Abstract

Photoluminescence (PL) behaviour in InN nanocolumns reveal decreasing, increasing and near invariant peak energies (EPL) as a function of temperature. Samples, having EPL~0.730 eV at 20 K, showed temperature invariance of EPL. Samples possessing EPL on the lower and higher energy side of 0.730 eV demonstrate a normal redshift and anomalous blueshift, respectively, with increasing temperature. This temperature evolution can be effectively explained on the basis of a competition between a conventional red shift from lattice dilation, dominant for low carrier density sample, on one hand, and a blue shift of the electron and hole quasi Fermi-level separation, dominant for high carrier density samples, on the other.

© OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. L. Tansley and C. P. Foley, “Optical band-gap of indium nitride,” J. Appl. Phys. 59(9), 3241–3244 (1986).
    [CrossRef]
  2. V. Y. Davydov, A. A. Klochikhin, R. P. Seisiyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Grual, “Absorption and emission of hexagonal InN. Evidence of narrow fundamental band gap,” Phys. Status Solidi B 229, R1–R3 (2002).
    [CrossRef]
  3. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. 80(21), 3967–3969 (2002).
    [CrossRef]
  4. J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Temperature dependence of the fundamental band gap of InN,” J. Appl. Phys. 94(7), 4457–4460 (2003).
    [CrossRef]
  5. D. C. Look, H. Lu, W. J. Schaff, J. Jasinski, and Z. Liliental-Weber, “Donor and acceptor concentrations in degenerate InN,” Appl. Phys. Lett. 80(2), 258–260 (2002).
    [CrossRef]
  6. C. Stampfl, C. G. Van de Walle, D. Vogel, P. Krüger, and J. Pollmann, “Native defects and impurities in InN: First-principles studies using the local-density approximation and self-interaction and relaxation-corrected pseudopotentials,” Phys. Rev. B 61(12), R7846–R7849 (2000).
    [CrossRef]
  7. S. Z. Wang, S. F. Yoon, Y. X. Xia, and S. W. Xie, “20 meV-deep donor level in InN film of 0.76 eV band gap grown by plasma-assisted nitrogen source,” J. Appl. Phys. 95(12), 7998–8001 (2004).
    [CrossRef]
  8. T. Stoica, R. J. Meijers, R. Calarco, T. Richter, E. Sutter, and H. Lüth, “Photoluminescence and intrinsic properties of MBE-grown InN nanowires,” Nano Lett. 6(7), 1541–1547 (2006).
    [CrossRef] [PubMed]
  9. C. H. Shen, H. Y. Chen, H.-W. Lin, S. Gwo, A. A. Klochikhin, and V. Y. Davydov, “Near-infrared photoluminescence from vertical InN nanorod arrays grown on silicon: Effects of surface electron accumulation layer,” Appl. Phys. Lett. 88(25), 253104 (2006).
    [CrossRef]
  10. C. L. Hsiao, H. C. Hsu, L. C. Chen, C. T. Wu, C. W. Chen, M. Chen, L. W. Tu, and K. H. Chen, “Photoluminescence spectroscopy of nearly defect-free InN microcrystals exhibiting nondegenerate semiconductor behaviors,” Appl. Phys. Lett. 91(18), 181912 (2007).
    [CrossRef]
  11. I. Mora-Seró, F. Fabregat-Santiago, B. Denier, J. Bisquert, R. Tena-Zaera, J. Elias, and C. Lévy-Clément, “Determination of carrier density of ZnO nanowires by electrochemical techniques,” Appl. Phys. Lett. 89(20), 203117 (2006).
    [CrossRef]
  12. J. T. Chen, C. L. Hsiao, H. C. Hsu, C. T. Wu, C. L. Yeh, P. C. Wei, L. C. Chen, and K. H. Chen, “Epitaxial growth of InN films by molecular-beam epitaxy using hydrazoic acid (HN3) as an efficient nitrogen source,” J. Phys. Chem. A 111(29), 6755–6759 (2007).
    [CrossRef] [PubMed]
  13. B. Arnaudov, T. Paskova, P. P. Paskov, B. Magnusson, E. Valcheva, B. Monemar, H. Lu, W. J. Schaff, H. Amano, and I. Akasaki, “Energy position of near-band-edge emission spectra of InN epitaxial layers with different doping levels,” Phys. Rev. B 69(11), 115216 (2004).
    [CrossRef]
  14. S. P. Fu, T. T. Chen, and Y. F. Chen, “Photoluminescent properties of InN epifilms,” Semicond. Sci. Technol. 21(3), 244–249 (2006).
    [CrossRef]
  15. J. Wu, W. Walukiewicz, S. X. Li, R. Armitage, J. C. Ho, E. R. Weber, E. E. Haller, H. Lu, W. J. Schaff, A. Barcz, and R. Jakiela, “Effects of electron concentration on the optical absorption edge of InN,” Appl. Phys. Lett. 84(15), 2805–2807 (2004).
    [CrossRef]
  16. J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Effects of the narrow band gap on the properties of InN,” Phys. Rev. B 66(20), R201403 (2002).
    [CrossRef]
  17. Y. P. Varshni, “Temperature dependence of energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
    [CrossRef]
  18. D. S. Jiang, Y. Makita, K. Ploog, and H. J. Queisser, “Electrical-properties and photo-luminescence of Te- doped GaAs grown by molecular-beam-epitaxy,” J. Appl. Phys. 53(2), 999–1006 (1982).
    [CrossRef]
  19. A. Raymond, J. L. Robert, and C. Bernard, “Electron effective mass in heavily doped GaAs,” J. Phys. 12, 2289–2293 (1979).
  20. V. Lebedev, V. Climalla, T. Baumann, and O. Ambacher, “Effect of dislocations on electrical and electron transport properties of InN thin films. I. Strain relief and formation of a dislocation network,” J. Appl. Phys. 100(9), 094903 (2006).
    [CrossRef]
  21. E. S. Koteles and W. R. Datars, “Temperature-dependence of electron on effective mass in InSb,” Phys. Rev. B 9(2), 568–571 (1974).
    [CrossRef]
  22. H. Yokoi, S. Takeyama, and N. Miura, “Anomalous temperature-dependence of the effective mass in n-type PbTe,” Phys. Rev. B 44(12), 6519–6522 (1991).
    [CrossRef]
  23. L. F. J. Piper, T. D. Veal, I. Mahboob, and C. F. McConville, “Temperature invariance of InN electron accumulation,” Phys. Rev. B 70(11), 115333 (2004).
    [CrossRef]
  24. V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, D. A. Kurdyukov, S. V. Ivanov, V. A. Vekshin, F. Bechstedt, J. Furthmüller, J. Aderhold, J. Graul, A. V. Mudryi, H. Harima, A. Hashimoto, A. Yamamoto, and E. E. Haller, “Band Gap of Hexagonal InN and InGaN Alloys,” Phys. Status Solidi B 234, 787–795 (2002).
    [CrossRef]
  25. B. Bansal, A. Kadir, A. Bhattacharya, and V. V. Moshchalkov, “Photoluminescence from localized states in disordered indium nitride,” Appl. Phys. Lett. 93(2), 021113 (2008).
    [CrossRef]

2008 (1)

B. Bansal, A. Kadir, A. Bhattacharya, and V. V. Moshchalkov, “Photoluminescence from localized states in disordered indium nitride,” Appl. Phys. Lett. 93(2), 021113 (2008).
[CrossRef]

2007 (2)

C. L. Hsiao, H. C. Hsu, L. C. Chen, C. T. Wu, C. W. Chen, M. Chen, L. W. Tu, and K. H. Chen, “Photoluminescence spectroscopy of nearly defect-free InN microcrystals exhibiting nondegenerate semiconductor behaviors,” Appl. Phys. Lett. 91(18), 181912 (2007).
[CrossRef]

J. T. Chen, C. L. Hsiao, H. C. Hsu, C. T. Wu, C. L. Yeh, P. C. Wei, L. C. Chen, and K. H. Chen, “Epitaxial growth of InN films by molecular-beam epitaxy using hydrazoic acid (HN3) as an efficient nitrogen source,” J. Phys. Chem. A 111(29), 6755–6759 (2007).
[CrossRef] [PubMed]

2006 (5)

I. Mora-Seró, F. Fabregat-Santiago, B. Denier, J. Bisquert, R. Tena-Zaera, J. Elias, and C. Lévy-Clément, “Determination of carrier density of ZnO nanowires by electrochemical techniques,” Appl. Phys. Lett. 89(20), 203117 (2006).
[CrossRef]

