Abstract

We report a novel and intriguing nonlinear dynamics observed in a fiber laser cavity, in which soliton pulses are created from an extended noisy background and drift until they reach a condensed phase comprising several tens of aggregated solitons. This soliton flow can be adjusted with manual cavity tuning, and can even be triggered by the injection of an external low-power cw laser.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Ph. Grelu, and J. M. Soto-Crespo, “Temporal soliton molecules in mode-locked lasers: collisions, pulsations and vibrations,” in Dissipative solitons: from optics to biology and medicine, N. Akhmediev and A. Ankiewicz, eds. (Springer-Verlag, Berlin, 2008).
    [CrossRef]
  2. J. M. Soto-Crespo, M. Grapinet, Ph. Grelu, and N. Akhmediev, “Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 066612 (2004).
    [CrossRef]
  3. Ph. Grelu and N. Akhmediev, “Group interactions of dissipative solitons in a laser cavity: the case of 2+1,” Opt. Express 12(14), 3184–3189 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3184 .
    [CrossRef]
  4. M. Olivier, V. Roy, M. Piché, and F. Babin, “Pulse collisions in the stretched-pulse fiber laser,” Opt. Lett. 29(13), 1461–1463 (2004).
    [CrossRef]
  5. M. Grapinet and Ph. Grelu, “Vibrating soliton pairs in a mode-locked laser cavity,” Opt. Lett. 31(14), 2115–2117 (2006).
    [CrossRef]
  6. J. M. Soto-Crespo, Ph. Grelu, N. Akhmediev, and N. Devine, “Soliton complexes in dissipative systems: vibrating, shaking, and mixed soliton pairs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(1), 016613 (2007).
    [CrossRef]
  7. Ph. Grelu and J. M. Soto-Crespo, “Multisoliton states and pulse fragmentation in a passively mode-locked fibre laser,” J. Opt. B. 6, S271–S278 (2004).
    [CrossRef]
  8. A. Haboucha, H. Leblond, M. Salhi, A. Komarov, and F. Sanchez, “Analysis of soliton pattern formation in passively mode-locked fiber lasers,” Phys. Rev. A 78(4), 043806 (2008).
    [CrossRef]
  9. S. Wabnitz, “Control of soliton train transmission, storage, and clock recovery by cw light injection,” J. Opt. Soc. Am. B 13(12), 2739–2749 (1996).
    [CrossRef]
  10. J. M. Soto-Crespo, N. Akhmediev, Ph. Grelu, and F. Belhache, “Quantized separations of phase-locked soliton pairs in fiber lasers,” Opt. Lett. 28(19), 1757–1759 (2003).
    [CrossRef]
  11. D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
    [CrossRef]
  12. A. Komarov, K. Komarov, H. Leblond, and F. Sanchez, “Spectral-selective management of dissipative solitons in passive mode-locked fibre lasers,” J. Opt. A, Pure Appl. Opt. 9(12), 1149–1156 (2007).
    [CrossRef]
  13. V. Matsas, T. Newson, D. Richardson, and D. Payne, “Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28(15), 1391–1392 (1992).
    [CrossRef]
  14. G. Martel, C. Chédot, A. Hideur, and Ph. Grelu, “Numerical Maps for Fiber Lasers Mode Locked with Nonlinear Polarization Evolution: Comparison with Semi-Analytical Models,” Fib. Integr. Opt. 27(5), 320–340 (2008).
    [CrossRef]
  15. J. P. Gordon, “Dispersive perturbations of solitons of the nonlinear Schrodinger equation,” J. Opt. Soc. Am. B 9(1), 91–97 (1992).
    [CrossRef]
  16. J. M. Soto-Crespo, N. Akhmediev, and G. Town, “Continuous-wave versus pulse regime in a passively mode-locked laser with a fast saturable absorber,” J. Opt. Soc. Am. B 19(2), 234–242 (2002).
    [CrossRef]
  17. A. Gordon, O. Gat, B. Fischer, and F. Kärtner, “Self-starting of passive mode locking,” Opt. Express 14(23), 11142–11154 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-23-11142 .
    [CrossRef]

2008 (2)

A. Haboucha, H. Leblond, M. Salhi, A. Komarov, and F. Sanchez, “Analysis of soliton pattern formation in passively mode-locked fiber lasers,” Phys. Rev. A 78(4), 043806 (2008).
[CrossRef]

G. Martel, C. Chédot, A. Hideur, and Ph. Grelu, “Numerical Maps for Fiber Lasers Mode Locked with Nonlinear Polarization Evolution: Comparison with Semi-Analytical Models,” Fib. Integr. Opt. 27(5), 320–340 (2008).
[CrossRef]

