Abstract

Abstract: Yb3+-Er3+ co-doped fluoride nanoparticles have been prepared. When pumped by 975 nm laser diode into absorption band of Yb3+, the laser-induced temperature rise up to 800°C has been detected in the nanoparticles by measuring the ratio of the intensities of the thermalised up-conversion luminescence bands 2H11/24I15/2 and 4S3/24I15/2 of Er3+. These results show that a controlled optical heating of the nanoparticles and their surrounding nano-volumes can be realised, while the location and temperature rise of the nanoparticles and heated nano-volumes can be detected distantly by means of luminescence.

© 2009 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007).
    [CrossRef]
  2. H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, “Ordered, uniform-sized ZnO nanolaser arrays,” Appl. Phys. Lett. 91(18), 181112 (2007).
    [CrossRef]
  3. J. Zhang, Y. Fu, and J. R. Lakowicz, “Luminescent images of single gold nanoparticles and their labeling on silica beads,” Opt. Express 15(20), 13415–13420 (2007).
    [CrossRef]
  4. D. Matsuura, “Red, green and blue up-conversion luminescence of trivalent rare earth ion-doped Y2O3 nanocrystals,” Appl. Phys. Lett. 81(24), 4526–4528 (2002).
    [CrossRef]
  5. M. Mortier and G. Patriarche, “Oxide glass used as inorganic template for fluorescent fluoride nano-particle synthesis,” Opt. Mater. 28(12), 1401–1404 (2006).
    [CrossRef]
  6. V. K. Tikhomirov, M. Mortier, P. Gredin, G. Patriarche, C. Görller-Walrand, and V. V. Moshchalkov, “Preparation and up-conversion luminescence of 8 nm rare-earth doped fluoride nanoparticles,” Opt. Express 16(19), 14544–14549 (2008).
    [CrossRef]
  7. L. Aigouy, G. Tessier, M. Mortier, and B. Charlot, “Scanning thermal imaging of microelectronic circuits with a fluorescent nanoprobe,” Appl. Phys. Lett. 87(18), 184105 (2005).
    [CrossRef]
  8. V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxyfluoride glass-ceramics,” Appl. Phys. Lett. 81(11), 1937–1939 (2002).
    [CrossRef]
  9. V. D. Rodríguez, V. K. Tikhomirov, J. Méndez-Ramos, J. del-Castillo, and C. Görller-Walrand, “Measurement of quantum yield of up-conversion Luminescence in Er(3+)-doped nano-glass-ceramics,” J. Nanosci. Nanotechnol. 9(3), 2072–2075 (2009).
    [CrossRef]
  10. F. Auzel, “Up-conversion and anti-Stokes processes with d and f ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
    [CrossRef]
  11. D. J. M. Bevan, J. Strähle, and O. Greis, “The cystal structure of tveitite an ordered yttrofluorite mineral,” J. Solid State Chem. 44(1), 75–81 (1982).
    [CrossRef]
  12. A. de Camargo, J. Possato, L. Nunes, E. Botero, E. Andreeta, D. Garcia, and J. Eiras, “Infrared to visible frequency up-conversion temperature sensor based on Er3+-doped PLZT transparent ceramics,” Solid State Commun. 137(1-2), 1–5 (2006).
    [CrossRef]
  13. H. Kusama, O. J. Sovers, and T. Yoshioka, “Line shift method for phosphor temperature measurement,” Jpn. J. Appl. Phys. 15(12), 2349–2358 (1976).
    [CrossRef]
  14. T. Hayakawa, M. Hayakawa, and M. Nogami, “Estimation of the fs laser spot temperature inside TeO2-ZnO-Nb2O5 glass by using up-conversion green fluorescence of Er3+ ions,” J. Alloy. Comp. 451(1-2), 77–80 (2008).
    [CrossRef]
  15. H. Desirena, E. De la Rosa, A. Shulzgen, S. Shabet, and N. Peyghambarian, “Er3+ and Yb3+ concentration effect in the spectroscopic properties and energy transfer in Yb3+/Er3+ co-doped tellurite glasses,” J. Phys. D Appl. Phys. 41(9), 095102 (2008).
    [CrossRef]
  16. D. Saurel, V. K. Tikhomirov, V. V. Moshchalkov, C. Görller-Walrand, and K. Driesen, “Zeeman splitting and confinement effects in Er3+-doped nano-glass-ceramics in magnetic fields up to 50 Tesla,” Appl. Phys. Lett. 92(17), 171101 (2008).
    [CrossRef]

