef]

Aigouy, L.

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007).
[CrossRef]

L. Aigouy, G. Tessier, M. Mortier, and B. Charlot, “Scanning thermal imaging of microelectronic circuits with a fluorescent nanoprobe,” Appl. Phys. Lett. 87(18), 184105 (2005).
[CrossRef]

Andreeta, E.

A. de Camargo, J. Possato, L. Nunes, E. Botero, E. Andreeta, D. Garcia, and J. Eiras, “Infrared to visible frequency up-conversion temperature sensor based on Er3+-doped PLZT transparent ceramics,” Solid State Commun. 137(1-2), 1–5 (2006).
[CrossRef]

Auzel, F.

F. Auzel, “Up-conversion and anti-Stokes processes with d and f ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[CrossRef]

Beggiora, M.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxyfluoride glass-ceramics,” Appl. Phys. Lett. 81(11), 1937–1939 (2002).
[CrossRef]

Bevan, D. J. M.

D. J. M. Bevan, J. Strähle, and O. Greis, “The cystal structure of tveitite an ordered yttrofluorite mineral,” J. Solid State Chem. 44(1), 75–81 (1982).
[CrossRef]

Botero, E.

A. de Camargo, J. Possato, L. Nunes, E. Botero, E. Andreeta, D. Garcia, and J. Eiras, “Infrared to visible frequency up-conversion temperature sensor based on Er3+-doped PLZT transparent ceramics,” Solid State Commun. 137(1-2), 1–5 (2006).
[CrossRef]

Charlot, B.

L. Aigouy, G. Tessier, M. Mortier, and B. Charlot, “Scanning thermal imaging of microelectronic circuits with a fluorescent nanoprobe,” Appl. Phys. Lett. 87(18), 184105 (2005).
[CrossRef]

de Camargo, A.

A. de Camargo, J. Possato, L. Nunes, E. Botero, E. Andreeta, D. Garcia, and J. Eiras, “Infrared to visible frequency up-conversion temperature sensor based on Er3+-doped PLZT transparent ceramics,” Solid State Commun. 137(1-2), 1–5 (2006).
[CrossRef]

De la Rosa, E.

H. Desirena, E. De la Rosa, A. Shulzgen, S. Shabet, and N. Peyghambarian, “Er3+ and Yb3+ concentration effect in the spectroscopic properties and energy transfer in Yb3+/Er3+ co-doped tellurite glasses,” J. Phys. D Appl. Phys. 41(9), 095102 (2008).
[CrossRef]

del-Castillo, J.

V. D. Rodríguez, V. K. Tikhomirov, J. Méndez-Ramos, J. del-Castillo, and C. Görller-Walrand, “Measurement of quantum yield of up-conversion Luminescence in Er(3+)-doped nano-glass-ceramics,” J. Nanosci. Nanotechnol. 9(3), 2072–2075 (2009).
[CrossRef]

Desirena, H.

H. Desirena, E. De la Rosa, A. Shulzgen, S. Shabet, and N. Peyghambarian, “Er3+ and Yb3+ concentration effect in the spectroscopic properties and energy transfer in Yb3+/Er3+ co-doped tellurite glasses,” J. Phys. D Appl. Phys. 41(9), 095102 (2008).
[CrossRef]

Driesen, K.

D. Saurel, V. K. Tikhomirov, V. V. Moshchalkov, C. Görller-Walrand, and K. Driesen, “Zeeman splitting and confinement effects in Er3+-doped nano-glass-ceramics in magnetic fields up to 50 Tesla,” Appl. Phys. Lett. 92(17), 171101 (2008).
[CrossRef]

Eiras, J.

A. de Camargo, J. Possato, L. Nunes, E. Botero, E. Andreeta, D. Garcia, and J. Eiras, “Infrared to visible frequency up-conversion temperature sensor based on Er3+-doped PLZT transparent ceramics,” Solid State Commun. 137(1-2), 1–5 (2006).
[CrossRef]

Fallert, J.

H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, “Ordered, uniform-sized ZnO nanolaser arrays,” Appl. Phys. Lett. 91(18), 181112 (2007).
[CrossRef]

Ferrari, M.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxyfluoride glass-ceramics,” Appl. Phys. Lett. 81(11), 1937–1939 (2002).
[CrossRef]

Fu, Y.