2007 (2)

A. Komarov, K. Komarov, H. Leblond, and F. Sanchez, “Spectral-selective management of dissipative solitons in passive mode-locked fibre lasers,” J. Opt. A, Pure Appl. Opt. 9(12), 1149–1156 (2007).
[CrossRef]

J. M. Soto-Crespo, Ph. Grelu, N. Akhmediev, and N. Devine, “Soliton complexes in dissipative systems: vibrating, shaking, and mixed soliton pairs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(1), 016613 (2007).
[CrossRef]

2006 (2)

2005 (1)

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[CrossRef]

2004 (4)

Ph. Grelu and J. M. Soto-Crespo, “Multisoliton states and pulse fragmentation in a passively mode-locked fibre laser,” J. Opt. B. 6, S271–S278 (2004).
[CrossRef]

J. M. Soto-Crespo, M. Grapinet, Ph. Grelu, and N. Akhmediev, “Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 066612 (2004).
[CrossRef]

Ph. Grelu and N. Akhmediev, “Group interactions of dissipative solitons in a laser cavity: the case of 2+1,” Opt. Express 12(14), 3184–3189 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3184 .
[CrossRef]

M. Olivier, V. Roy, M. Piché, and F. Babin, “Pulse collisions in the stretched-pulse fiber laser,” Opt. Lett. 29(13), 1461–1463 (2004).
[CrossRef]

2003 (1)

2002 (1)

1996 (1)

1992 (2)

V. Matsas, T. Newson, D. Richardson, and D. Payne, “Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28(15), 1391–1392 (1992).
[CrossRef]

J. P. Gordon, “Dispersive perturbations of solitons of the nonlinear Schrodinger equation,” J. Opt. Soc. Am. B 9(1), 91–97 (1992).
[CrossRef]

Akhmediev, N.

J. M. Soto-Crespo, Ph. Grelu, N. Akhmediev, and N. Devine, “Soliton complexes in dissipative systems: vibrating, shaking, and mixed soliton pairs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(1), 016613 (2007).
[CrossRef]

J. M. Soto-Crespo, M. Grapinet, Ph. Grelu, and N. Akhmediev, “Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 066612 (2004).
[CrossRef]

Ph. Grelu and N. Akhmediev, “Group interactions of dissipative solitons in a laser cavity: the case of 2+1,” Opt. Express 12(14), 3184–3189 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3184 .
[CrossRef]

J. M. Soto-Crespo, N. Akhmediev, Ph. Grelu, and F. Belhache, “Quantized separations of phase-locked soliton pairs in fiber lasers,” Opt. Lett. 28(19), 1757–1759 (2003).
[CrossRef]

J. M. Soto-Crespo, N. Akhmediev, and G. Town, “Continuous-wave versus pulse regime in a passively mode-locked laser with a fast saturable absorber,” J. Opt. Soc. Am. B 19(2), 234–242 (2002).
[CrossRef]

Babin, F.

Belhache, F.

Chédot, C.

G. Martel, C. Chédot, A. Hideur, and Ph. Grelu, “Numerical Maps for Fiber Lasers Mode Locked with Nonlinear Polarization Evolution: Comparison with Semi-Analytical Models,” Fib. Integr. Opt. 27(5), 320–340 (2008).
[CrossRef]

Devine, N.

J. M. Soto-Crespo, Ph. Grelu, N. Akhmediev, and N. Devine, “Soliton complexes in dissipative systems: vibrating, shaking, and mixed soliton pairs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(1), 016613 (2007).
[CrossRef]

Fischer, B.

Gat, O.

Gordon, A.

Gordon, J. P.

Grapinet, M.

M. Grapinet and Ph. Grelu, “Vibrating soliton pairs in a mode-locked laser cavity,” Opt. Lett. 31(14), 2115–2117 (2006).
[CrossRef]

J. M. Soto-Crespo, M. Grapinet, Ph. Grelu, and N. Akhmediev, “Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 066612 (2004).
[CrossRef]

Grelu, Ph.