S. P. Fu, T. T. Chen, and Y. F. Chen, “Photoluminescent properties of InN epifilms,” Semicond. Sci. Technol. 21(3), 244–249 (2006).
[CrossRef]

T. Stoica, R. J. Meijers, R. Calarco, T. Richter, E. Sutter, and H. Lüth, “Photoluminescence and intrinsic properties of MBE-grown InN nanowires,” Nano Lett. 6(7), 1541–1547 (2006).
[CrossRef] [PubMed]

C. H. Shen, H. Y. Chen, H.-W. Lin, S. Gwo, A. A. Klochikhin, and V. Y. Davydov, “Near-infrared photoluminescence from vertical InN nanorod arrays grown on silicon: Effects of surface electron accumulation layer,” Appl. Phys. Lett. 88(25), 253104 (2006).
[CrossRef]

V. Lebedev, V. Climalla, T. Baumann, and O. Ambacher, “Effect of dislocations on electrical and electron transport properties of InN thin films. I. Strain relief and formation of a dislocation network,” J. Appl. Phys. 100(9), 094903 (2006).
[CrossRef]

2004 (4)

L. F. J. Piper, T. D. Veal, I. Mahboob, and C. F. McConville, “Temperature invariance of InN electron accumulation,” Phys. Rev. B 70(11), 115333 (2004).
[CrossRef]

S. Z. Wang, S. F. Yoon, Y. X. Xia, and S. W. Xie, “20 meV-deep donor level in InN film of 0.76 eV band gap grown by plasma-assisted nitrogen source,” J. Appl. Phys. 95(12), 7998–8001 (2004).
[CrossRef]

J. Wu, W. Walukiewicz, S. X. Li, R. Armitage, J. C. Ho, E. R. Weber, E. E. Haller, H. Lu, W. J. Schaff, A. Barcz, and R. Jakiela, “Effects of electron concentration on the optical absorption edge of InN,” Appl. Phys. Lett. 84(15), 2805–2807 (2004).
[CrossRef]

B. Arnaudov, T. Paskova, P. P. Paskov, B. Magnusson, E. Valcheva, B. Monemar, H. Lu, W. J. Schaff, H. Amano, and I. Akasaki, “Energy position of near-band-edge emission spectra of InN epitaxial layers with different doping levels,” Phys. Rev. B 69(11), 115216 (2004).
[CrossRef]

2003 (1)

J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Temperature dependence of the fundamental band gap of InN,” J. Appl. Phys. 94(7), 4457–4460 (2003).
[CrossRef]

2002 (5)

D. C. Look, H. Lu, W. J. Schaff, J. Jasinski, and Z. Liliental-Weber, “Donor and acceptor concentrations in degenerate InN,” Appl. Phys. Lett. 80(2), 258–260 (2002).
[CrossRef]

V. Y. Davydov, A. A. Klochikhin, R. P. Seisiyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Grual, “Absorption and emission of hexagonal InN. Evidence of narrow fundamental band gap,” Phys. Status Solidi B 229, R1–R3 (2002).
[CrossRef]

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. 80(21), 3967–3969 (2002).
[CrossRef]

J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Effects of the narrow band gap on the properties of InN,” Phys. Rev. B 66(20), R201403 (2002).
[CrossRef]

V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, D. A. Kurdyukov, S. V. Ivanov, V. A. Vekshin, F. Bechstedt, J. Furthmüller, J. Aderhold, J. Graul, A. V. Mudryi, H. Harima, A. Hashimoto, A. Yamamoto, and E. E. Haller, “Band Gap of Hexagonal InN and InGaN Alloys,” Phys. Status Solidi B 234, 787–795 (2002).
[CrossRef]

2000 (1)

C. Stampfl, C. G. Van de Walle, D. Vogel, P. Krüger, and J. Pollmann, “Native defects and impurities in InN: First-principles studies using the local-density approximation and self-interaction and relaxation-corrected pseudopotentials,” Phys. Rev. B 61(12), R7846–R7849 (2000).
[CrossRef]

1991 (1)

H. Yokoi, S. Takeyama, and N. Miura, “Anomalous temperature-dependence of the effective mass in n-type PbTe,” Phys. Rev. B 44(12), 6519–6522 (1991).
[CrossRef]

1986 (1)

T. L. Tansley and C. P. Foley, “Optical band-gap of indium nitride,” J. Appl. Phys. 59(9), 3241–3244 (1986).
[CrossRef]

1982 (1)

D. S. Jiang, Y. Makita, K. Ploog, and H. J. Queisser, “Electrical-properties and photo-luminescence of Te- doped GaAs grown by molecular-beam-epitaxy,” J. Appl. Phys. 53(2), 999–1006 (1982).
[CrossRef]

1979 (1)

A. Raymond, J. L. Robert, and C. Bernard, “Electron effective mass in heavily doped GaAs,” J. Phys. 12, 2289–2293 (1979).

1974 (1)

E. S. Koteles and W. R. Datars, “Temperature-dependence of electron on effective mass in InSb,” Phys. Rev. B 9(2), 568–571 (1974).
[CrossRef]

1967 (1)

Y. P. Varshni, “Temperature dependence of energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
[CrossRef]

Aderhold, J.

V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, D. A. Kurdyukov, S. V. Ivanov, V. A. Vekshin, F. Bechstedt, J. Furthmüller, J. Aderhold, J. Graul, A. V. Mudryi, H. Harima, A. Hashimoto, A. Yamamoto, and E. E. Haller, “Band Gap of Hexagonal InN and InGaN Alloys,” Phys. Status Solidi B 234, 787–795 (2002).
[CrossRef]

V. Y. Davydov, A. A. Klochikhin, R. P. Seisiyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Grual, “Absorption and emission of hexagonal InN. Evidence of narrow fundamental band gap,” Phys. Status Solidi B 229, R1–R3 (2002).
[CrossRef]

Ager, J. W.

J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Temperature dependence of the fundamental band gap of InN,” J. Appl. Phys. 94(7), 4457–4460 (2003).
[CrossRef]

J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Effects of the narrow band gap on the properties of InN,” Phys. Rev. B 66(20), R201403 (2002).
[CrossRef]

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. 80(21), 3967–3969 (2002).
[CrossRef]

Akasaki, I.

B. Arnaudov, T. Paskova, P. P. Paskov, B. Magnusson, E. Valcheva, B. Monemar, H. Lu, W. J. Schaff, H. Amano, and I. Akasaki, “Energy position of near-band-edge emission spectra of InN epitaxial layers with different doping levels,” Phys. Rev. B 69(11), 115216 (2004).
[CrossRef]

Amano, H.

B. Arnaudov, T. Paskova, P. P. Paskov, B. Magnusson, E. Valcheva, B. Monemar, H. Lu, W. J. Schaff, H. Amano, and I. Akasaki, “Energy position of near-band-edge emission spectra of InN epitaxial layers with different doping levels,” Phys. Rev. B 69(11), 115216 (2004).
[CrossRef]

Ambacher, O.

V. Lebedev, V. Climalla, T. Baumann, and O. Ambacher, “Effect of dislocations on electrical and electron transport properties of InN thin films. I. Strain relief and formation of a dislocation network,” J. Appl. Phys. 100(9), 094903 (2006).
[CrossRef]

Armitage, R.

J. Wu, W. Walukiewicz, S. X. Li, R. Armitage, J. C. Ho, E. R. Weber, E. E. Haller, H. Lu, W. J. Schaff, A. Barcz, and R. Jakiela, “Effects of electron concentration on the optical absorption edge of InN,” Appl. Phys. Lett. 84(15), 2805–2807 (2004).
[CrossRef]

Arnaudov, B.

B. Arnaudov, T. Paskova, P. P. Paskov, B. Magnusson, E. Valcheva, B. Monemar, H. Lu, W. J. Schaff, H. Amano, and I. Akasaki, “Energy position of near-band-edge emission spectra of InN epitaxial layers with different doping levels,” Phys. Rev. B 69(11), 115216 (2004).
[CrossRef]

Bansal, B.

B. Bansal, A. Kadir, A. Bhattacharya, and V. V. Moshchalkov, “Photoluminescence from localized states in disordered indium nitride,” Appl. Phys. Lett. 93(2), 021113 (2008).
[CrossRef]

Barcz, A.