Furniss, D.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxyfluoride glass-ceramics,” Appl. Phys. Lett. 81(11), 1937–1939 (2002).
[CrossRef]

Garcia, D.

A. de Camargo, J. Possato, L. Nunes, E. Botero, E. Andreeta, D. Garcia, and J. Eiras, “Infrared to visible frequency up-conversion temperature sensor based on Er3+-doped PLZT transparent ceramics,” Solid State Commun. 137(1-2), 1–5 (2006).
[CrossRef]

Görller-Walrand, C.

V. D. Rodríguez, V. K. Tikhomirov, J. Méndez-Ramos, J. del-Castillo, and C. Görller-Walrand, “Measurement of quantum yield of up-conversion Luminescence in Er(3+)-doped nano-glass-ceramics,” J. Nanosci. Nanotechnol. 9(3), 2072–2075 (2009).
[CrossRef]

D. Saurel, V. K. Tikhomirov, V. V. Moshchalkov, C. Görller-Walrand, and K. Driesen, “Zeeman splitting and confinement effects in Er3+-doped nano-glass-ceramics in magnetic fields up to 50 Tesla,” Appl. Phys. Lett. 92(17), 171101 (2008).
[CrossRef]

V. K. Tikhomirov, M. Mortier, P. Gredin, G. Patriarche, C. Görller-Walrand, and V. V. Moshchalkov, “Preparation and up-conversion luminescence of 8 nm rare-earth doped fluoride nanoparticles,” Opt. Express 16(19), 14544–14549 (2008).
[CrossRef]

Gredin, P.

Greis, O.

D. J. M. Bevan, J. Strähle, and O. Greis, “The cystal structure of tveitite an ordered yttrofluorite mineral,” J. Solid State Chem. 44(1), 75–81 (1982).
[CrossRef]

Hauschild, R.

H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, “Ordered, uniform-sized ZnO nanolaser arrays,” Appl. Phys. Lett. 91(18), 181112 (2007).
[CrossRef]

Hayakawa, M.

T. Hayakawa, M. Hayakawa, and M. Nogami, “Estimation of the fs laser spot temperature inside TeO2-ZnO-Nb2O5 glass by using up-conversion green fluorescence of Er3+ ions,” J. Alloy. Comp. 451(1-2), 77–80 (2008).
[CrossRef]

Hayakawa, T.

T. Hayakawa, M. Hayakawa, and M. Nogami, “Estimation of the fs laser spot temperature inside TeO2-ZnO-Nb2O5 glass by using up-conversion green fluorescence of Er3+ ions,” J. Alloy. Comp. 451(1-2), 77–80 (2008).
[CrossRef]

Hugonin, J. P.

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007).
[CrossRef]

Julié, G.

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007).
[CrossRef]

Kalt, H.

H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, “Ordered, uniform-sized ZnO nanolaser arrays,” Appl. Phys. Lett. 91(18), 181112 (2007).
[CrossRef]

Klingshirn, C.

H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, “Ordered, uniform-sized ZnO nanolaser arrays,” Appl. Phys. Lett. 91(18), 181112 (2007).
[CrossRef]

Kusama, H.

H. Kusama, O. J. Sovers, and T. Yoshioka, “Line shift method for phosphor temperature measurement,” Jpn. J. Appl. Phys. 15(12), 2349–2358 (1976).
[CrossRef]

Lakowicz, J. R.

Lalanne, P.

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007).
[CrossRef]

Mathet, V.

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007).
[CrossRef]

Matsuura, D.

D. Matsuura, “Red, green and blue up-conversion luminescence of trivalent rare earth ion-doped Y2O3 nanocrystals,” Appl. Phys. Lett. 81(24), 4526–4528 (2002).
[CrossRef]

Méndez-Ramos, J.

V. D. Rodríguez, V. K. Tikhomirov, J. Méndez-Ramos, J. del-Castillo, and C. Görller-Walrand, “Measurement of quantum yield of up-conversion Luminescence in Er(3+)-doped nano-glass-ceramics,” J. Nanosci. Nanotechnol. 9(3), 2072–2075 (2009).
[CrossRef]

Montagna, M.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxyfluoride glass-ceramics,” Appl. Phys. Lett. 81(11), 1937–1939 (2002).
[CrossRef]

Mortier, M.