2009 (1)

V. D. Rodríguez, V. K. Tikhomirov, J. Méndez-Ramos, J. del-Castillo, and C. Görller-Walrand, “Measurement of quantum yield of up-conversion Luminescence in Er(3+)-doped nano-glass-ceramics,” J. Nanosci. Nanotechnol. 9(3), 2072–2075 (2009).
[CrossRef]

2008 (4)

V. K. Tikhomirov, M. Mortier, P. Gredin, G. Patriarche, C. Görller-Walrand, and V. V. Moshchalkov, “Preparation and up-conversion luminescence of 8 nm rare-earth doped fluoride nanoparticles,” Opt. Express 16(19), 14544–14549 (2008).
[CrossRef]

T. Hayakawa, M. Hayakawa, and M. Nogami, “Estimation of the fs laser spot temperature inside TeO2-ZnO-Nb2O5 glass by using up-conversion green fluorescence of Er3+ ions,” J. Alloy. Comp. 451(1-2), 77–80 (2008).
[CrossRef]

H. Desirena, E. De la Rosa, A. Shulzgen, S. Shabet, and N. Peyghambarian, “Er3+ and Yb3+ concentration effect in the spectroscopic properties and energy transfer in Yb3+/Er3+ co-doped tellurite glasses,” J. Phys. D Appl. Phys. 41(9), 095102 (2008).
[CrossRef]

D. Saurel, V. K. Tikhomirov, V. V. Moshchalkov, C. Görller-Walrand, and K. Driesen, “Zeeman splitting and confinement effects in Er3+-doped nano-glass-ceramics in magnetic fields up to 50 Tesla,” Appl. Phys. Lett. 92(17), 171101 (2008).
[CrossRef]

2007 (3)

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007).
[CrossRef]

H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, “Ordered, uniform-sized ZnO nanolaser arrays,” Appl. Phys. Lett. 91(18), 181112 (2007).
[CrossRef]

J. Zhang, Y. Fu, and J. R. Lakowicz, “Luminescent images of single gold nanoparticles and their labeling on silica beads,” Opt. Express 15(20), 13415–13420 (2007).
[CrossRef]

2006 (2)

A. de Camargo, J. Possato, L. Nunes, E. Botero, E. Andreeta, D. Garcia, and J. Eiras, “Infrared to visible frequency up-conversion temperature sensor based on Er3+-doped PLZT transparent ceramics,” Solid State Commun. 137(1-2), 1–5 (2006).
[CrossRef]

M. Mortier and G. Patriarche, “Oxide glass used as inorganic template for fluorescent fluoride nano-particle synthesis,” Opt. Mater. 28(12), 1401–1404 (2006).
[CrossRef]

2005 (1)

L. Aigouy, G. Tessier, M. Mortier, and B. Charlot, “Scanning thermal imaging of microelectronic circuits with a fluorescent nanoprobe,” Appl. Phys. Lett. 87(18), 184105 (2005).
[CrossRef]

2004 (1)

F. Auzel, “Up-conversion and anti-Stokes processes with d and f ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[CrossRef]

2002 (2)

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxyfluoride glass-ceramics,” Appl. Phys. Lett. 81(11), 1937–1939 (2002).
[CrossRef]

D. Matsuura, “Red, green and blue up-conversion luminescence of trivalent rare earth ion-doped Y2O3 nanocrystals,” Appl. Phys. Lett. 81(24), 4526–4528 (2002).
[CrossRef]

1982 (1)

D. J. M. Bevan, J. Strähle, and O. Greis, “The cystal structure of tveitite an ordered yttrofluorite mineral,” J. Solid State Chem. 44(1), 75–81 (1982).
[CrossRef]

1976 (1)

H. Kusama, O. J. Sovers, and T. Yoshioka, “Line shift method for phosphor temperature measurement,” Jpn. J. Appl. Phys. 15(12), 2349–2358 (1976).
[CrossRef]

Aigouy, L.