J. Wu, W. Walukiewicz, S. X. Li, R. Armitage, J. C. Ho, E. R. Weber, E. E. Haller, H. Lu, W. J. Schaff, A. Barcz, and R. Jakiela, “Effects of electron concentration on the optical absorption edge of InN,” Appl. Phys. Lett. 84(15), 2805–2807 (2004).
[CrossRef]

Baumann, T.

V. Lebedev, V. Climalla, T. Baumann, and O. Ambacher, “Effect of dislocations on electrical and electron transport properties of InN thin films. I. Strain relief and formation of a dislocation network,” J. Appl. Phys. 100(9), 094903 (2006).
[CrossRef]

Bechstedt, F.

V. Y. Davydov, A. A. Klochikhin, R. P. Seisiyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Grual, “Absorption and emission of hexagonal InN. Evidence of narrow fundamental band gap,” Phys. Status Solidi B 229, R1–R3 (2002).
[CrossRef]

V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, D. A. Kurdyukov, S. V. Ivanov, V. A. Vekshin, F. Bechstedt, J. Furthmüller, J. Aderhold, J. Graul, A. V. Mudryi, H. Harima, A. Hashimoto, A. Yamamoto, and E. E. Haller, “Band Gap of Hexagonal InN and InGaN Alloys,” Phys. Status Solidi B 234, 787–795 (2002).
[CrossRef]

Bernard, C.

A. Raymond, J. L. Robert, and C. Bernard, “Electron effective mass in heavily doped GaAs,” J. Phys. 12, 2289–2293 (1979).

Bhattacharya, A.

B. Bansal, A. Kadir, A. Bhattacharya, and V. V. Moshchalkov, “Photoluminescence from localized states in disordered indium nitride,” Appl. Phys. Lett. 93(2), 021113 (2008).
[CrossRef]

Bisquert, J.

I. Mora-Seró, F. Fabregat-Santiago, B. Denier, J. Bisquert, R. Tena-Zaera, J. Elias, and C. Lévy-Clément, “Determination of carrier density of ZnO nanowires by electrochemical techniques,” Appl. Phys. Lett. 89(20), 203117 (2006).
[CrossRef]

Calarco, R.

T. Stoica, R. J. Meijers, R. Calarco, T. Richter, E. Sutter, and H. Lüth, “Photoluminescence and intrinsic properties of MBE-grown InN nanowires,” Nano Lett. 6(7), 1541–1547 (2006).
[CrossRef] [PubMed]

Chen, C. W.

C. L. Hsiao, H. C. Hsu, L. C. Chen, C. T. Wu, C. W. Chen, M. Chen, L. W. Tu, and K. H. Chen, “Photoluminescence spectroscopy of nearly defect-free InN microcrystals exhibiting nondegenerate semiconductor behaviors,” Appl. Phys. Lett. 91(18), 181912 (2007).
[CrossRef]

Chen, H. Y.

C. H. Shen, H. Y. Chen, H.-W. Lin, S. Gwo, A. A. Klochikhin, and V. Y. Davydov, “Near-infrared photoluminescence from vertical InN nanorod arrays grown on silicon: Effects of surface electron accumulation layer,” Appl. Phys. Lett. 88(25), 253104 (2006).
[CrossRef]

Chen, J. T.

J. T. Chen, C. L. Hsiao, H. C. Hsu, C. T. Wu, C. L. Yeh, P. C. Wei, L. C. Chen, and K. H. Chen, “Epitaxial growth of InN films by molecular-beam epitaxy using hydrazoic acid (HN3) as an efficient nitrogen source,” J. Phys. Chem. A 111(29), 6755–6759 (2007).
[CrossRef] [PubMed]

Chen, K. H.

C. L. Hsiao, H. C. Hsu, L. C. Chen, C. T. Wu, C. W. Chen, M. Chen, L. W. Tu, and K. H. Chen, “Photoluminescence spectroscopy of nearly defect-free InN microcrystals exhibiting nondegenerate semiconductor behaviors,” Appl. Phys. Lett. 91(18), 181912 (2007).
[CrossRef]

J. T. Chen, C. L. Hsiao, H. C. Hsu, C. T. Wu, C. L. Yeh, P. C. Wei, L. C. Chen, and K. H. Chen, “Epitaxial growth of InN films by molecular-beam epitaxy using hydrazoic acid (HN3) as an efficient nitrogen source,” J. Phys. Chem. A 111(29), 6755–6759 (2007).
[CrossRef] [PubMed]

Chen, L. C.

C. L. Hsiao, H. C. Hsu, L. C. Chen, C. T. Wu, C. W. Chen, M. Chen, L. W. Tu, and K. H. Chen, “Photoluminescence spectroscopy of nearly defect-free InN microcrystals exhibiting nondegenerate semiconductor behaviors,” Appl. Phys. Lett. 91(18), 181912 (2007).
[CrossRef]

J. T. Chen, C. L. Hsiao, H. C. Hsu, C. T. Wu, C. L. Yeh, P. C. Wei, L. C. Chen, and K. H. Chen, “Epitaxial growth of InN films by molecular-beam epitaxy using hydrazoic acid (HN3) as an efficient nitrogen source,” J. Phys. Chem. A 111(29), 6755–6759 (2007).
[CrossRef] [PubMed]

Chen, M.

C. L. Hsiao, H. C. Hsu, L. C. Chen, C. T. Wu, C. W. Chen, M. Chen, L. W. Tu, and K. H. Chen, “Photoluminescence spectroscopy of nearly defect-free InN microcrystals exhibiting nondegenerate semiconductor behaviors,” Appl. Phys. Lett. 91(18), 181912 (2007).
[CrossRef]

Chen, T. T.

S. P. Fu, T. T. Chen, and Y. F. Chen, “Photoluminescent properties of InN epifilms,” Semicond. Sci. Technol. 21(3), 244–249 (2006).
[CrossRef]

Chen, Y. F.

S. P. Fu, T. T. Chen, and Y. F. Chen, “Photoluminescent properties of InN epifilms,” Semicond. Sci. Technol. 21(3), 244–249 (2006).
[CrossRef]

Climalla, V.

V. Lebedev, V. Climalla, T. Baumann, and O. Ambacher, “Effect of dislocations on electrical and electron transport properties of InN thin films. I. Strain relief and formation of a dislocation network,” J. Appl. Phys. 100(9), 094903 (2006).
[CrossRef]

Datars, W. R.

E. S. Koteles and W. R. Datars, “Temperature-dependence of electron on effective mass in InSb,” Phys. Rev. B 9(2), 568–571 (1974).
[CrossRef]

Davydov, V. Y.

C. H. Shen, H. Y. Chen, H.-W. Lin, S. Gwo, A. A. Klochikhin, and V. Y. Davydov, “Near-infrared photoluminescence from vertical InN nanorod arrays grown on silicon: Effects of surface electron accumulation layer,” Appl. Phys. Lett. 88(25), 253104 (2006).
[CrossRef]

V. Y. Davydov, A. A. Klochikhin, R. P. Seisiyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Grual, “Absorption and emission of hexagonal InN. Evidence of narrow fundamental band gap,” Phys. Status Solidi B 229, R1–R3 (2002).
[CrossRef]

Davydov, V. Yu.

V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, D. A. Kurdyukov, S. V. Ivanov, V. A. Vekshin, F. Bechstedt, J. Furthmüller, J. Aderhold, J. Graul, A. V. Mudryi, H. Harima, A. Hashimoto, A. Yamamoto, and E. E. Haller, “Band Gap of Hexagonal InN and InGaN Alloys,” Phys. Status Solidi B 234, 787–795 (2002).
[CrossRef]

Denier, B.

I. Mora-Seró, F. Fabregat-Santiago, B. Denier, J. Bisquert, R. Tena-Zaera, J. Elias, and C. Lévy-Clément, “Determination of carrier density of ZnO nanowires by electrochemical techniques,” Appl. Phys. Lett. 89(20), 203117 (2006).
[CrossRef]

Elias, J.

I. Mora-Seró, F. Fabregat-Santiago, B. Denier, J. Bisquert, R. Tena-Zaera, J. Elias, and C. Lévy-Clément, “Determination of carrier density of ZnO nanowires by electrochemical techniques,” Appl. Phys. Lett. 89(20), 203117 (2006).
[CrossRef]

Emtsev, V. V.

V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, D. A. Kurdyukov, S. V. Ivanov, V. A. Vekshin, F. Bechstedt, J. Furthmüller, J. Aderhold, J. Graul, A. V. Mudryi, H. Harima, A. Hashimoto, A. Yamamoto, and E. E. Haller, “Band Gap of Hexagonal InN and InGaN Alloys,” Phys. Status Solidi B 234, 787–795 (2002).
[CrossRef]

V. Y. Davydov, A. A. Klochikhin, R. P. Seisiyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Grual, “Absorption and emission of hexagonal InN. Evidence of narrow fundamental band gap,” Phys. Status Solidi B 229, R1–R3 (2002).
[CrossRef]

Fabregat-Santiago, F.

I. Mora-Seró, F. Fabregat-Santiago, B. Denier, J. Bisquert, R. Tena-Zaera, J. Elias, and C. Lévy-Clément, “Determination of carrier density of ZnO nanowires by electrochemical techniques,” Appl. Phys. Lett. 89(20), 203117 (2006).
[CrossRef]

Foley, C. P.

T. L. Tansley and C. P. Foley, “Optical band-gap of indium nitride,” J. Appl. Phys. 59(9), 3241–3244 (1986).
[CrossRef]

Fu, S. P.

S. P. Fu, T. T. Chen, and Y. F. Chen, “Photoluminescent properties of InN epifilms,” Semicond. Sci. Technol. 21(3), 244–249 (2006).
[CrossRef]

Furthmuller, J.

V. Y. Davydov, A. A. Klochikhin, R. P. Seisiyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Grual, “Absorption and emission of hexagonal InN. Evidence of narrow fundamental band gap,” Phys. Status Solidi B 229, R1–R3 (2002).
[CrossRef]

Furthmüller, J.

V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, D. A. Kurdyukov, S. V. Ivanov, V. A. Vekshin, F. Bechstedt, J. Furthmüller, J. Aderhold, J. Graul, A. V. Mudryi, H. Harima, A. Hashimoto, A. Yamamoto, and E. E. Haller, “Band Gap of Hexagonal InN and InGaN Alloys,” Phys. Status Solidi B 234, 787–795 (2002).
[CrossRef]

Graul, J.

V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, D. A. Kurdyukov, S. V. Ivanov, V. A. Vekshin, F. Bechstedt, J. Furthmüller, J. Aderhold, J. Graul, A. V. Mudryi, H. Harima, A. Hashimoto, A. Yamamoto, and E. E. Haller, “Band Gap of Hexagonal InN and InGaN Alloys,” Phys. Status Solidi B 234, 787–795 (2002).
[CrossRef]

Grual, J.

V. Y. Davydov, A. A. Klochikhin, R. P. Seisiyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Grual, “Absorption and emission of hexagonal InN. Evidence of narrow fundamental band gap,” Phys. Status Solidi B 229, R1–R3 (2002).
[CrossRef]

Gwo, S.

C. H. Shen, H. Y. Chen, H.-W. Lin, S. Gwo, A. A. Klochikhin, and V. Y. Davydov, “Near-infrared photoluminescence from vertical InN nanorod arrays grown on silicon: Effects of surface electron accumulation layer,” Appl. Phys. Lett. 88(25), 253104 (2006).
[CrossRef]

Haller, E. E.

J. Wu, W. Walukiewicz, S. X. Li, R. Armitage, J. C. Ho, E. R. Weber, E. E. Haller, H. Lu, W. J. Schaff, A. Barcz, and R. Jakiela, “Effects of electron concentration on the optical absorption edge of InN,” Appl. Phys. Lett. 84(15), 2805–2807 (2004).
[CrossRef]

J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Temperature dependence of the fundamental band gap of InN,” J. Appl. Phys. 94(7), 4457–4460 (2003).
[CrossRef]

J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Effects of the narrow band gap on the properties of InN,” Phys. Rev. B 66(20), R201403 (2002).
[CrossRef]

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. 80(21), 3967–3969 (2002).
[CrossRef]

V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, D. A. Kurdyukov, S. V. Ivanov, V. A. Vekshin, F. Bechstedt, J. Furthmüller, J. Aderhold, J. Graul, A. V. Mudryi, H. Harima, A. Hashimoto, A. Yamamoto, and E. E. Haller, “Band Gap of Hexagonal InN and InGaN Alloys,” Phys. Status Solidi B 234, 787–795 (2002).
[CrossRef]

Harima, H.

V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, D. A. Kurdyukov, S. V. Ivanov, V. A. Vekshin, F. Bechstedt, J. Furthmüller, J. Aderhold, J. Graul, A. V. Mudryi, H. Harima, A. Hashimoto, A. Yamamoto, and E. E. Haller, “Band Gap of Hexagonal InN and InGaN Alloys,” Phys. Status Solidi B 234, 787–795 (2002).
[CrossRef]

V. Y. Davydov, A. A. Klochikhin, R. P. Seisiyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Grual, “Absorption and emission of hexagonal InN. Evidence of narrow fundamental band gap,” Phys. Status Solidi B 229, R1–R3 (2002).
[CrossRef]

Hashimoto, A.

V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, D. A. Kurdyukov, S. V. Ivanov, V. A. Vekshin, F. Bechstedt, J. Furthmüller, J. Aderhold, J. Graul, A. V. Mudryi, H. Harima, A. Hashimoto, A. Yamamoto, and E. E. Haller, “Band Gap of Hexagonal InN and InGaN Alloys,” Phys. Status Solidi B 234, 787–795 (2002).
[CrossRef]

Ho, J. C.

J. Wu, W. Walukiewicz, S. X. Li, R. Armitage, J. C. Ho, E. R. Weber, E. E. Haller, H. Lu, W. J. Schaff, A. Barcz, and R. Jakiela, “Effects of electron concentration on the optical absorption edge of InN,” Appl. Phys. Lett. 84(15), 2805–2807 (2004).
[CrossRef]

Hsiao, C. L.

C. L. Hsiao, H. C. Hsu, L. C. Chen, C. T. Wu, C. W. Chen, M. Chen, L. W. Tu, and K. H. Chen, “Photoluminescence spectroscopy of nearly defect-free InN microcrystals exhibiting nondegenerate semiconductor behaviors,” Appl. Phys. Lett. 91(18), 181912 (2007).
[CrossRef]

J. T. Chen, C. L. Hsiao, H. C. Hsu, C. T. Wu, C. L. Yeh, P. C. Wei, L. C. Chen, and K. H. Chen, “Epitaxial growth of InN films by molecular-beam epitaxy using hydrazoic acid (HN3) as an efficient nitrogen source,” J. Phys. Chem. A 111(29), 6755–6759 (2007).
[CrossRef] [PubMed]

Hsu, H. C.

J. T. Chen, C. L. Hsiao, H. C. Hsu, C. T. Wu, C. L. Yeh, P. C. Wei, L. C. Chen, and K. H. Chen, “Epitaxial growth of InN films by molecular-beam epitaxy using hydrazoic acid (HN3) as an efficient nitrogen source,” J. Phys. Chem. A 111(29), 6755–6759 (2007).
[CrossRef] [PubMed]

C. L. Hsiao, H. C. Hsu, L. C. Chen, C. T. Wu, C. W. Chen, M. Chen, L. W. Tu, and K. H. Chen, “Photoluminescence spectroscopy of nearly defect-free InN microcrystals exhibiting nondegenerate semiconductor behaviors,” Appl. Phys. Lett. 91(18), 181912 (2007).
[CrossRef]

Ivanov, S. V.

V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, D. A. Kurdyukov, S. V. Ivanov, V. A. Vekshin, F. Bechstedt, J. Furthmüller, J. Aderhold, J. Graul, A. V. Mudryi, H. Harima, A. Hashimoto, A. Yamamoto, and E. E. Haller, “Band Gap of Hexagonal InN and InGaN Alloys,” Phys. Status Solidi B 234, 787–795 (2002).
[CrossRef]

V. Y. Davydov, A. A. Klochikhin, R. P. Seisiyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Grual, “Absorption and emission of hexagonal InN. Evidence of narrow fundamental band gap,” Phys. Status Solidi B 229, R1–R3 (2002).
[CrossRef]

Jakiela, R.

J. Wu, W. Walukiewicz, S. X. Li, R. Armitage, J. C. Ho, E. R. Weber, E. E. Haller, H. Lu, W. J. Schaff, A. Barcz, and R. Jakiela, “Effects of electron concentration on the optical absorption edge of InN,” Appl. Phys. Lett. 84(15), 2805–2807 (2004).
[CrossRef]

Jasinski, J.

D. C. Look, H. Lu, W. J. Schaff, J. Jasinski, and Z. Liliental-Weber, “Donor and acceptor concentrations in degenerate InN,” Appl. Phys. Lett. 80(2), 258–260 (2002).
[CrossRef]

Jiang, D. S.

D. S. Jiang, Y. Makita, K. Ploog, and H. J. Queisser, “Electrical-properties and photo-luminescence of Te- doped GaAs grown by molecular-beam-epitaxy,” J. Appl. Phys. 53(2), 999–1006 (1982).
[CrossRef]

Kadir, A.

B. Bansal, A. Kadir, A. Bhattacharya, and V. V. Moshchalkov, “Photoluminescence from localized states in disordered indium nitride,” Appl. Phys. Lett. 93(2), 021113 (2008).
[CrossRef]

Klochikhin, A. A.

C. H. Shen, H. Y. Chen, H.-W. Lin, S. Gwo, A. A. Klochikhin, and V. Y. Davydov, “Near-infrared photoluminescence from vertical InN nanorod arrays grown on silicon: Effects of surface electron accumulation layer,” Appl. Phys. Lett. 88(25), 253104 (2006).
[CrossRef]

V. Y. Davydov, A. A. Klochikhin, R. P. Seisiyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Grual, “Absorption and emission of hexagonal InN. Evidence of narrow fundamental band gap,” Phys. Status Solidi B 229, R1–R3 (2002).
[CrossRef]

V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, D. A. Kurdyukov, S. V. Ivanov, V. A. Vekshin, F. Bechstedt, J. Furthmüller, J. Aderhold, J. Graul, A. V. Mudryi, H. Harima, A. Hashimoto, A. Yamamoto, and E. E. Haller, “Band Gap of Hexagonal InN and InGaN Alloys,” Phys. Status Solidi B 234, 787–795 (2002).
[CrossRef]

Koteles, E. S.

E. S. Koteles and W. R. Datars, “Temperature-dependence of electron on effective mass in InSb,” Phys. Rev. B 9(2), 568–571 (1974).
[CrossRef]

Krüger, P.

C. Stampfl, C. G. Van de Walle, D. Vogel, P. Krüger, and J. Pollmann, “Native defects and impurities in InN: First-principles studies using the local-density approximation and self-interaction and relaxation-corrected pseudopotentials,” Phys. Rev. B 61(12), R7846–R7849 (2000).
[CrossRef]

Kurdyukov, D. A.

V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, D. A. Kurdyukov, S. V. Ivanov, V. A. Vekshin, F. Bechstedt, J. Furthmüller, J. Aderhold, J. Graul, A. V. Mudryi, H. Harima, A. Hashimoto, A. Yamamoto, and E. E. Haller, “Band Gap of Hexagonal InN and InGaN Alloys,” Phys. Status Solidi B 234, 787–795 (2002).
[CrossRef]

Lebedev, V.

V. Lebedev, V. Climalla, T. Baumann, and O. Ambacher, “Effect of dislocations on electrical and electron transport properties of InN thin films. I. Strain relief and formation of a dislocation network,” J. Appl. Phys. 100(9), 094903 (2006).
[CrossRef]

Lévy-Clément, C.

I. Mora-Seró, F. Fabregat-Santiago, B. Denier, J. Bisquert, R. Tena-Zaera, J. Elias, and C. Lévy-Clément, “Determination of carrier density of ZnO nanowires by electrochemical techniques,” Appl. Phys. Lett. 89(20), 203117 (2006).
[CrossRef]

Li, S. X.

J. Wu, W. Walukiewicz, S. X. Li, R. Armitage, J. C. Ho, E. R. Weber, E. E. Haller, H. Lu, W. J. Schaff, A. Barcz, and R. Jakiela, “Effects of electron concentration on the optical absorption edge of InN,” Appl. Phys. Lett. 84(15), 2805–2807 (2004).
[CrossRef]

J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Temperature dependence of the fundamental band gap of InN,” J. Appl. Phys. 94(7), 4457–4460 (2003).
[CrossRef]

Liliental-Weber, Z.

D. C. Look, H. Lu, W. J. Schaff, J. Jasinski, and Z. Liliental-Weber, “Donor and acceptor concentrations in degenerate InN,” Appl. Phys. Lett. 80(2), 258–260 (2002).
[CrossRef]

Lin, H.-W.

C. H. Shen, H. Y. Chen, H.-W. Lin, S. Gwo, A. A. Klochikhin, and V. Y. Davydov, “Near-infrared photoluminescence from vertical InN nanorod arrays grown on silicon: Effects of surface electron accumulation layer,” Appl. Phys. Lett. 88(25), 253104 (2006).
[CrossRef]

Look, D. C.

D. C. Look, H. Lu, W. J. Schaff, J. Jasinski, and Z. Liliental-Weber, “Donor and acceptor concentrations in degenerate InN,” Appl. Phys. Lett. 80(2), 258–260 (2002).
[CrossRef]

Lu, H.

J. Wu, W. Walukiewicz, S. X. Li, R. Armitage, J. C. Ho, E. R. Weber, E. E. Haller, H. Lu, W. J. Schaff, A. Barcz, and R. Jakiela, “Effects of electron concentration on the optical absorption edge of InN,” Appl. Phys. Lett. 84(15), 2805–2807 (2004).
[CrossRef]

B. Arnaudov, T. Paskova, P. P. Paskov, B. Magnusson, E. Valcheva, B. Monemar, H. Lu, W. J. Schaff, H. Amano, and I. Akasaki, “Energy position of near-band-edge emission spectra of InN epitaxial layers with different doping levels,” Phys. Rev. B 69(11), 115216 (2004).
[CrossRef]

J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Temperature dependence of the fundamental band gap of InN,” J. Appl. Phys. 94(7), 4457–4460 (2003).
[CrossRef]

D. C. Look, H. Lu, W. J. Schaff, J. Jasinski, and Z. Liliental-Weber, “Donor and acceptor concentrations in degenerate InN,” Appl. Phys. Lett. 80(2), 258–260 (2002).
[CrossRef]

J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Effects of the narrow band gap on the properties of InN,” Phys. Rev. B 66(20), R201403 (2002).
[CrossRef]

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. 80(21), 3967–3969 (2002).
[CrossRef]

Lüth, H.

T. Stoica, R. J. Meijers, R. Calarco, T. Richter, E. Sutter, and H. Lüth, “Photoluminescence and intrinsic properties of MBE-grown InN nanowires,” Nano Lett. 6(7), 1541–1547 (2006).
[CrossRef] [PubMed]

Magnusson, B.

B. Arnaudov, T. Paskova, P. P. Paskov, B. Magnusson, E. Valcheva, B. Monemar, H. Lu, W. J. Schaff, H. Amano, and I. Akasaki, “Energy position of near-band-edge emission spectra of InN epitaxial layers with different doping levels,” Phys. Rev. B 69(11), 115216 (2004).
[CrossRef]

Mahboob, I.

L. F. J. Piper, T. D. Veal, I. Mahboob, and C. F. McConville, “Temperature invariance of InN electron accumulation,” Phys. Rev. B 70(11), 115333 (2004).
[CrossRef]

Makita, Y.

D. S. Jiang, Y. Makita, K. Ploog, and H. J. Queisser, “Electrical-properties and photo-luminescence of Te- doped GaAs grown by molecular-beam-epitaxy,” J. Appl. Phys. 53(2), 999–1006 (1982).
[CrossRef]

McConville, C. F.

L. F. J. Piper, T. D. Veal, I. Mahboob, and C. F. McConville, “Temperature invariance of InN electron accumulation,” Phys. Rev. B 70(11), 115333 (2004).
[CrossRef]

Meijers, R. J.

T. Stoica, R. J. Meijers, R. Calarco, T. Richter, E. Sutter, and H. Lüth, “Photoluminescence and intrinsic properties of MBE-grown InN nanowires,” Nano Lett. 6(7), 1541–1547 (2006).
[CrossRef] [PubMed]

Miura, N.

H. Yokoi, S. Takeyama, and N. Miura, “Anomalous temperature-dependence of the effective mass in n-type PbTe,” Phys. Rev. B 44(12), 6519–6522 (1991).
[CrossRef]

Monemar, B.

B. Arnaudov, T. Paskova, P. P. Paskov, B. Magnusson, E. Valcheva, B. Monemar, H. Lu, W. J. Schaff, H. Amano, and I. Akasaki, “Energy position of near-band-edge emission spectra of InN epitaxial layers with different doping levels,” Phys. Rev. B 69(11), 115216 (2004).
[CrossRef]

Mora-Seró, I.

I. Mora-Seró, F. Fabregat-Santiago, B. Denier, J. Bisquert, R. Tena-Zaera, J. Elias, and C. Lévy-Clément, “Determination of carrier density of ZnO nanowires by electrochemical techniques,” Appl. Phys. Lett. 89(20), 203117 (2006).
[CrossRef]

Moshchalkov, V. V.

B. Bansal, A. Kadir, A. Bhattacharya, and V. V. Moshchalkov, “Photoluminescence from localized states in disordered indium nitride,” Appl. Phys. Lett. 93(2), 021113 (2008).
[CrossRef]

Mudryi, A. V.

V. Y. Davydov, A. A. Klochikhin, R. P. Seisiyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Grual, “Absorption and emission of hexagonal InN. Evidence of narrow fundamental band gap,” Phys. Status Solidi B 229, R1–R3 (2002).
[CrossRef]

V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, D. A. Kurdyukov, S. V. Ivanov, V. A. Vekshin, F. Bechstedt, J. Furthmüller, J. Aderhold, J. Graul, A. V. Mudryi, H. Harima, A. Hashimoto, A. Yamamoto, and E. E. Haller, “Band Gap of Hexagonal InN and InGaN Alloys,” Phys. Status Solidi B 234, 787–795 (2002).
[CrossRef]

Nanishi, Y.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. 80(21), 3967–3969 (2002).
[CrossRef]

Paskov, P. P.

B. Arnaudov, T. Paskova, P. P. Paskov, B. Magnusson, E. Valcheva, B. Monemar, H. Lu, W. J. Schaff, H. Amano, and I. Akasaki, “Energy position of near-band-edge emission spectra of InN epitaxial layers with different doping levels,” Phys. Rev. B 69(11), 115216 (2004).
[CrossRef]

Paskova, T.

B. Arnaudov, T. Paskova, P. P. Paskov, B. Magnusson, E. Valcheva, B. Monemar, H. Lu, W. J. Schaff, H. Amano, and I. Akasaki, “Energy position of near-band-edge emission spectra of InN epitaxial layers with different doping levels,” Phys. Rev. B 69(11), 115216 (2004).
[CrossRef]

Piper, L. F. J.

L. F. J. Piper, T. D. Veal, I. Mahboob, and C. F. McConville, “Temperature invariance of InN electron accumulation,” Phys. Rev. B 70(11), 115333 (2004).
[CrossRef]

Ploog, K.

D. S. Jiang, Y. Makita, K. Ploog, and H. J. Queisser, “Electrical-properties and photo-luminescence of Te- doped GaAs grown by molecular-beam-epitaxy,” J. Appl. Phys. 53(2), 999–1006 (1982).
[CrossRef]

Pollmann, J.

C. Stampfl, C. G. Van de Walle, D. Vogel, P. Krüger, and J. Pollmann, “Native defects and impurities in InN: First-principles studies using the local-density approximation and self-interaction and relaxation-corrected pseudopotentials,” Phys. Rev. B 61(12), R7846–R7849 (2000).
[CrossRef]

Queisser, H. J.

D. S. Jiang, Y. Makita, K. Ploog, and H. J. Queisser, “Electrical-properties and photo-luminescence of Te- doped GaAs grown by molecular-beam-epitaxy,” J. Appl. Phys. 53(2), 999–1006 (1982).
[CrossRef]

Raymond, A.

A. Raymond, J. L. Robert, and C. Bernard, “Electron effective mass in heavily doped GaAs,” J. Phys. 12, 2289–2293 (1979).

Richter, T.

T. Stoica, R. J. Meijers, R. Calarco, T. Richter, E. Sutter, and H. Lüth, “Photoluminescence and intrinsic properties of MBE-grown InN nanowires,” Nano Lett. 6(7), 1541–1547 (2006).
[CrossRef] [PubMed]

Robert, J. L.

A. Raymond, J. L. Robert, and C. Bernard, “Electron effective mass in heavily doped GaAs,” J. Phys. 12, 2289–2293 (1979).

Saito, Y.

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. 80(21), 3967–3969 (2002).
[CrossRef]

Schaff, W. J.

B. Arnaudov, T. Paskova, P. P. Paskov, B. Magnusson, E. Valcheva, B. Monemar, H. Lu, W. J. Schaff, H. Amano, and I. Akasaki, “Energy position of near-band-edge emission spectra of InN epitaxial layers with different doping levels,” Phys. Rev. B 69(11), 115216 (2004).
[CrossRef]

J. Wu, W. Walukiewicz, S. X. Li, R. Armitage, J. C. Ho, E. R. Weber, E. E. Haller, H. Lu, W. J. Schaff, A. Barcz, and R. Jakiela, “Effects of electron concentration on the optical absorption edge of InN,” Appl. Phys. Lett. 84(15), 2805–2807 (2004).
[CrossRef]

J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Temperature dependence of the fundamental band gap of InN,” J. Appl. Phys. 94(7), 4457–4460 (2003).
[CrossRef]

D. C. Look, H. Lu, W. J. Schaff, J. Jasinski, and Z. Liliental-Weber, “Donor and acceptor concentrations in degenerate InN,” Appl. Phys. Lett. 80(2), 258–260 (2002).
[CrossRef]

J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Effects of the narrow band gap on the properties of InN,” Phys. Rev. B 66(20), R201403 (2002).
[CrossRef]

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. 80(21), 3967–3969 (2002).
[CrossRef]

Seisiyan, R. P.

V. Y. Davydov, A. A. Klochikhin, R. P. Seisiyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Grual, “Absorption and emission of hexagonal InN. Evidence of narrow fundamental band gap,” Phys. Status Solidi B 229, R1–R3 (2002).
[CrossRef]

Semchinova, O.

V. Y. Davydov, A. A. Klochikhin, R. P. Seisiyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Grual, “Absorption and emission of hexagonal InN. Evidence of narrow fundamental band gap,” Phys. Status Solidi B 229, R1–R3 (2002).
[CrossRef]

Shan, W.

J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Temperature dependence of the fundamental band gap of InN,” J. Appl. Phys. 94(7), 4457–4460 (2003).
[CrossRef]

J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Effects of the narrow band gap on the properties of InN,” Phys. Rev. B 66(20), R201403 (2002).
[CrossRef]

Shen, C. H.

C. H. Shen, H. Y. Chen, H.-W. Lin, S. Gwo, A. A. Klochikhin, and V. Y. Davydov, “Near-infrared photoluminescence from vertical InN nanorod arrays grown on silicon: Effects of surface electron accumulation layer,” Appl. Phys. Lett. 88(25), 253104 (2006).
[CrossRef]

Stampfl, C.

C. Stampfl, C. G. Van de Walle, D. Vogel, P. Krüger, and J. Pollmann, “Native defects and impurities in InN: First-principles studies using the local-density approximation and self-interaction and relaxation-corrected pseudopotentials,” Phys. Rev. B 61(12), R7846–R7849 (2000).
[CrossRef]

Stoica, T.

T. Stoica, R. J. Meijers, R. Calarco, T. Richter, E. Sutter, and H. Lüth, “Photoluminescence and intrinsic properties of MBE-grown InN nanowires,” Nano Lett. 6(7), 1541–1547 (2006).
[CrossRef] [PubMed]

Sutter, E.

T. Stoica, R. J. Meijers, R. Calarco, T. Richter, E. Sutter, and H. Lüth, “Photoluminescence and intrinsic properties of MBE-grown InN nanowires,” Nano Lett. 6(7), 1541–1547 (2006).
[CrossRef] [PubMed]

Takeyama, S.

H. Yokoi, S. Takeyama, and N. Miura, “Anomalous temperature-dependence of the effective mass in n-type PbTe,” Phys. Rev. B 44(12), 6519–6522 (1991).
[CrossRef]

Tansley, T. L.

T. L. Tansley and C. P. Foley, “Optical band-gap of indium nitride,” J. Appl. Phys. 59(9), 3241–3244 (1986).
[CrossRef]

Tena-Zaera, R.

I. Mora-Seró, F. Fabregat-Santiago, B. Denier, J. Bisquert, R. Tena-Zaera, J. Elias, and C. Lévy-Clément, “Determination of carrier density of ZnO nanowires by electrochemical techniques,” Appl. Phys. Lett. 89(20), 203117 (2006).
[CrossRef]

Tu, L. W.

C. L. Hsiao, H. C. Hsu, L. C. Chen, C. T. Wu, C. W. Chen, M. Chen, L. W. Tu, and K. H. Chen, “Photoluminescence spectroscopy of nearly defect-free InN microcrystals exhibiting nondegenerate semiconductor behaviors,” Appl. Phys. Lett. 91(18), 181912 (2007).
[CrossRef]

Valcheva, E.

B. Arnaudov, T. Paskova, P. P. Paskov, B. Magnusson, E. Valcheva, B. Monemar, H. Lu, W. J. Schaff, H. Amano, and I. Akasaki, “Energy position of near-band-edge emission spectra of InN epitaxial layers with different doping levels,” Phys. Rev. B 69(11), 115216 (2004).
[CrossRef]

Van de Walle, C. G.

C. Stampfl, C. G. Van de Walle, D. Vogel, P. Krüger, and J. Pollmann, “Native defects and impurities in InN: First-principles studies using the local-density approximation and self-interaction and relaxation-corrected pseudopotentials,” Phys. Rev. B 61(12), R7846–R7849 (2000).
[CrossRef]

Varshni, Y. P.

Y. P. Varshni, “Temperature dependence of energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
[CrossRef]

Veal, T. D.

L. F. J. Piper, T. D. Veal, I. Mahboob, and C. F. McConville, “Temperature invariance of InN electron accumulation,” Phys. Rev. B 70(11), 115333 (2004).
[CrossRef]

Vekshin, V. A.

V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, D. A. Kurdyukov, S. V. Ivanov, V. A. Vekshin, F. Bechstedt, J. Furthmüller, J. Aderhold, J. Graul, A. V. Mudryi, H. Harima, A. Hashimoto, A. Yamamoto, and E. E. Haller, “Band Gap of Hexagonal InN and InGaN Alloys,” Phys. Status Solidi B 234, 787–795 (2002).
[CrossRef]

Vogel, D.

C. Stampfl, C. G. Van de Walle, D. Vogel, P. Krüger, and J. Pollmann, “Native defects and impurities in InN: First-principles studies using the local-density approximation and self-interaction and relaxation-corrected pseudopotentials,” Phys. Rev. B 61(12), R7846–R7849 (2000).
[CrossRef]

Walukiewicz, W.

J. Wu, W. Walukiewicz, S. X. Li, R. Armitage, J. C. Ho, E. R. Weber, E. E. Haller, H. Lu, W. J. Schaff, A. Barcz, and R. Jakiela, “Effects of electron concentration on the optical absorption edge of InN,” Appl. Phys. Lett. 84(15), 2805–2807 (2004).
[CrossRef]

J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Temperature dependence of the fundamental band gap of InN,” J. Appl. Phys. 94(7), 4457–4460 (2003).
[CrossRef]

J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Effects of the narrow band gap on the properties of InN,” Phys. Rev. B 66(20), R201403 (2002).
[CrossRef]

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. 80(21), 3967–3969 (2002).
[CrossRef]

Wang, S. Z.

S. Z. Wang, S. F. Yoon, Y. X. Xia, and S. W. Xie, “20 meV-deep donor level in InN film of 0.76 eV band gap grown by plasma-assisted nitrogen source,” J. Appl. Phys. 95(12), 7998–8001 (2004).
[CrossRef]

Weber, E. R.

J. Wu, W. Walukiewicz, S. X. Li, R. Armitage, J. C. Ho, E. R. Weber, E. E. Haller, H. Lu, W. J. Schaff, A. Barcz, and R. Jakiela, “Effects of electron concentration on the optical absorption edge of InN,” Appl. Phys. Lett. 84(15), 2805–2807 (2004).
[CrossRef]

Wei, P. C.

J. T. Chen, C. L. Hsiao, H. C. Hsu, C. T. Wu, C. L. Yeh, P. C. Wei, L. C. Chen, and K. H. Chen, “Epitaxial growth of InN films by molecular-beam epitaxy using hydrazoic acid (HN3) as an efficient nitrogen source,” J. Phys. Chem. A 111(29), 6755–6759 (2007).
[CrossRef] [PubMed]

Wu, C. T.

C. L. Hsiao, H. C. Hsu, L. C. Chen, C. T. Wu, C. W. Chen, M. Chen, L. W. Tu, and K. H. Chen, “Photoluminescence spectroscopy of nearly defect-free InN microcrystals exhibiting nondegenerate semiconductor behaviors,” Appl. Phys. Lett. 91(18), 181912 (2007).
[CrossRef]

J. T. Chen, C. L. Hsiao, H. C. Hsu, C. T. Wu, C. L. Yeh, P. C. Wei, L. C. Chen, and K. H. Chen, “Epitaxial growth of InN films by molecular-beam epitaxy using hydrazoic acid (HN3) as an efficient nitrogen source,” J. Phys. Chem. A 111(29), 6755–6759 (2007).
[CrossRef] [PubMed]

Wu, J.

J. Wu, W. Walukiewicz, S. X. Li, R. Armitage, J. C. Ho, E. R. Weber, E. E. Haller, H. Lu, W. J. Schaff, A. Barcz, and R. Jakiela, “Effects of electron concentration on the optical absorption edge of InN,” Appl. Phys. Lett. 84(15), 2805–2807 (2004).
[CrossRef]

J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Temperature dependence of the fundamental band gap of InN,” J. Appl. Phys. 94(7), 4457–4460 (2003).
[CrossRef]

J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Effects of the narrow band gap on the properties of InN,” Phys. Rev. B 66(20), R201403 (2002).
[CrossRef]

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. 80(21), 3967–3969 (2002).
[CrossRef]

Xia, Y. X.

S. Z. Wang, S. F. Yoon, Y. X. Xia, and S. W. Xie, “20 meV-deep donor level in InN film of 0.76 eV band gap grown by plasma-assisted nitrogen source,” J. Appl. Phys. 95(12), 7998–8001 (2004).
[CrossRef]

Xie, S. W.

S. Z. Wang, S. F. Yoon, Y. X. Xia, and S. W. Xie, “20 meV-deep donor level in InN film of 0.76 eV band gap grown by plasma-assisted nitrogen source,” J. Appl. Phys. 95(12), 7998–8001 (2004).
[CrossRef]

Yamamoto, A.

V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, D. A. Kurdyukov, S. V. Ivanov, V. A. Vekshin, F. Bechstedt, J. Furthmüller, J. Aderhold, J. Graul, A. V. Mudryi, H. Harima, A. Hashimoto, A. Yamamoto, and E. E. Haller, “Band Gap of Hexagonal InN and InGaN Alloys,” Phys. Status Solidi B 234, 787–795 (2002).
[CrossRef]

Yeh, C. L.

J. T. Chen, C. L. Hsiao, H. C. Hsu, C. T. Wu, C. L. Yeh, P. C. Wei, L. C. Chen, and K. H. Chen, “Epitaxial growth of InN films by molecular-beam epitaxy using hydrazoic acid (HN3) as an efficient nitrogen source,” J. Phys. Chem. A 111(29), 6755–6759 (2007).
[CrossRef] [PubMed]

Yokoi, H.

H. Yokoi, S. Takeyama, and N. Miura, “Anomalous temperature-dependence of the effective mass in n-type PbTe,” Phys. Rev. B 44(12), 6519–6522 (1991).
[CrossRef]

Yoon, S. F.

S. Z. Wang, S. F. Yoon, Y. X. Xia, and S. W. Xie, “20 meV-deep donor level in InN film of 0.76 eV band gap grown by plasma-assisted nitrogen source,” J. Appl. Phys. 95(12), 7998–8001 (2004).
[CrossRef]

Yu, K. M.