G. Martel, C. Chédot, A. Hideur, and Ph. Grelu, “Numerical Maps for Fiber Lasers Mode Locked with Nonlinear Polarization Evolution: Comparison with Semi-Analytical Models,” Fib. Integr. Opt. 27(5), 320–340 (2008).
[CrossRef]

J. M. Soto-Crespo, Ph. Grelu, N. Akhmediev, and N. Devine, “Soliton complexes in dissipative systems: vibrating, shaking, and mixed soliton pairs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(1), 016613 (2007).
[CrossRef]

M. Grapinet and Ph. Grelu, “Vibrating soliton pairs in a mode-locked laser cavity,” Opt. Lett. 31(14), 2115–2117 (2006).
[CrossRef]

Ph. Grelu and J. M. Soto-Crespo, “Multisoliton states and pulse fragmentation in a passively mode-locked fibre laser,” J. Opt. B. 6, S271–S278 (2004).
[CrossRef]

J. M. Soto-Crespo, M. Grapinet, Ph. Grelu, and N. Akhmediev, “Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 066612 (2004).
[CrossRef]

Ph. Grelu and N. Akhmediev, “Group interactions of dissipative solitons in a laser cavity: the case of 2+1,” Opt. Express 12(14), 3184–3189 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-14-3184 .
[CrossRef]

J. M. Soto-Crespo, N. Akhmediev, Ph. Grelu, and F. Belhache, “Quantized separations of phase-locked soliton pairs in fiber lasers,” Opt. Lett. 28(19), 1757–1759 (2003).
[CrossRef]

Haboucha, A.

A. Haboucha, H. Leblond, M. Salhi, A. Komarov, and F. Sanchez, “Analysis of soliton pattern formation in passively mode-locked fiber lasers,” Phys. Rev. A 78(4), 043806 (2008).
[CrossRef]

Hideur, A.

G. Martel, C. Chédot, A. Hideur, and Ph. Grelu, “Numerical Maps for Fiber Lasers Mode Locked with Nonlinear Polarization Evolution: Comparison with Semi-Analytical Models,” Fib. Integr. Opt. 27(5), 320–340 (2008).
[CrossRef]

Kärtner, F.

Komarov, A.

A. Haboucha, H. Leblond, M. Salhi, A. Komarov, and F. Sanchez, “Analysis of soliton pattern formation in passively mode-locked fiber lasers,” Phys. Rev. A 78(4), 043806 (2008).
[CrossRef]

A. Komarov, K. Komarov, H. Leblond, and F. Sanchez, “Spectral-selective management of dissipative solitons in passive mode-locked fibre lasers,” J. Opt. A, Pure Appl. Opt. 9(12), 1149–1156 (2007).
[CrossRef]

Komarov, K.

A. Komarov, K. Komarov, H. Leblond, and F. Sanchez, “Spectral-selective management of dissipative solitons in passive mode-locked fibre lasers,” J. Opt. A, Pure Appl. Opt. 9(12), 1149–1156 (2007).
[CrossRef]

Leblond, H.

A. Haboucha, H. Leblond, M. Salhi, A. Komarov, and F. Sanchez, “Analysis of soliton pattern formation in passively mode-locked fiber lasers,” Phys. Rev. A 78(4), 043806 (2008).
[CrossRef]

A. Komarov, K. Komarov, H. Leblond, and F. Sanchez, “Spectral-selective management of dissipative solitons in passive mode-locked fibre lasers,” J. Opt. A, Pure Appl. Opt. 9(12), 1149–1156 (2007).
[CrossRef]

Liu, A. Q.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[CrossRef]

Martel, G.

G. Martel, C. Chédot, A. Hideur, and Ph. Grelu, “Numerical Maps for Fiber Lasers Mode Locked with Nonlinear Polarization Evolution: Comparison with Semi-Analytical Models,” Fib. Integr. Opt. 27(5), 320–340 (2008).
[CrossRef]

Matsas, V.

V. Matsas, T. Newson, D. Richardson, and D. Payne, “Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28(15), 1391–1392 (1992).
[CrossRef]

Newson, T.

V. Matsas, T. Newson, D. Richardson, and D. Payne, “Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28(15), 1391–1392 (1992).
[CrossRef]

Olivier, M.

Payne, D.

V. Matsas, T. Newson, D. Richardson, and D. Payne, “Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28(15), 1391–1392 (1992).
[CrossRef]

Piché, M.

Richardson, D.

V. Matsas, T. Newson, D. Richardson, and D. Payne, “Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28(15), 1391–1392 (1992).
[CrossRef]

Roy, V.

Salhi, M.

A. Haboucha, H. Leblond, M. Salhi, A. Komarov, and F. Sanchez, “Analysis of soliton pattern formation in passively mode-locked fiber lasers,” Phys. Rev. A 78(4), 043806 (2008).
[CrossRef]

Sanchez, F.

A. Haboucha, H. Leblond, M. Salhi, A. Komarov, and F. Sanchez, “Analysis of soliton pattern formation in passively mode-locked fiber lasers,” Phys. Rev. A 78(4), 043806 (2008).
[CrossRef]

A. Komarov, K. Komarov, H. Leblond, and F. Sanchez, “Spectral-selective management of dissipative solitons in passive mode-locked fibre lasers,” J. Opt. A, Pure Appl. Opt. 9(12), 1149–1156 (2007).
[CrossRef]

Soto-Crespo, J. M.

J. M. Soto-Crespo, Ph. Grelu, N. Akhmediev, and N. Devine, “Soliton complexes in dissipative systems: vibrating, shaking, and mixed soliton pairs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(1), 016613 (2007).
[CrossRef]

J. M. Soto-Crespo, M. Grapinet, Ph. Grelu, and N. Akhmediev, “Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 066612 (2004).
[CrossRef]

Ph. Grelu and J. M. Soto-Crespo, “Multisoliton states and pulse fragmentation in a passively mode-locked fibre laser,” J. Opt. B. 6, S271–S278 (2004).
[CrossRef]

J. M. Soto-Crespo, N. Akhmediev, Ph. Grelu, and F. Belhache, “Quantized separations of phase-locked soliton pairs in fiber lasers,” Opt. Lett. 28(19), 1757–1759 (2003).
[CrossRef]

J. M. Soto-Crespo, N. Akhmediev, and G. Town, “Continuous-wave versus pulse regime in a passively mode-locked laser with a fast saturable absorber,” J. Opt. Soc. Am. B 19(2), 234–242 (2002).
[CrossRef]

Tang, D. Y.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[CrossRef]

Town, G.

Wabnitz, S.

Zhao, B.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[CrossRef]

Zhao, L. M.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[CrossRef]

Electron. Lett. (1)

V. Matsas, T. Newson, D. Richardson, and D. Payne, “Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28(15), 1391–1392 (1992).
[CrossRef]

Fib. Integr. Opt. (1)

G. Martel, C. Chédot, A. Hideur, and Ph. Grelu, “Numerical Maps for Fiber Lasers Mode Locked with Nonlinear Polarization Evolution: Comparison with Semi-Analytical Models,” Fib. Integr. Opt. 27(5), 320–340 (2008).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

A. Komarov, K. Komarov, H. Leblond, and F. Sanchez, “Spectral-selective management of dissipative solitons in passive mode-locked fibre lasers,” J. Opt. A, Pure Appl. Opt. 9(12), 1149–1156 (2007).
[CrossRef]

J. Opt. B. (1)

Ph. Grelu and J. M. Soto-Crespo, “Multisoliton states and pulse fragmentation in a passively mode-locked fibre laser,” J. Opt. B. 6, S271–S278 (2004).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. A (2)

A. Haboucha, H. Leblond, M. Salhi, A. Komarov, and F. Sanchez, “Analysis of soliton pattern formation in passively mode-locked fiber lasers,” Phys. Rev. A 78(4), 043806 (2008).
[CrossRef]

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

J. M. Soto-Crespo, M. Grapinet, Ph. Grelu, and N. Akhmediev, “Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6), 066612 (2004).
[CrossRef]

J. M. Soto-Crespo, Ph. Grelu, N. Akhmediev, and N. Devine, “Soliton complexes in dissipative systems: vibrating, shaking, and mixed soliton pairs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(1), 016613 (2007).
[CrossRef]

Other (1)

Ph. Grelu, and J. M. Soto-Crespo, “Temporal soliton molecules in mode-locked lasers: collisions, pulsations and vibrations,” in Dissipative solitons: from optics to biology and medicine, N. Akhmediev and A. Ankiewicz, eds. (Springer-Verlag, Berlin, 2008).
[CrossRef]

Supplementary Material (1)

» Media 1: MOV (2321 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Fiber laser setup. EDF: erbium-doped fiber ; DCF: dispersion compensation fiber ; PC1, PC2: polarization controllers ; 980/1550: wavelength multiplexer ; DL: pumping diode laser.

Fig. 2.
Fig. 2.

Recordings of the output field typical of “soliton rains”. (a): Oscilloscope recording, (b): vertical magnification of the oscilloscope trace, (c): Optical spectrum in logarithmic scale, (d): horizontal magnification of the condensed soliton phase, showing also one incoming soliton on the left part of the figure.

Fig. 3.
Fig. 3.

Video recording of the real-time oscilloscope trace corresponding to vertically magnified Fig. 2(b), showing the dynamics of “soliton rains” (Media 1).

Fig. 4.
Fig. 4.

(a): switching of dynamics allowed by simply turning the orientation of one paddle (from 46° to 59°) of the polarization controller (here PC2), (b): corresponding optical spectra, (c): influence of the pumping power (from 417 to 604 mW) on soliton rains.

Fig. 5.
Fig. 5.

Control of the soliton rain dynamics. (a): temporal optical intensity, injected laser “off”, (b): optical spectrum, injected laser “off”, (c): temporal optical intensity, injected laser “on”, (d): optical spectrum, injected laser “on”.

Metrics