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007).
[CrossRef]

L. Aigouy, G. Tessier, M. Mortier, and B. Charlot, “Scanning thermal imaging of microelectronic circuits with a fluorescent nanoprobe,” Appl. Phys. Lett. 87(18), 184105 (2005).
[CrossRef]

Andreeta, E.

A. de Camargo, J. Possato, L. Nunes, E. Botero, E. Andreeta, D. Garcia, and J. Eiras, “Infrared to visible frequency up-conversion temperature sensor based on Er3+-doped PLZT transparent ceramics,” Solid State Commun. 137(1-2), 1–5 (2006).
[CrossRef]

Auzel, F.

F. Auzel, “Up-conversion and anti-Stokes processes with d and f ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[CrossRef]

Beggiora, M.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxyfluoride glass-ceramics,” Appl. Phys. Lett. 81(11), 1937–1939 (2002).
[CrossRef]

Bevan, D. J. M.

D. J. M. Bevan, J. Strähle, and O. Greis, “The cystal structure of tveitite an ordered yttrofluorite mineral,” J. Solid State Chem. 44(1), 75–81 (1982).
[CrossRef]

Botero, E.

A. de Camargo, J. Possato, L. Nunes, E. Botero, E. Andreeta, D. Garcia, and J. Eiras, “Infrared to visible frequency up-conversion temperature sensor based on Er3+-doped PLZT transparent ceramics,” Solid State Commun. 137(1-2), 1–5 (2006).
[CrossRef]

Charlot, B.

L. Aigouy, G. Tessier, M. Mortier, and B. Charlot, “Scanning thermal imaging of microelectronic circuits with a fluorescent nanoprobe,” Appl. Phys. Lett. 87(18), 184105 (2005).
[CrossRef]

de Camargo, A.

A. de Camargo, J. Possato, L. Nunes, E. Botero, E. Andreeta, D. Garcia, and J. Eiras, “Infrared to visible frequency up-conversion temperature sensor based on Er3+-doped PLZT transparent ceramics,” Solid State Commun. 137(1-2), 1–5 (2006).
[CrossRef]

De la Rosa, E.

H. Desirena, E. De la Rosa, A. Shulzgen, S. Shabet, and N. Peyghambarian, “Er3+ and Yb3+ concentration effect in the spectroscopic properties and energy transfer in Yb3+/Er3+ co-doped tellurite glasses,” J. Phys. D Appl. Phys. 41(9), 095102 (2008).
[CrossRef]

del-Castillo, J.

V. D. Rodríguez, V. K. Tikhomirov, J. Méndez-Ramos, J. del-Castillo, and C. Görller-Walrand, “Measurement of quantum yield of up-conversion Luminescence in Er(3+)-doped nano-glass-ceramics,” J. Nanosci. Nanotechnol. 9(3), 2072–2075 (2009).
[CrossRef]

Desirena, H.

H. Desirena, E. De la Rosa, A. Shulzgen, S. Shabet, and N. Peyghambarian, “Er3+ and Yb3+ concentration effect in the spectroscopic properties and energy transfer in Yb3+/Er3+ co-doped tellurite glasses,” J. Phys. D Appl. Phys. 41(9), 095102 (2008).
[CrossRef]

Driesen, K.

D. Saurel, V. K. Tikhomirov, V. V. Moshchalkov, C. Görller-Walrand, and K. Driesen, “Zeeman splitting and confinement effects in Er3+-doped nano-glass-ceramics in magnetic fields up to 50 Tesla,” Appl. Phys. Lett. 92(17), 171101 (2008).
[CrossRef]

Eiras, J.

