Abstract

We examined the effect of individual bubble clouds on remote-sensing reflectance of the ocean with a 3-D Monte Carlo model of radiative transfer. The concentrations and size distribution of bubbles were defined based on acoustical measurements of bubbles in the surface ocean. The light scattering properties of bubbles for various void fractions were calculated using Mie scattering theory. We show how the spatial pattern, magnitude, and spectral behavior of remote-sensing reflectance produced by modeled bubble clouds change due to variations in their geometric and optical properties as well as the background optical properties of the ambient water. We also determined that for realistic sizes of bubble clouds, a plane-parallel horizontally homogeneous geometry (1-D radiative transfer model) is inadequate for modeling water-leaving radiance above the cloud.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Zhang, M. Lewis, and B. Johnson, “Influence of bubbles on scattering of light in the ocean,” Appl. Opt. 37(27), 6525–6536 (1998), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-37-27-6525 .
    [CrossRef]
  2. E. J. Terrill, W. K. Melville, and D. Stramski, “Bubble entrainment by breaking waves and their influence on optical scattering in the upper ocean,” J. Geophys. Res. 106(C8), 16815–16823 (2001).
    [CrossRef]
  3. D. Stramski and J. Tęgowski, “Effects of intermittent entrainment of air bubbles by breaking wind waves on ocean reflectance and underwater light field,” J. Geophys. Res. 106(C12), 31345–31360 (2001).
    [CrossRef]
  4. P. Flatau, J. Piskozub, and J. R. Zaneveld, “Asymptotic light field in the presence of a bubble-layer,” Opt. Express 5(5), 120–124 (1999), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-5-5-120 .
    [CrossRef]
  5. J. Piskozub, T. Neumann, and L. Woźniak, “Ocean color remote sensing: choosing the correct depth weighting function,” Opt. Express 16(19), 14683–14688 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-19-14683 .
    [CrossRef]
  6. J. Piskozub, D. Stramski, E. Terrill, and W. K. Melville, “Influence of forward and multiple light scatter on the measurement of beam attenuation in highly scattering marine environments,” Appl. Opt. 43(24), 4723–4731 (2004), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-24-4723 .
    [CrossRef]
  7. D. McKee, J. Piskozub, and I. Brown, “Scattering error corrections for in situ absorption and attenuation measurements,” Opt. Express 16(24), 19480–19492 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-24-19480 .
    [CrossRef]
  8. R. M. Pope and E. S. Fry, “Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36(33), 8710–8723 (1997), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-36-33-8710 .
    [CrossRef]
  9. R. C. Smith and K. S. Baker, “Optical properties of the clearest natural waters (200–800 nm),” Appl. Opt. 20(2), 177–184 (1981), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-20-2-177 .
    [CrossRef]
  10. A. Morel, “Light and marine photosynthesis: a spectral model with geochemical and climatological implications,” Prog. Oceanogr. 26(3), 263–306 (1991).
    [CrossRef]
  11. C. D. Mobley, B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, P. Reinersman, K. Stamnes, and R. H. Stavn, “Comparison of numerical models for computing underwater light fields,” Appl. Opt. 32(36), 7484–7504 (1993), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-32-36-7484 .
    [CrossRef]

2008

2004

2001

E. J. Terrill, W. K. Melville, and D. Stramski, “Bubble entrainment by breaking waves and their influence on optical scattering in the upper ocean,” J. Geophys. Res. 106(C8), 16815–16823 (2001).
[CrossRef]

D. Stramski and J. Tęgowski, “Effects of intermittent entrainment of air bubbles by breaking wind waves on ocean reflectance and underwater light field,” J. Geophys. Res. 106(C12), 31345–31360 (2001).
[CrossRef]

1999

1998

1997

1993

1991

A. Morel, “Light and marine photosynthesis: a spectral model with geochemical and climatological implications,” Prog. Oceanogr. 26(3), 263–306 (1991).
[CrossRef]

1981

Baker, K. S.

Brown, I.

Flatau, P.

Fry, E. S.

Gentili, B.

Gordon, H. R.

Jin, Z.

Johnson, B.

Kattawar, G. W.

Lewis, M.

McKee, D.

Melville, W. K.

Mobley, C. D.

Morel, A.

Neumann, T.

Piskozub, J.

Pope, R. M.

Reinersman, P.

Smith, R. C.

Stamnes, K.

Stavn, R. H.

Stramski, D.

J. Piskozub, D. Stramski, E. Terrill, and W. K. Melville, “Influence of forward and multiple light scatter on the measurement of beam attenuation in highly scattering marine environments,” Appl. Opt. 43(24), 4723–4731 (2004), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-43-24-4723 .
[CrossRef]

E. J. Terrill, W. K. Melville, and D. Stramski, “Bubble entrainment by breaking waves and their influence on optical scattering in the upper ocean,” J. Geophys. Res. 106(C8), 16815–16823 (2001).
[CrossRef]

D. Stramski and J. Tęgowski, “Effects of intermittent entrainment of air bubbles by breaking wind waves on ocean reflectance and underwater light field,” J. Geophys. Res. 106(C12), 31345–31360 (2001).
[CrossRef]

Tegowski, J.

D. Stramski and J. Tęgowski, “Effects of intermittent entrainment of air bubbles by breaking wind waves on ocean reflectance and underwater light field,” J. Geophys. Res. 106(C12), 31345–31360 (2001).
[CrossRef]

Terrill, E.

Terrill, E. J.

E. J. Terrill, W. K. Melville, and D. Stramski, “Bubble entrainment by breaking waves and their influence on optical scattering in the upper ocean,” J. Geophys. Res. 106(C8), 16815–16823 (2001).
[CrossRef]

Wozniak, L.

Zaneveld, J. R.

Zhang, X.

Appl. Opt.

J. Geophys. Res.

E. J. Terrill, W. K. Melville, and D. Stramski, “Bubble entrainment by breaking waves and their influence on optical scattering in the upper ocean,” J. Geophys. Res. 106(C8), 16815–16823 (2001).
[CrossRef]

D. Stramski and J. Tęgowski, “Effects of intermittent entrainment of air bubbles by breaking wind waves on ocean reflectance and underwater light field,” J. Geophys. Res. 106(C12), 31345–31360 (2001).
[CrossRef]

Opt. Express

Prog. Oceanogr.

A. Morel, “Light and marine photosynthesis: a spectral model with geochemical and climatological implications,” Prog. Oceanogr. 26(3), 263–306 (1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Scattering coefficient of bubbles in the hemispherical model as a function of distance from the cloud center. The phase functions used corresponded to the assumed void fractions.

Fig. 2.
Fig. 2.

Remote-sensing reflectance for a hemispherical model of the bubble cloud defined in Fig. 1. (a) RSR across a bubble cloud (x axis) as a function of light wavelength. Non-bubble IOPs correspond to chlorophyll concentration of 0 mg/m3, meaning that the ‘background’ IOPs are defined by absorption and scattering by pure seawater; (b) RSR just above the center of the bubble cloud as a function of light wavelength and chlorophyll concentration.

Fig. 3.
Fig. 3.

Remote-sensing reflectance over the center of a uniform cylindrical dense (bbub =20 m-1, Chla=5 mg m-3) bubble cloud as a function of the cloud radius and depth.

Fig. 4.
Fig. 4.

Remote-sensing reflectance across the bubble cloud (x-axis) as a function of light wavelength for a cylindrical model of the cloud. The radius of the cloud is r=1 m and depth d=2 m with bbub =20 m-1. The ‘background’ IOPs of seawater correspond to the chlorophyll concentration of 1 mg m-3.

Fig. 5.
Fig. 5.

Remote-sensing reflectance across the bubble cloud (x-axis) as a function of the radius of the cloud. These results were obtained for a cylindrical model of the bubble cloud similar to that of Fig. 3 but with variable radius r=1 m+Δr and for the light wavelength of 800 nm and the chlorophyll concentration of 1 mg m-3.

Metrics