V. K. Tikhomirov, M. Mortier, P. Gredin, G. Patriarche, C. Görller-Walrand, and V. V. Moshchalkov, “Preparation and up-conversion luminescence of 8 nm rare-earth doped fluoride nanoparticles,” Opt. Express 16(19), 14544–14549 (2008).
[CrossRef]

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007).
[CrossRef]

M. Mortier and G. Patriarche, “Oxide glass used as inorganic template for fluorescent fluoride nano-particle synthesis,” Opt. Mater. 28(12), 1401–1404 (2006).
[CrossRef]

L. Aigouy, G. Tessier, M. Mortier, and B. Charlot, “Scanning thermal imaging of microelectronic circuits with a fluorescent nanoprobe,” Appl. Phys. Lett. 87(18), 184105 (2005).
[CrossRef]

Moshchalkov, V. V.

D. Saurel, V. K. Tikhomirov, V. V. Moshchalkov, C. Görller-Walrand, and K. Driesen, “Zeeman splitting and confinement effects in Er3+-doped nano-glass-ceramics in magnetic fields up to 50 Tesla,” Appl. Phys. Lett. 92(17), 171101 (2008).
[CrossRef]

V. K. Tikhomirov, M. Mortier, P. Gredin, G. Patriarche, C. Görller-Walrand, and V. V. Moshchalkov, “Preparation and up-conversion luminescence of 8 nm rare-earth doped fluoride nanoparticles,” Opt. Express 16(19), 14544–14549 (2008).
[CrossRef]

Nogami, M.

T. Hayakawa, M. Hayakawa, and M. Nogami, “Estimation of the fs laser spot temperature inside TeO2-ZnO-Nb2O5 glass by using up-conversion green fluorescence of Er3+ ions,” J. Alloy. Comp. 451(1-2), 77–80 (2008).
[CrossRef]

Nunes, L.

A. de Camargo, J. Possato, L. Nunes, E. Botero, E. Andreeta, D. Garcia, and J. Eiras, “Infrared to visible frequency up-conversion temperature sensor based on Er3+-doped PLZT transparent ceramics,” Solid State Commun. 137(1-2), 1–5 (2006).
[CrossRef]

Patriarche, G.

Peyghambarian, N.

H. Desirena, E. De la Rosa, A. Shulzgen, S. Shabet, and N. Peyghambarian, “Er3+ and Yb3+ concentration effect in the spectroscopic properties and energy transfer in Yb3+/Er3+ co-doped tellurite glasses,” J. Phys. D Appl. Phys. 41(9), 095102 (2008).
[CrossRef]

Possato, J.

A. de Camargo, J. Possato, L. Nunes, E. Botero, E. Andreeta, D. Garcia, and J. Eiras, “Infrared to visible frequency up-conversion temperature sensor based on Er3+-doped PLZT transparent ceramics,” Solid State Commun. 137(1-2), 1–5 (2006).
[CrossRef]

Reaney, I. M.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxyfluoride glass-ceramics,” Appl. Phys. Lett. 81(11), 1937–1939 (2002).
[CrossRef]

Rodríguez, V. D.

V. D. Rodríguez, V. K. Tikhomirov, J. Méndez-Ramos, J. del-Castillo, and C. Görller-Walrand, “Measurement of quantum yield of up-conversion Luminescence in Er(3+)-doped nano-glass-ceramics,” J. Nanosci. Nanotechnol. 9(3), 2072–2075 (2009).
[CrossRef]

Rolli, R.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxyfluoride glass-ceramics,” Appl. Phys. Lett. 81(11), 1937–1939 (2002).
[CrossRef]

Saurel, D.

D. Saurel, V. K. Tikhomirov, V. V. Moshchalkov, C. Görller-Walrand, and K. Driesen, “Zeeman splitting and confinement effects in Er3+-doped nano-glass-ceramics in magnetic fields up to 50 Tesla,” Appl. Phys. Lett. 92(17), 171101 (2008).
[CrossRef]

Seddon, A. B.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxyfluoride glass-ceramics,” Appl. Phys. Lett. 81(11), 1937–1939 (2002).
[CrossRef]

Shabet, S.

H. Desirena, E. De la Rosa, A. Shulzgen, S. Shabet, and N. Peyghambarian, “Er3+ and Yb3+ concentration effect in the spectroscopic properties and energy transfer in Yb3+/Er3+ co-doped tellurite glasses,” J. Phys. D Appl. Phys. 41(9), 095102 (2008).
[CrossRef]

Shulzgen, A.

H. Desirena, E. De la Rosa, A. Shulzgen, S. Shabet, and N. Peyghambarian, “Er3+ and Yb3+ concentration effect in the spectroscopic properties and energy transfer in Yb3+/Er3+ co-doped tellurite glasses,” J. Phys. D Appl. Phys. 41(9), 095102 (2008).
[CrossRef]

Sovers, O. J.

H. Kusama, O. J. Sovers, and T. Yoshioka, “Line shift method for phosphor temperature measurement,” Jpn. J. Appl. Phys. 15(12), 2349–2358 (1976).
[CrossRef]

Stelzl, F.

H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, “Ordered, uniform-sized ZnO nanolaser arrays,” Appl. Phys. Lett. 91(18), 181112 (2007).
[CrossRef]

Strähle, J.

D. J. M. Bevan, J. Strähle, and O. Greis, “The cystal structure of tveitite an ordered yttrofluorite mineral,” J. Solid State Chem. 44(1), 75–81 (1982).
[CrossRef]

Tessier, G.

L. Aigouy, G. Tessier, M. Mortier, and B. Charlot, “Scanning thermal imaging of microelectronic circuits with a fluorescent nanoprobe,” Appl. Phys. Lett. 87(18), 184105 (2005).
[CrossRef]

Tikhomirov, V. K.

V. D. Rodríguez, V. K. Tikhomirov, J. Méndez-Ramos, J. del-Castillo, and C. Görller-Walrand, “Measurement of quantum yield of up-conversion Luminescence in Er(3+)-doped nano-glass-ceramics,” J. Nanosci. Nanotechnol. 9(3), 2072–2075 (2009).
[CrossRef]

D. Saurel, V. K. Tikhomirov, V. V. Moshchalkov, C. Görller-Walrand, and K. Driesen, “Zeeman splitting and confinement effects in Er3+-doped nano-glass-ceramics in magnetic fields up to 50 Tesla,” Appl. Phys. Lett. 92(17), 171101 (2008).
[CrossRef]

V. K. Tikhomirov, M. Mortier, P. Gredin, G. Patriarche, C. Görller-Walrand, and V. V. Moshchalkov, “Preparation and up-conversion luminescence of 8 nm rare-earth doped fluoride nanoparticles,” Opt. Express 16(19), 14544–14549 (2008).
[CrossRef]

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxyfluoride glass-ceramics,” Appl. Phys. Lett. 81(11), 1937–1939 (2002).
[CrossRef]

Wissinger, M.

H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, “Ordered, uniform-sized ZnO nanolaser arrays,” Appl. Phys. Lett. 91(18), 181112 (2007).
[CrossRef]

Yoshioka, T.

H. Kusama, O. J. Sovers, and T. Yoshioka, “Line shift method for phosphor temperature measurement,” Jpn. J. Appl. Phys. 15(12), 2349–2358 (1976).
[CrossRef]

Zhang, J.

Zhou, H.

H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, “Ordered, uniform-sized ZnO nanolaser arrays,” Appl. Phys. Lett. 91(18), 181112 (2007).
[CrossRef]

Appl. Phys. Lett.

L. Aigouy, G. Tessier, M. Mortier, and B. Charlot, “Scanning thermal imaging of microelectronic circuits with a fluorescent nanoprobe,” Appl. Phys. Lett. 87(18), 184105 (2005).
[CrossRef]

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxyfluoride glass-ceramics,” Appl. Phys. Lett. 81(11), 1937–1939 (2002).
[CrossRef]

D. Saurel, V. K. Tikhomirov, V. V. Moshchalkov, C. Görller-Walrand, and K. Driesen, “Zeeman splitting and confinement effects in Er3+-doped nano-glass-ceramics in magnetic fields up to 50 Tesla,” Appl. Phys. Lett. 92(17), 171101 (2008).
[CrossRef]

H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, “Ordered, uniform-sized ZnO nanolaser arrays,” Appl. Phys. Lett. 91(18), 181112 (2007).
[CrossRef]

D. Matsuura, “Red, green and blue up-conversion luminescence of trivalent rare earth ion-doped Y2O3 nanocrystals,” Appl. Phys. Lett. 81(24), 4526–4528 (2002).
[CrossRef]

Chem. Rev.

F. Auzel, “Up-conversion and anti-Stokes processes with d and f ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[CrossRef]

J. Alloy. Comp.

T. Hayakawa, M. Hayakawa, and M. Nogami, “Estimation of the fs laser spot temperature inside TeO2-ZnO-Nb2O5 glass by using up-conversion green fluorescence of Er3+ ions,” J. Alloy. Comp. 451(1-2), 77–80 (2008).
[CrossRef]

J. Nanosci. Nanotechnol.

V. D. Rodríguez, V. K. Tikhomirov, J. Méndez-Ramos, J. del-Castillo, and C. Görller-Walrand, “Measurement of quantum yield of up-conversion Luminescence in Er(3+)-doped nano-glass-ceramics,” J. Nanosci. Nanotechnol. 9(3), 2072–2075 (2009).
[CrossRef]

J. Phys. D Appl. Phys.

H. Desirena, E. De la Rosa, A. Shulzgen, S. Shabet, and N. Peyghambarian, “Er3+ and Yb3+ concentration effect in the spectroscopic properties and energy transfer in Yb3+/Er3+ co-doped tellurite glasses,” J. Phys. D Appl. Phys. 41(9), 095102 (2008).
[CrossRef]

J. Solid State Chem.

D. J. M. Bevan, J. Strähle, and O. Greis, “The cystal structure of tveitite an ordered yttrofluorite mineral,” J. Solid State Chem. 44(1), 75–81 (1982).
[CrossRef]

Jpn. J. Appl. Phys.

H. Kusama, O. J. Sovers, and T. Yoshioka, “Line shift method for phosphor temperature measurement,” Jpn. J. Appl. Phys. 15(12), 2349–2358 (1976).
[CrossRef]

Opt. Express

Opt. Mater.

M. Mortier and G. Patriarche, “Oxide glass used as inorganic template for fluorescent fluoride nano-particle synthesis,” Opt. Mater. 28(12), 1401–1404 (2006).
[CrossRef]

Phys. Rev. Lett.

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007).
[CrossRef]

Solid State Commun.

A. de Camargo, J. Possato, L. Nunes, E. Botero, E. Andreeta, D. Garcia, and J. Eiras, “Infrared to visible frequency up-conversion temperature sensor based on Er3+-doped PLZT transparent ceramics,” Solid State Commun. 137(1-2), 1–5 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Up-conversion luminescence spectra of Yb3+-Er3+ co-doped crystalline nanoparticles aggregated as nanopowder (a) and bulk nano-glass-ceramics (b), excited at 975 nm. Excitation power of laser diode is indicated while intensity of luminescence increases with indicated pump power, respectively. The nanopowder was placed in pyrex ampoule sealed under vacuum, the nano-glass-ceramics was placed in ambient air.

Fig. 2.
Fig. 2.

Yb3+ and Er3+ energy level diagrams. Diode laser excitation transitions at 975 nm to the 2F5/2 and 4I11/2 levels of Yb3+ and Er3+ are showed by solid black arrows. Dash red arrows show energy transfer processes between Yb3+ and Er3+ ions resulting in up-conversion luminescence of Er3+ and heating the sample. Wavy lines shows phonon emission processes by Er 3+ ions, which mostly heat the sample due to energy mismatch with a levels 4F9/2 and 4F7/2 of Er3+. Δ is a gap between the 2H11/2 and 4S3/2 levels, while green arrows indicate the thermalised emission transitions from these levels.

Fig. 3.
Fig. 3.

Black stars show dependence ln(IH/IS ) versus temperature 1/T in nanoparticles aggregated as nanopowder placed between silica plates in air, when luminescence was pumped at 450 nm into 4F3/2 level of Er3+ (avoiding heating of sample due to the pump) while a straight line is a linear fit to these data. Red circles and a black square indicate the values ln(IH/IS ), while placed on this linear fit line, when the luminescence was pumped at 975 nm (resulting in heating of sample) in nanopowders placed in evacuated pyrex ampoule (circles) and in bulk nano-glass-ceramics placed in air (square). An evaluated temperature rise is indicated for three selected pump powers of the laser diode.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

IHIs =gHAHhvHgsAshvs exp [ΔkT]
In (IHIS) =C BT

Metrics