A. de Camargo, J. Possato, L. Nunes, E. Botero, E. Andreeta, D. Garcia, and J. Eiras, “Infrared to visible frequency up-conversion temperature sensor based on Er3+-doped PLZT transparent ceramics,” Solid State Commun. 137(1-2), 1–5 (2006).
[CrossRef]

Fallert, J.

H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, “Ordered, uniform-sized ZnO nanolaser arrays,” Appl. Phys. Lett. 91(18), 181112 (2007).
[CrossRef]

Ferrari, M.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxyfluoride glass-ceramics,” Appl. Phys. Lett. 81(11), 1937–1939 (2002).
[CrossRef]

Fu, Y.

Furniss, D.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxyfluoride glass-ceramics,” Appl. Phys. Lett. 81(11), 1937–1939 (2002).
[CrossRef]

Garcia, D.

A. de Camargo, J. Possato, L. Nunes, E. Botero, E. Andreeta, D. Garcia, and J. Eiras, “Infrared to visible frequency up-conversion temperature sensor based on Er3+-doped PLZT transparent ceramics,” Solid State Commun. 137(1-2), 1–5 (2006).
[CrossRef]

Görller-Walrand, C.

V. D. Rodríguez, V. K. Tikhomirov, J. Méndez-Ramos, J. del-Castillo, and C. Görller-Walrand, “Measurement of quantum yield of up-conversion Luminescence in Er(3+)-doped nano-glass-ceramics,” J. Nanosci. Nanotechnol. 9(3), 2072–2075 (2009).
[CrossRef]

D. Saurel, V. K. Tikhomirov, V. V. Moshchalkov, C. Görller-Walrand, and K. Driesen, “Zeeman splitting and confinement effects in Er3+-doped nano-glass-ceramics in magnetic fields up to 50 Tesla,” Appl. Phys. Lett. 92(17), 171101 (2008).
[CrossRef]

V. K. Tikhomirov, M. Mortier, P. Gredin, G. Patriarche, C. Görller-Walrand, and V. V. Moshchalkov, “Preparation and up-conversion luminescence of 8 nm rare-earth doped fluoride nanoparticles,” Opt. Express 16(19), 14544–14549 (2008).
[CrossRef]

Gredin, P.

Greis, O.

D. J. M. Bevan, J. Strähle, and O. Greis, “The cystal structure of tveitite an ordered yttrofluorite mineral,” J. Solid State Chem. 44(1), 75–81 (1982).
[CrossRef]

Hauschild, R.

H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, “Ordered, uniform-sized ZnO nanolaser arrays,” Appl. Phys. Lett. 91(18), 181112 (2007).
[CrossRef]

Hayakawa, M.

T. Hayakawa, M. Hayakawa, and M. Nogami, “Estimation of the fs laser spot temperature inside TeO2-ZnO-Nb2O5 glass by using up-conversion green fluorescence of Er3+ ions,” J. Alloy. Comp. 451(1-2), 77–80 (2008).
[CrossRef]

Hayakawa, T.

T. Hayakawa, M. Hayakawa, and M. Nogami, “Estimation of the fs laser spot temperature inside TeO2-ZnO-Nb2O5 glass by using up-conversion green fluorescence of Er3+ ions,” J. Alloy. Comp. 451(1-2), 77–80 (2008).
[CrossRef]

Hugonin, J. P.

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007).
[CrossRef]

Julié, G.

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007).
[CrossRef]

Kalt, H.

H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, “Ordered, uniform-sized ZnO nanolaser arrays,” Appl. Phys. Lett. 91(18), 181112 (2007).
[CrossRef]

Klingshirn, C.

H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, “Ordered, uniform-sized ZnO nanolaser arrays,” Appl. Phys. Lett. 91(18), 181112 (2007).
[CrossRef]

Kusama, H.

H. Kusama, O. J. Sovers, and T. Yoshioka, “Line shift method for phosphor temperature measurement,” Jpn. J. Appl. Phys. 15(12), 2349–2358 (1976).
[CrossRef]

Lakowicz, J. R.

Lalanne, P.