J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Temperature dependence of the fundamental band gap of InN,” J. Appl. Phys. 94(7), 4457–4460 (2003).
[CrossRef]

J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Effects of the narrow band gap on the properties of InN,” Phys. Rev. B 66(20), R201403 (2002).
[CrossRef]

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. 80(21), 3967–3969 (2002).
[CrossRef]

Appl. Phys. Lett. (7)

J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. 80(21), 3967–3969 (2002).
[CrossRef]

D. C. Look, H. Lu, W. J. Schaff, J. Jasinski, and Z. Liliental-Weber, “Donor and acceptor concentrations in degenerate InN,” Appl. Phys. Lett. 80(2), 258–260 (2002).
[CrossRef]

C. H. Shen, H. Y. Chen, H.-W. Lin, S. Gwo, A. A. Klochikhin, and V. Y. Davydov, “Near-infrared photoluminescence from vertical InN nanorod arrays grown on silicon: Effects of surface electron accumulation layer,” Appl. Phys. Lett. 88(25), 253104 (2006).
[CrossRef]

C. L. Hsiao, H. C. Hsu, L. C. Chen, C. T. Wu, C. W. Chen, M. Chen, L. W. Tu, and K. H. Chen, “Photoluminescence spectroscopy of nearly defect-free InN microcrystals exhibiting nondegenerate semiconductor behaviors,” Appl. Phys. Lett. 91(18), 181912 (2007).
[CrossRef]

I. Mora-Seró, F. Fabregat-Santiago, B. Denier, J. Bisquert, R. Tena-Zaera, J. Elias, and C. Lévy-Clément, “Determination of carrier density of ZnO nanowires by electrochemical techniques,” Appl. Phys. Lett. 89(20), 203117 (2006).
[CrossRef]

J. Wu, W. Walukiewicz, S. X. Li, R. Armitage, J. C. Ho, E. R. Weber, E. E. Haller, H. Lu, W. J. Schaff, A. Barcz, and R. Jakiela, “Effects of electron concentration on the optical absorption edge of InN,” Appl. Phys. Lett. 84(15), 2805–2807 (2004).
[CrossRef]

B. Bansal, A. Kadir, A. Bhattacharya, and V. V. Moshchalkov, “Photoluminescence from localized states in disordered indium nitride,” Appl. Phys. Lett. 93(2), 021113 (2008).
[CrossRef]

J. Appl. Phys. (5)

V. Lebedev, V. Climalla, T. Baumann, and O. Ambacher, “Effect of dislocations on electrical and electron transport properties of InN thin films. I. Strain relief and formation of a dislocation network,” J. Appl. Phys. 100(9), 094903 (2006).
[CrossRef]

D. S. Jiang, Y. Makita, K. Ploog, and H. J. Queisser, “Electrical-properties and photo-luminescence of Te- doped GaAs grown by molecular-beam-epitaxy,” J. Appl. Phys. 53(2), 999–1006 (1982).
[CrossRef]

S. Z. Wang, S. F. Yoon, Y. X. Xia, and S. W. Xie, “20 meV-deep donor level in InN film of 0.76 eV band gap grown by plasma-assisted nitrogen source,” J. Appl. Phys. 95(12), 7998–8001 (2004).
[CrossRef]

J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Temperature dependence of the fundamental band gap of InN,” J. Appl. Phys. 94(7), 4457–4460 (2003).
[CrossRef]

T. L. Tansley and C. P. Foley, “Optical band-gap of indium nitride,” J. Appl. Phys. 59(9), 3241–3244 (1986).
[CrossRef]

J. Phys. (1)

A. Raymond, J. L. Robert, and C. Bernard, “Electron effective mass in heavily doped GaAs,” J. Phys. 12, 2289–2293 (1979).

J. Phys. Chem. A (1)

J. T. Chen, C. L. Hsiao, H. C. Hsu, C. T. Wu, C. L. Yeh, P. C. Wei, L. C. Chen, and K. H. Chen, “Epitaxial growth of InN films by molecular-beam epitaxy using hydrazoic acid (HN3) as an efficient nitrogen source,” J. Phys. Chem. A 111(29), 6755–6759 (2007).
[CrossRef] [PubMed]

Nano Lett. (1)

T. Stoica, R. J. Meijers, R. Calarco, T. Richter, E. Sutter, and H. Lüth, “Photoluminescence and intrinsic properties of MBE-grown InN nanowires,” Nano Lett. 6(7), 1541–1547 (2006).
[CrossRef] [PubMed]

Phys. Rev. B (6)

C. Stampfl, C. G. Van de Walle, D. Vogel, P. Krüger, and J. Pollmann, “Native defects and impurities in InN: First-principles studies using the local-density approximation and self-interaction and relaxation-corrected pseudopotentials,” Phys. Rev. B 61(12), R7846–R7849 (2000).
[CrossRef]

B. Arnaudov, T. Paskova, P. P. Paskov, B. Magnusson, E. Valcheva, B. Monemar, H. Lu, W. J. Schaff, H. Amano, and I. Akasaki, “Energy position of near-band-edge emission spectra of InN epitaxial layers with different doping levels,” Phys. Rev. B 69(11), 115216 (2004).
[CrossRef]

J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Effects of the narrow band gap on the properties of InN,” Phys. Rev. B 66(20), R201403 (2002).
[CrossRef]

E. S. Koteles and W. R. Datars, “Temperature-dependence of electron on effective mass in InSb,” Phys. Rev. B 9(2), 568–571 (1974).
[CrossRef]

H. Yokoi, S. Takeyama, and N. Miura, “Anomalous temperature-dependence of the effective mass in n-type PbTe,” Phys. Rev. B 44(12), 6519–6522 (1991).
[CrossRef]

L. F. J. Piper, T. D. Veal, I. Mahboob, and C. F. McConville, “Temperature invariance of InN electron accumulation,” Phys. Rev. B 70(11), 115333 (2004).
[CrossRef]

Phys. Status Solidi B (2)

V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, D. A. Kurdyukov, S. V. Ivanov, V. A. Vekshin, F. Bechstedt, J. Furthmüller, J. Aderhold, J. Graul, A. V. Mudryi, H. Harima, A. Hashimoto, A. Yamamoto, and E. E. Haller, “Band Gap of Hexagonal InN and InGaN Alloys,” Phys. Status Solidi B 234, 787–795 (2002).
[CrossRef]

V. Y. Davydov, A. A. Klochikhin, R. P. Seisiyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Grual, “Absorption and emission of hexagonal InN. Evidence of narrow fundamental band gap,” Phys. Status Solidi B 229, R1–R3 (2002).
[CrossRef]

Physica (1)

Y. P. Varshni, “Temperature dependence of energy gap in semiconductors,” Physica 34(1), 149–154 (1967).
[CrossRef]

Semicond. Sci. Technol. (1)

S. P. Fu, T. T. Chen, and Y. F. Chen, “Photoluminescent properties of InN epifilms,” Semicond. Sci. Technol. 21(3), 244–249 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Representative images of vertically quasi-aligned InN nanocolumns; (a) Cross sectional scanning electron microscope (SEM) image, (b) Top view SEM, (c) Cross-sectional high resolution transmission electron microscope (HRTEM) image, and (d) HRTEM image of a selected area from (c). Inset in (d) shows the selected area electron diffraction (SAED) of the wurtzite InN nanocolumns.

Fig. 2
Fig. 2

(a) Experimental PL spectra (dashed lines), at 20 K, of InN nanocolumns prepared with and without In pre-deposition layer as described in the text. The spectra are vertically shifted for clarity. Fitting results (according to Eq. (6)) are shown by the solid lines for each spectrum. (b) The FWHM of the PL peak as a function of temperature for samples S1-S8. (c) Variation of optical bandgap in InN samples as a function of carrier concentration. InN thin film’s bandgap data collected from literature (□ [14],◊ [15]) and nanocolumns data (EPL at 20 K) from this work (●) are shown in the same plot. Theoretical variation of InN band gap as a function of carrier concentration is shown for reference assuming (—) parabolic (m* = 0.07 m0 ) and (—) non parabolic (see Eq. (2)) conduction band edge.

Fig. 3
Fig. 3

(a) Plot of PL peak energies as a function of temperature for samples S1-S8 (hollow symbols) from this study, and from published references (Thin film (♦ [3,4]), nanorods (● [9], ■ [10])). Estimated carrier concentration values (in units of cm−3) are marked for each sample (S1-S8). (b) The schematic of a band diagram according to Eq. (3), showing the electron and hole quasi-Fermi level movement with temperature.

Fig. 4
Fig. 4

(a) Variation of the quasi-Fermi level, EFn , with temperature, obtained by fitting the temperature dependent photoluminescence spectra for each sample (S1-S8) according to Eq. (6). Schematic band diagram showing the change in the intrinsic bandgap (ΔEG ), defined as the separation between the conduction band minima and valence band maxima, and the quasi-Fermi level ΔEFn=EFn2EFn1 with temperature for (b) low and (c) high carrier density InN nanocolumn. The optical bandgap, EPL , is also shown.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

log(FWHM)=0.50737log(n)7.5988
EC(k)=EG+2k22m0+12(EG2+4EP2k22m0EG)
EPL(n,T)=EG(n,T)+EFn(n,T)EFp(n,T)
dEPLdT=dEGdT+dEFndTdEFpdT
dEFndT~ddT[22md(T)(3π2n(T))23]
I(ω)~[ωEG(n)]γ2f(ωEG(n)EFn)

Metrics