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007).
[CrossRef]

Mathet, V.

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007).
[CrossRef]

Matsuura, D.

D. Matsuura, “Red, green and blue up-conversion luminescence of trivalent rare earth ion-doped Y2O3 nanocrystals,” Appl. Phys. Lett. 81(24), 4526–4528 (2002).
[CrossRef]

Méndez-Ramos, J.

V. D. Rodríguez, V. K. Tikhomirov, J. Méndez-Ramos, J. del-Castillo, and C. Görller-Walrand, “Measurement of quantum yield of up-conversion Luminescence in Er(3+)-doped nano-glass-ceramics,” J. Nanosci. Nanotechnol. 9(3), 2072–2075 (2009).
[CrossRef]

Montagna, M.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxyfluoride glass-ceramics,” Appl. Phys. Lett. 81(11), 1937–1939 (2002).
[CrossRef]

Mortier, M.

V. K. Tikhomirov, M. Mortier, P. Gredin, G. Patriarche, C. Görller-Walrand, and V. V. Moshchalkov, “Preparation and up-conversion luminescence of 8 nm rare-earth doped fluoride nanoparticles,” Opt. Express 16(19), 14544–14549 (2008).
[CrossRef]

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007).
[CrossRef]

M. Mortier and G. Patriarche, “Oxide glass used as inorganic template for fluorescent fluoride nano-particle synthesis,” Opt. Mater. 28(12), 1401–1404 (2006).
[CrossRef]

L. Aigouy, G. Tessier, M. Mortier, and B. Charlot, “Scanning thermal imaging of microelectronic circuits with a fluorescent nanoprobe,” Appl. Phys. Lett. 87(18), 184105 (2005).
[CrossRef]

Moshchalkov, V. V.

D. Saurel, V. K. Tikhomirov, V. V. Moshchalkov, C. Görller-Walrand, and K. Driesen, “Zeeman splitting and confinement effects in Er3+-doped nano-glass-ceramics in magnetic fields up to 50 Tesla,” Appl. Phys. Lett. 92(17), 171101 (2008).
[CrossRef]

V. K. Tikhomirov, M. Mortier, P. Gredin, G. Patriarche, C. Görller-Walrand, and V. V. Moshchalkov, “Preparation and up-conversion luminescence of 8 nm rare-earth doped fluoride nanoparticles,” Opt. Express 16(19), 14544–14549 (2008).
[CrossRef]

Nogami, M.

T. Hayakawa, M. Hayakawa, and M. Nogami, “Estimation of the fs laser spot temperature inside TeO2-ZnO-Nb2O5 glass by using up-conversion green fluorescence of Er3+ ions,” J. Alloy. Comp. 451(1-2), 77–80 (2008).
[CrossRef]

Nunes, L.

A. de Camargo, J. Possato, L. Nunes, E. Botero, E. Andreeta, D. Garcia, and J. Eiras, “Infrared to visible frequency up-conversion temperature sensor based on Er3+-doped PLZT transparent ceramics,” Solid State Commun. 137(1-2), 1–5 (2006).
[CrossRef]

Patriarche, G.

Peyghambarian, N.

H. Desirena, E. De la Rosa, A. Shulzgen, S. Shabet, and N. Peyghambarian, “Er3+ and Yb3+ concentration effect in the spectroscopic properties and energy transfer in Yb3+/Er3+ co-doped tellurite glasses,” J. Phys. D Appl. Phys. 41(9), 095102 (2008).
[CrossRef]

Possato, J.

A. de Camargo, J. Possato, L. Nunes, E. Botero, E. Andreeta, D. Garcia, and J. Eiras, “Infrared to visible frequency up-conversion temperature sensor based on Er3+-doped PLZT transparent ceramics,” Solid State Commun. 137(1-2), 1–5 (2006).
[CrossRef]

Reaney, I. M.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxyfluoride glass-ceramics,” Appl. Phys. Lett. 81(11), 1937–1939 (2002).
[CrossRef]

Rodríguez, V. D.

V. D. Rodríguez, V. K. Tikhomirov, J. Méndez-Ramos, J. del-Castillo, and C. Görller-Walrand, “Measurement of quantum yield of up-conversion Luminescence in Er(3+)-doped nano-glass-ceramics,” J. Nanosci. Nanotechnol. 9(3), 2072–2075 (2009).
[CrossRef]

Rolli, R.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxyfluoride glass-ceramics,” Appl. Phys. Lett. 81(11), 1937–1939 (2002).
[CrossRef]

Saurel, D.

D. Saurel, V. K. Tikhomirov, V. V. Moshchalkov, C. Görller-Walrand, and K. Driesen, “Zeeman splitting and confinement effects in Er3+-doped nano-glass-ceramics in magnetic fields up to 50 Tesla,” Appl. Phys. Lett. 92(17), 171101 (2008).
[CrossRef]

Seddon, A. B.

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxyfluoride glass-ceramics,” Appl. Phys. Lett. 81(11), 1937–1939 (2002).
[CrossRef]

Shabet, S.

H. Desirena, E. De la Rosa, A. Shulzgen, S. Shabet, and N. Peyghambarian, “Er3+ and Yb3+ concentration effect in the spectroscopic properties and energy transfer in Yb3+/Er3+ co-doped tellurite glasses,” J. Phys. D Appl. Phys. 41(9), 095102 (2008).
[CrossRef]

Shulzgen, A.

H. Desirena, E. De la Rosa, A. Shulzgen, S. Shabet, and N. Peyghambarian, “Er3+ and Yb3+ concentration effect in the spectroscopic properties and energy transfer in Yb3+/Er3+ co-doped tellurite glasses,” J. Phys. D Appl. Phys. 41(9), 095102 (2008).
[CrossRef]

Sovers, O. J.

H. Kusama, O. J. Sovers, and T. Yoshioka, “Line shift method for phosphor temperature measurement,” Jpn. J. Appl. Phys. 15(12), 2349–2358 (1976).
[CrossRef]

Stelzl, F.

H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, “Ordered, uniform-sized ZnO nanolaser arrays,” Appl. Phys. Lett. 91(18), 181112 (2007).
[CrossRef]

Strähle, J.

D. J. M. Bevan, J. Strähle, and O. Greis, “The cystal structure of tveitite an ordered yttrofluorite mineral,” J. Solid State Chem. 44(1), 75–81 (1982).
[CrossRef]

Tessier, G.

L. Aigouy, G. Tessier, M. Mortier, and B. Charlot, “Scanning thermal imaging of microelectronic circuits with a fluorescent nanoprobe,” Appl. Phys. Lett. 87(18), 184105 (2005).
[CrossRef]

Tikhomirov, V. K.

V. D. Rodríguez, V. K. Tikhomirov, J. Méndez-Ramos, J. del-Castillo, and C. Görller-Walrand, “Measurement of quantum yield of up-conversion Luminescence in Er(3+)-doped nano-glass-ceramics,” J. Nanosci. Nanotechnol. 9(3), 2072–2075 (2009).
[CrossRef]

D. Saurel, V. K. Tikhomirov, V. V. Moshchalkov, C. Görller-Walrand, and K. Driesen, “Zeeman splitting and confinement effects in Er3+-doped nano-glass-ceramics in magnetic fields up to 50 Tesla,” Appl. Phys. Lett. 92(17), 171101 (2008).
[CrossRef]

V. K. Tikhomirov, M. Mortier, P. Gredin, G. Patriarche, C. Görller-Walrand, and V. V. Moshchalkov, “Preparation and up-conversion luminescence of 8 nm rare-earth doped fluoride nanoparticles,” Opt. Express 16(19), 14544–14549 (2008).
[CrossRef]

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxyfluoride glass-ceramics,” Appl. Phys. Lett. 81(11), 1937–1939 (2002).
[CrossRef]

Wissinger, M.

H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, “Ordered, uniform-sized ZnO nanolaser arrays,” Appl. Phys. Lett. 91(18), 181112 (2007).
[CrossRef]

Yoshioka, T.

H. Kusama, O. J. Sovers, and T. Yoshioka, “Line shift method for phosphor temperature measurement,” Jpn. J. Appl. Phys. 15(12), 2349–2358 (1976).
[CrossRef]

Zhang, J.

Zhou, H.

H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, “Ordered, uniform-sized ZnO nanolaser arrays,” Appl. Phys. Lett. 91(18), 181112 (2007).
[CrossRef]

Appl. Phys. Lett. (5)

H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, “Ordered, uniform-sized ZnO nanolaser arrays,” Appl. Phys. Lett. 91(18), 181112 (2007).
[CrossRef]

D. Matsuura, “Red, green and blue up-conversion luminescence of trivalent rare earth ion-doped Y2O3 nanocrystals,” Appl. Phys. Lett. 81(24), 4526–4528 (2002).
[CrossRef]

L. Aigouy, G. Tessier, M. Mortier, and B. Charlot, “Scanning thermal imaging of microelectronic circuits with a fluorescent nanoprobe,” Appl. Phys. Lett. 87(18), 184105 (2005).
[CrossRef]

V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxyfluoride glass-ceramics,” Appl. Phys. Lett. 81(11), 1937–1939 (2002).
[CrossRef]

D. Saurel, V. K. Tikhomirov, V. V. Moshchalkov, C. Görller-Walrand, and K. Driesen, “Zeeman splitting and confinement effects in Er3+-doped nano-glass-ceramics in magnetic fields up to 50 Tesla,” Appl. Phys. Lett. 92(17), 171101 (2008).
[CrossRef]

Chem. Rev. (1)

F. Auzel, “Up-conversion and anti-Stokes processes with d and f ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
[CrossRef]

J. Alloy. Comp. (1)

T. Hayakawa, M. Hayakawa, and M. Nogami, “Estimation of the fs laser spot temperature inside TeO2-ZnO-Nb2O5 glass by using up-conversion green fluorescence of Er3+ ions,” J. Alloy. Comp. 451(1-2), 77–80 (2008).
[CrossRef]

J. Nanosci. Nanotechnol. (1)

V. D. Rodríguez, V. K. Tikhomirov, J. Méndez-Ramos, J. del-Castillo, and C. Görller-Walrand, “Measurement of quantum yield of up-conversion Luminescence in Er(3+)-doped nano-glass-ceramics,” J. Nanosci. Nanotechnol. 9(3), 2072–2075 (2009).
[CrossRef]

J. Phys. D Appl. Phys. (1)

H. Desirena, E. De la Rosa, A. Shulzgen, S. Shabet, and N. Peyghambarian, “Er3+ and Yb3+ concentration effect in the spectroscopic properties and energy transfer in Yb3+/Er3+ co-doped tellurite glasses,” J. Phys. D Appl. Phys. 41(9), 095102 (2008).
[CrossRef]

J. Solid State Chem. (1)

D. J. M. Bevan, J. Strähle, and O. Greis, “The cystal structure of tveitite an ordered yttrofluorite mineral,” J. Solid State Chem. 44(1), 75–81 (1982).
[CrossRef]

Jpn. J. Appl. Phys. (1)

H. Kusama, O. J. Sovers, and T. Yoshioka, “Line shift method for phosphor temperature measurement,” Jpn. J. Appl. Phys. 15(12), 2349–2358 (1976).
[CrossRef]

Opt. Express (2)

Opt. Mater. (1)

M. Mortier and G. Patriarche, “Oxide glass used as inorganic template for fluorescent fluoride nano-particle synthesis,” Opt. Mater. 28(12), 1401–1404 (2006).
[CrossRef]

Phys. Rev. Lett. (1)

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007).
[CrossRef]

Solid State Commun. (1)

A. de Camargo, J. Possato, L. Nunes, E. Botero, E. Andreeta, D. Garcia, and J. Eiras, “Infrared to visible frequency up-conversion temperature sensor based on Er3+-doped PLZT transparent ceramics,” Solid State Commun. 137(1-2), 1–5 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics