Abstract

The interactions between electromagnetic wave and photonic quasicrystals are investigated. A terahertz (THz) source with multi-frequency modes in an optical LiTaO3 superlattice produced by quasiperiodic (Fibonacci) domain-inverted ferroelectric material is demonstrated experimentally. Using the canonical pump-probe experimental technique, THz radiations in both forward and backward propagations are in-situ detected simultaneously. Four pronounced THz frequencies at 1.18, 0.78, 0.59 and 0.37 THz in Fourier transform spectrum are observed. The physical properties of THz waves inside quasiperiodic superlattice are discussed.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Gellermann, M. Kohmoto, B. Sutherland, and P. C. Taylor, “Localization of light waves in Fibonacci dielectric multilayers,” Phys. Rev. Lett. 72, 633–636 (1994).
    [Crossref] [PubMed]
  2. A. Sugita, T. Saito, H. Kano, M. Yamashita, and T. Kobayashi, “Wave Packet Dynamics in a Quasi-One-Dimensional Metal-Halogen Complex Studied by Ultrafast Time-Resolved Spectroscopy,” Phys. Rev. Lett. 86, 2158–2161 (2001).
    [Crossref] [PubMed]
  3. C. B. Clausen, Y. S. Kivshar, O. Bang, and P. L. Christiansen, “Quasiperiodic Envelope Solitons,” Phys. Rev. Lett. 83, 4740–4743 (1999).
    [Crossref]
  4. Y. S. Chan, C. T. Chan, and Z. Y. Liu, “Photonic Band Gaps in Two Dimensional Photonic Quasicrystals,”Phys. Rev. Lett. 80, 956–959 (1998).
    [Crossref]
  5. A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, “Band Gap Formation and Multiple Scattering in Photonic Quasicrystals with a Penrose-Type Lattice,” Phys. Rev. Lett. 94, 183903 (2005).
    [Crossref] [PubMed]
  6. M. C. Rechtsman, H.-.C Jeong, P. M. Chaikin, S. Torquato, and P. J. Steinhardt, “Optimized Structures for Photonic Quasicrystals,” Phys. Rev. Lett. 101, 073902 (2008).
    [Crossref] [PubMed]
  7. S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Experimental Realization of Second Harmonic Generation in a Fibonacci Optical Superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752–2755 (1997).
    [Crossref]
  8. S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-Phase-Matched Third-Harmonic Generation in a Quasi-Periodic Optical Superlattice,” Science 278, 843–846 (1997).
    [Crossref]
  9. R. Lifshitz, A. Arie, and A. Bahabad, “Photonic Quasicrystals for Nonlinear Optical Frequency Conversion,” Phys. Rev. Lett. 95, 133901 (2005).
    [Crossref] [PubMed]
  10. G. M. H. Knippels, X. Yan, A. M. Macleod, W. A. Gillespie, M. Yasumoto, D. Oepts, and A. F. G. Van der Meer, “Generation and Complete Electric-Field Characterization of Intense Ultrashort Tunable Far-Infrared Laser Pulses,” Phys. Rev. Lett. 83, 1578–1581 (1999).
    [Crossref]
  11. S. Park, A. M. Weiner, M. R. Melloch, C. W. Siders, J. L. W. Siders, and A. J. Taylor, “High-power narrow-band terahertz generation using large-aperturephotoconductors,” IEEE J. Quant. Elect. 35, 1257–1268 (1999).
    [Crossref]
  12. Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas,” Appl. Phys. Lett. 71, 2076–2078 (1997).
    [Crossref]
  13. K. Yang, P. Richards, and Y. Shen, “Generation of far-infrared radiation by picosecond light pulses in LiNbO3,” Appl. Phys. Lett. 19, 320–323 (1971).
    [Crossref]
  14. M. Joffre, A. Bonvalet, A. Migus, and J. L. Martin, “Femtosecond diffracting Fourier-transform infrared interferometer,” Opt. Lett. 21, 964–966 (1996).
    [Crossref] [PubMed]
  15. Y. S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76, 2505 (2000).
    [Crossref]
  16. Y. Q. Qin, H. Su, and S. H. Tang, “Generation of coherent terahertz radiation with multifrequency modes in a Fibonacci optical superlattice,” Appl. Phys. Lett. 83, 1071–1073 (2003).
    [Crossref]
  17. B. C. Johnson, H. E. Puthoff, J. Soo Hoo, and S. S. Sussman, “Power and linewidth of tunable stimulated far-infrared emission in LiNbO3,” Appl. Phys. Lett. 18, 181–183 (1971).
    [Crossref]
  18. Y.-Y. Zhu and N.-B. Ming, “Dielectric superlattices for nonlinear optical effects,” Opt. & Quant. Elect. 31, 1093–1128 (1999).
    [Crossref]
  19. H. Liu, Y. Y. Zhu, S. N. Zhu, C. Zhang, and N. B. Ming, “Aperiodic optical superlattice engineered for optical frequency conversion,” Appl. Phys. Lett. 79, 728–730 (2001).
    [Crossref]
  20. D. H. Auston and M. C. Nuss, “Electrooptical generation and detection of femtosecond electrical transients,” IEEE J. Quant. Elect. 24, 184–197 (1988).
    [Crossref]
  21. G. H. Ma, S. H. Tang, G. Kh. Kitaeva, and I. I. Naumova, “Terahertz generation in Czochralski-grown periodically poled Mg:Y:LiNbO3 by optical rectification,” J. Opt. Soc. Am. B 23, 81–89 (2006).
    [Crossref]

2008 (1)

M. C. Rechtsman, H.-.C Jeong, P. M. Chaikin, S. Torquato, and P. J. Steinhardt, “Optimized Structures for Photonic Quasicrystals,” Phys. Rev. Lett. 101, 073902 (2008).
[Crossref] [PubMed]

2006 (1)

2005 (2)

A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, “Band Gap Formation and Multiple Scattering in Photonic Quasicrystals with a Penrose-Type Lattice,” Phys. Rev. Lett. 94, 183903 (2005).
[Crossref] [PubMed]

R. Lifshitz, A. Arie, and A. Bahabad, “Photonic Quasicrystals for Nonlinear Optical Frequency Conversion,” Phys. Rev. Lett. 95, 133901 (2005).
[Crossref] [PubMed]

2003 (1)

Y. Q. Qin, H. Su, and S. H. Tang, “Generation of coherent terahertz radiation with multifrequency modes in a Fibonacci optical superlattice,” Appl. Phys. Lett. 83, 1071–1073 (2003).
[Crossref]

2001 (2)

H. Liu, Y. Y. Zhu, S. N. Zhu, C. Zhang, and N. B. Ming, “Aperiodic optical superlattice engineered for optical frequency conversion,” Appl. Phys. Lett. 79, 728–730 (2001).
[Crossref]

A. Sugita, T. Saito, H. Kano, M. Yamashita, and T. Kobayashi, “Wave Packet Dynamics in a Quasi-One-Dimensional Metal-Halogen Complex Studied by Ultrafast Time-Resolved Spectroscopy,” Phys. Rev. Lett. 86, 2158–2161 (2001).
[Crossref] [PubMed]

2000 (1)

Y. S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76, 2505 (2000).
[Crossref]

1999 (4)

C. B. Clausen, Y. S. Kivshar, O. Bang, and P. L. Christiansen, “Quasiperiodic Envelope Solitons,” Phys. Rev. Lett. 83, 4740–4743 (1999).
[Crossref]

G. M. H. Knippels, X. Yan, A. M. Macleod, W. A. Gillespie, M. Yasumoto, D. Oepts, and A. F. G. Van der Meer, “Generation and Complete Electric-Field Characterization of Intense Ultrashort Tunable Far-Infrared Laser Pulses,” Phys. Rev. Lett. 83, 1578–1581 (1999).
[Crossref]

S. Park, A. M. Weiner, M. R. Melloch, C. W. Siders, J. L. W. Siders, and A. J. Taylor, “High-power narrow-band terahertz generation using large-aperturephotoconductors,” IEEE J. Quant. Elect. 35, 1257–1268 (1999).
[Crossref]

Y.-Y. Zhu and N.-B. Ming, “Dielectric superlattices for nonlinear optical effects,” Opt. & Quant. Elect. 31, 1093–1128 (1999).
[Crossref]

1998 (1)

Y. S. Chan, C. T. Chan, and Z. Y. Liu, “Photonic Band Gaps in Two Dimensional Photonic Quasicrystals,”Phys. Rev. Lett. 80, 956–959 (1998).
[Crossref]

1997 (3)

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas,” Appl. Phys. Lett. 71, 2076–2078 (1997).
[Crossref]

S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Experimental Realization of Second Harmonic Generation in a Fibonacci Optical Superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752–2755 (1997).
[Crossref]

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-Phase-Matched Third-Harmonic Generation in a Quasi-Periodic Optical Superlattice,” Science 278, 843–846 (1997).
[Crossref]

1996 (1)

1994 (1)

W. Gellermann, M. Kohmoto, B. Sutherland, and P. C. Taylor, “Localization of light waves in Fibonacci dielectric multilayers,” Phys. Rev. Lett. 72, 633–636 (1994).
[Crossref] [PubMed]

1988 (1)

D. H. Auston and M. C. Nuss, “Electrooptical generation and detection of femtosecond electrical transients,” IEEE J. Quant. Elect. 24, 184–197 (1988).
[Crossref]

1971 (2)

B. C. Johnson, H. E. Puthoff, J. Soo Hoo, and S. S. Sussman, “Power and linewidth of tunable stimulated far-infrared emission in LiNbO3,” Appl. Phys. Lett. 18, 181–183 (1971).
[Crossref]

K. Yang, P. Richards, and Y. Shen, “Generation of far-infrared radiation by picosecond light pulses in LiNbO3,” Appl. Phys. Lett. 19, 320–323 (1971).
[Crossref]

Arie, A.

R. Lifshitz, A. Arie, and A. Bahabad, “Photonic Quasicrystals for Nonlinear Optical Frequency Conversion,” Phys. Rev. Lett. 95, 133901 (2005).
[Crossref] [PubMed]

Auston, D. H.

D. H. Auston and M. C. Nuss, “Electrooptical generation and detection of femtosecond electrical transients,” IEEE J. Quant. Elect. 24, 184–197 (1988).
[Crossref]

Bahabad, A.

R. Lifshitz, A. Arie, and A. Bahabad, “Photonic Quasicrystals for Nonlinear Optical Frequency Conversion,” Phys. Rev. Lett. 95, 133901 (2005).
[Crossref] [PubMed]

Bang, O.

C. B. Clausen, Y. S. Kivshar, O. Bang, and P. L. Christiansen, “Quasiperiodic Envelope Solitons,” Phys. Rev. Lett. 83, 4740–4743 (1999).
[Crossref]

Bonvalet, A.

Brener, I.

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas,” Appl. Phys. Lett. 71, 2076–2078 (1997).
[Crossref]

Cai, Y.

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas,” Appl. Phys. Lett. 71, 2076–2078 (1997).
[Crossref]

Capolino, F.

A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, “Band Gap Formation and Multiple Scattering in Photonic Quasicrystals with a Penrose-Type Lattice,” Phys. Rev. Lett. 94, 183903 (2005).
[Crossref] [PubMed]

Chaikin, P. M.

M. C. Rechtsman, H.-.C Jeong, P. M. Chaikin, S. Torquato, and P. J. Steinhardt, “Optimized Structures for Photonic Quasicrystals,” Phys. Rev. Lett. 101, 073902 (2008).
[Crossref] [PubMed]

Chan, C. T.

Y. S. Chan, C. T. Chan, and Z. Y. Liu, “Photonic Band Gaps in Two Dimensional Photonic Quasicrystals,”Phys. Rev. Lett. 80, 956–959 (1998).
[Crossref]

Chan, Y. S.

Y. S. Chan, C. T. Chan, and Z. Y. Liu, “Photonic Band Gaps in Two Dimensional Photonic Quasicrystals,”Phys. Rev. Lett. 80, 956–959 (1998).
[Crossref]

Christiansen, P. L.

C. B. Clausen, Y. S. Kivshar, O. Bang, and P. L. Christiansen, “Quasiperiodic Envelope Solitons,” Phys. Rev. Lett. 83, 4740–4743 (1999).
[Crossref]

Clausen, C. B.

C. B. Clausen, Y. S. Kivshar, O. Bang, and P. L. Christiansen, “Quasiperiodic Envelope Solitons,” Phys. Rev. Lett. 83, 4740–4743 (1999).
[Crossref]

Della Villa, A.

A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, “Band Gap Formation and Multiple Scattering in Photonic Quasicrystals with a Penrose-Type Lattice,” Phys. Rev. Lett. 94, 183903 (2005).
[Crossref] [PubMed]

Enoch, S.

A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, “Band Gap Formation and Multiple Scattering in Photonic Quasicrystals with a Penrose-Type Lattice,” Phys. Rev. Lett. 94, 183903 (2005).
[Crossref] [PubMed]

Federici, J.

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas,” Appl. Phys. Lett. 71, 2076–2078 (1997).
[Crossref]

Galdi, V.

A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, “Band Gap Formation and Multiple Scattering in Photonic Quasicrystals with a Penrose-Type Lattice,” Phys. Rev. Lett. 94, 183903 (2005).
[Crossref] [PubMed]

Galvanauskas, A.

Y. S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76, 2505 (2000).
[Crossref]

Ge, C. Z.

S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Experimental Realization of Second Harmonic Generation in a Fibonacci Optical Superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752–2755 (1997).
[Crossref]

Gellermann, W.

W. Gellermann, M. Kohmoto, B. Sutherland, and P. C. Taylor, “Localization of light waves in Fibonacci dielectric multilayers,” Phys. Rev. Lett. 72, 633–636 (1994).
[Crossref] [PubMed]

Gillespie, W. A.

G. M. H. Knippels, X. Yan, A. M. Macleod, W. A. Gillespie, M. Yasumoto, D. Oepts, and A. F. G. Van der Meer, “Generation and Complete Electric-Field Characterization of Intense Ultrashort Tunable Far-Infrared Laser Pulses,” Phys. Rev. Lett. 83, 1578–1581 (1999).
[Crossref]

Jeong, H.-.C

M. C. Rechtsman, H.-.C Jeong, P. M. Chaikin, S. Torquato, and P. J. Steinhardt, “Optimized Structures for Photonic Quasicrystals,” Phys. Rev. Lett. 101, 073902 (2008).
[Crossref] [PubMed]

Joffre, M.

Johnson, B. C.

B. C. Johnson, H. E. Puthoff, J. Soo Hoo, and S. S. Sussman, “Power and linewidth of tunable stimulated far-infrared emission in LiNbO3,” Appl. Phys. Lett. 18, 181–183 (1971).
[Crossref]

Kano, H.

A. Sugita, T. Saito, H. Kano, M. Yamashita, and T. Kobayashi, “Wave Packet Dynamics in a Quasi-One-Dimensional Metal-Halogen Complex Studied by Ultrafast Time-Resolved Spectroscopy,” Phys. Rev. Lett. 86, 2158–2161 (2001).
[Crossref] [PubMed]

Kitaeva, G. Kh.

Kivshar, Y. S.

C. B. Clausen, Y. S. Kivshar, O. Bang, and P. L. Christiansen, “Quasiperiodic Envelope Solitons,” Phys. Rev. Lett. 83, 4740–4743 (1999).
[Crossref]

Knippels, G. M. H.

G. M. H. Knippels, X. Yan, A. M. Macleod, W. A. Gillespie, M. Yasumoto, D. Oepts, and A. F. G. Van der Meer, “Generation and Complete Electric-Field Characterization of Intense Ultrashort Tunable Far-Infrared Laser Pulses,” Phys. Rev. Lett. 83, 1578–1581 (1999).
[Crossref]

Kobayashi, T.

A. Sugita, T. Saito, H. Kano, M. Yamashita, and T. Kobayashi, “Wave Packet Dynamics in a Quasi-One-Dimensional Metal-Halogen Complex Studied by Ultrafast Time-Resolved Spectroscopy,” Phys. Rev. Lett. 86, 2158–2161 (2001).
[Crossref] [PubMed]

Kohmoto, M.

W. Gellermann, M. Kohmoto, B. Sutherland, and P. C. Taylor, “Localization of light waves in Fibonacci dielectric multilayers,” Phys. Rev. Lett. 72, 633–636 (1994).
[Crossref] [PubMed]

Lee, Y. S.

Y. S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76, 2505 (2000).
[Crossref]

Lifshitz, R.

R. Lifshitz, A. Arie, and A. Bahabad, “Photonic Quasicrystals for Nonlinear Optical Frequency Conversion,” Phys. Rev. Lett. 95, 133901 (2005).
[Crossref] [PubMed]

Liu, H.

H. Liu, Y. Y. Zhu, S. N. Zhu, C. Zhang, and N. B. Ming, “Aperiodic optical superlattice engineered for optical frequency conversion,” Appl. Phys. Lett. 79, 728–730 (2001).
[Crossref]

Liu, Z. Y.

Y. S. Chan, C. T. Chan, and Z. Y. Liu, “Photonic Band Gaps in Two Dimensional Photonic Quasicrystals,”Phys. Rev. Lett. 80, 956–959 (1998).
[Crossref]

Lopata, J.

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas,” Appl. Phys. Lett. 71, 2076–2078 (1997).
[Crossref]

Ma, G. H.

Macleod, A. M.

G. M. H. Knippels, X. Yan, A. M. Macleod, W. A. Gillespie, M. Yasumoto, D. Oepts, and A. F. G. Van der Meer, “Generation and Complete Electric-Field Characterization of Intense Ultrashort Tunable Far-Infrared Laser Pulses,” Phys. Rev. Lett. 83, 1578–1581 (1999).
[Crossref]

Martin, J. L.

Meade, T.

Y. S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76, 2505 (2000).
[Crossref]

Melloch, M. R.

S. Park, A. M. Weiner, M. R. Melloch, C. W. Siders, J. L. W. Siders, and A. J. Taylor, “High-power narrow-band terahertz generation using large-aperturephotoconductors,” IEEE J. Quant. Elect. 35, 1257–1268 (1999).
[Crossref]

Migus, A.

Ming, N. B.

H. Liu, Y. Y. Zhu, S. N. Zhu, C. Zhang, and N. B. Ming, “Aperiodic optical superlattice engineered for optical frequency conversion,” Appl. Phys. Lett. 79, 728–730 (2001).
[Crossref]

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-Phase-Matched Third-Harmonic Generation in a Quasi-Periodic Optical Superlattice,” Science 278, 843–846 (1997).
[Crossref]

S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Experimental Realization of Second Harmonic Generation in a Fibonacci Optical Superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752–2755 (1997).
[Crossref]

Ming, N.-B.

Y.-Y. Zhu and N.-B. Ming, “Dielectric superlattices for nonlinear optical effects,” Opt. & Quant. Elect. 31, 1093–1128 (1999).
[Crossref]

Naumova, I. I.

Norris, T. B.

Y. S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76, 2505 (2000).
[Crossref]

Nuss, M. C.

D. H. Auston and M. C. Nuss, “Electrooptical generation and detection of femtosecond electrical transients,” IEEE J. Quant. Elect. 24, 184–197 (1988).
[Crossref]

Oepts, D.

G. M. H. Knippels, X. Yan, A. M. Macleod, W. A. Gillespie, M. Yasumoto, D. Oepts, and A. F. G. Van der Meer, “Generation and Complete Electric-Field Characterization of Intense Ultrashort Tunable Far-Infrared Laser Pulses,” Phys. Rev. Lett. 83, 1578–1581 (1999).
[Crossref]

Park, S.

S. Park, A. M. Weiner, M. R. Melloch, C. W. Siders, J. L. W. Siders, and A. J. Taylor, “High-power narrow-band terahertz generation using large-aperturephotoconductors,” IEEE J. Quant. Elect. 35, 1257–1268 (1999).
[Crossref]

Perlin, V.

Y. S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76, 2505 (2000).
[Crossref]

Pfeiffer, L.

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas,” Appl. Phys. Lett. 71, 2076–2078 (1997).
[Crossref]

Pierro, V.

A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, “Band Gap Formation and Multiple Scattering in Photonic Quasicrystals with a Penrose-Type Lattice,” Phys. Rev. Lett. 94, 183903 (2005).
[Crossref] [PubMed]

Puthoff, H. E.

B. C. Johnson, H. E. Puthoff, J. Soo Hoo, and S. S. Sussman, “Power and linewidth of tunable stimulated far-infrared emission in LiNbO3,” Appl. Phys. Lett. 18, 181–183 (1971).
[Crossref]

Qin, Y. Q.

Y. Q. Qin, H. Su, and S. H. Tang, “Generation of coherent terahertz radiation with multifrequency modes in a Fibonacci optical superlattice,” Appl. Phys. Lett. 83, 1071–1073 (2003).
[Crossref]

S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Experimental Realization of Second Harmonic Generation in a Fibonacci Optical Superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752–2755 (1997).
[Crossref]

Rechtsman, M. C.

M. C. Rechtsman, H.-.C Jeong, P. M. Chaikin, S. Torquato, and P. J. Steinhardt, “Optimized Structures for Photonic Quasicrystals,” Phys. Rev. Lett. 101, 073902 (2008).
[Crossref] [PubMed]

Richards, P.

K. Yang, P. Richards, and Y. Shen, “Generation of far-infrared radiation by picosecond light pulses in LiNbO3,” Appl. Phys. Lett. 19, 320–323 (1971).
[Crossref]

Saito, T.

A. Sugita, T. Saito, H. Kano, M. Yamashita, and T. Kobayashi, “Wave Packet Dynamics in a Quasi-One-Dimensional Metal-Halogen Complex Studied by Ultrafast Time-Resolved Spectroscopy,” Phys. Rev. Lett. 86, 2158–2161 (2001).
[Crossref] [PubMed]

Shen, Y.

K. Yang, P. Richards, and Y. Shen, “Generation of far-infrared radiation by picosecond light pulses in LiNbO3,” Appl. Phys. Lett. 19, 320–323 (1971).
[Crossref]

Siders, C. W.

S. Park, A. M. Weiner, M. R. Melloch, C. W. Siders, J. L. W. Siders, and A. J. Taylor, “High-power narrow-band terahertz generation using large-aperturephotoconductors,” IEEE J. Quant. Elect. 35, 1257–1268 (1999).
[Crossref]

Siders, J. L. W.

S. Park, A. M. Weiner, M. R. Melloch, C. W. Siders, J. L. W. Siders, and A. J. Taylor, “High-power narrow-band terahertz generation using large-aperturephotoconductors,” IEEE J. Quant. Elect. 35, 1257–1268 (1999).
[Crossref]

Soo Hoo, J.

B. C. Johnson, H. E. Puthoff, J. Soo Hoo, and S. S. Sussman, “Power and linewidth of tunable stimulated far-infrared emission in LiNbO3,” Appl. Phys. Lett. 18, 181–183 (1971).
[Crossref]

Steinhardt, P. J.

M. C. Rechtsman, H.-.C Jeong, P. M. Chaikin, S. Torquato, and P. J. Steinhardt, “Optimized Structures for Photonic Quasicrystals,” Phys. Rev. Lett. 101, 073902 (2008).
[Crossref] [PubMed]

Su, H.

Y. Q. Qin, H. Su, and S. H. Tang, “Generation of coherent terahertz radiation with multifrequency modes in a Fibonacci optical superlattice,” Appl. Phys. Lett. 83, 1071–1073 (2003).
[Crossref]

Sugita, A.

A. Sugita, T. Saito, H. Kano, M. Yamashita, and T. Kobayashi, “Wave Packet Dynamics in a Quasi-One-Dimensional Metal-Halogen Complex Studied by Ultrafast Time-Resolved Spectroscopy,” Phys. Rev. Lett. 86, 2158–2161 (2001).
[Crossref] [PubMed]

Sussman, S. S.

B. C. Johnson, H. E. Puthoff, J. Soo Hoo, and S. S. Sussman, “Power and linewidth of tunable stimulated far-infrared emission in LiNbO3,” Appl. Phys. Lett. 18, 181–183 (1971).
[Crossref]

Sutherland, B.

W. Gellermann, M. Kohmoto, B. Sutherland, and P. C. Taylor, “Localization of light waves in Fibonacci dielectric multilayers,” Phys. Rev. Lett. 72, 633–636 (1994).
[Crossref] [PubMed]

Tang, S. H.

G. H. Ma, S. H. Tang, G. Kh. Kitaeva, and I. I. Naumova, “Terahertz generation in Czochralski-grown periodically poled Mg:Y:LiNbO3 by optical rectification,” J. Opt. Soc. Am. B 23, 81–89 (2006).
[Crossref]

Y. Q. Qin, H. Su, and S. H. Tang, “Generation of coherent terahertz radiation with multifrequency modes in a Fibonacci optical superlattice,” Appl. Phys. Lett. 83, 1071–1073 (2003).
[Crossref]

Tayeb, G.

A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, “Band Gap Formation and Multiple Scattering in Photonic Quasicrystals with a Penrose-Type Lattice,” Phys. Rev. Lett. 94, 183903 (2005).
[Crossref] [PubMed]

Taylor, A. J.

S. Park, A. M. Weiner, M. R. Melloch, C. W. Siders, J. L. W. Siders, and A. J. Taylor, “High-power narrow-band terahertz generation using large-aperturephotoconductors,” IEEE J. Quant. Elect. 35, 1257–1268 (1999).
[Crossref]

Taylor, P. C.

W. Gellermann, M. Kohmoto, B. Sutherland, and P. C. Taylor, “Localization of light waves in Fibonacci dielectric multilayers,” Phys. Rev. Lett. 72, 633–636 (1994).
[Crossref] [PubMed]

Torquato, S.

M. C. Rechtsman, H.-.C Jeong, P. M. Chaikin, S. Torquato, and P. J. Steinhardt, “Optimized Structures for Photonic Quasicrystals,” Phys. Rev. Lett. 101, 073902 (2008).
[Crossref] [PubMed]

Van der Meer, A. F. G.

G. M. H. Knippels, X. Yan, A. M. Macleod, W. A. Gillespie, M. Yasumoto, D. Oepts, and A. F. G. Van der Meer, “Generation and Complete Electric-Field Characterization of Intense Ultrashort Tunable Far-Infrared Laser Pulses,” Phys. Rev. Lett. 83, 1578–1581 (1999).
[Crossref]

Wang, H. F.

S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Experimental Realization of Second Harmonic Generation in a Fibonacci Optical Superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752–2755 (1997).
[Crossref]

Weiner, A. M.

S. Park, A. M. Weiner, M. R. Melloch, C. W. Siders, J. L. W. Siders, and A. J. Taylor, “High-power narrow-band terahertz generation using large-aperturephotoconductors,” IEEE J. Quant. Elect. 35, 1257–1268 (1999).
[Crossref]

Winful, H.

Y. S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76, 2505 (2000).
[Crossref]

Wynn, J.

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas,” Appl. Phys. Lett. 71, 2076–2078 (1997).
[Crossref]

Yamashita, M.

A. Sugita, T. Saito, H. Kano, M. Yamashita, and T. Kobayashi, “Wave Packet Dynamics in a Quasi-One-Dimensional Metal-Halogen Complex Studied by Ultrafast Time-Resolved Spectroscopy,” Phys. Rev. Lett. 86, 2158–2161 (2001).
[Crossref] [PubMed]

Yan, X.

G. M. H. Knippels, X. Yan, A. M. Macleod, W. A. Gillespie, M. Yasumoto, D. Oepts, and A. F. G. Van der Meer, “Generation and Complete Electric-Field Characterization of Intense Ultrashort Tunable Far-Infrared Laser Pulses,” Phys. Rev. Lett. 83, 1578–1581 (1999).
[Crossref]

Yang, K.

K. Yang, P. Richards, and Y. Shen, “Generation of far-infrared radiation by picosecond light pulses in LiNbO3,” Appl. Phys. Lett. 19, 320–323 (1971).
[Crossref]

Yasumoto, M.

G. M. H. Knippels, X. Yan, A. M. Macleod, W. A. Gillespie, M. Yasumoto, D. Oepts, and A. F. G. Van der Meer, “Generation and Complete Electric-Field Characterization of Intense Ultrashort Tunable Far-Infrared Laser Pulses,” Phys. Rev. Lett. 83, 1578–1581 (1999).
[Crossref]

Zhang, C.

H. Liu, Y. Y. Zhu, S. N. Zhu, C. Zhang, and N. B. Ming, “Aperiodic optical superlattice engineered for optical frequency conversion,” Appl. Phys. Lett. 79, 728–730 (2001).
[Crossref]

Zhu, S. N.

H. Liu, Y. Y. Zhu, S. N. Zhu, C. Zhang, and N. B. Ming, “Aperiodic optical superlattice engineered for optical frequency conversion,” Appl. Phys. Lett. 79, 728–730 (2001).
[Crossref]

S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Experimental Realization of Second Harmonic Generation in a Fibonacci Optical Superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752–2755 (1997).
[Crossref]

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-Phase-Matched Third-Harmonic Generation in a Quasi-Periodic Optical Superlattice,” Science 278, 843–846 (1997).
[Crossref]

Zhu, Y. Y.

H. Liu, Y. Y. Zhu, S. N. Zhu, C. Zhang, and N. B. Ming, “Aperiodic optical superlattice engineered for optical frequency conversion,” Appl. Phys. Lett. 79, 728–730 (2001).
[Crossref]

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-Phase-Matched Third-Harmonic Generation in a Quasi-Periodic Optical Superlattice,” Science 278, 843–846 (1997).
[Crossref]

S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Experimental Realization of Second Harmonic Generation in a Fibonacci Optical Superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752–2755 (1997).
[Crossref]

Zhu, Y.-Y.

Y.-Y. Zhu and N.-B. Ming, “Dielectric superlattices for nonlinear optical effects,” Opt. & Quant. Elect. 31, 1093–1128 (1999).
[Crossref]

Appl. Phys. Lett. (6)

Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, and J. Federici, “Design and performance of singular electric field terahertz photoconducting antennas,” Appl. Phys. Lett. 71, 2076–2078 (1997).
[Crossref]

K. Yang, P. Richards, and Y. Shen, “Generation of far-infrared radiation by picosecond light pulses in LiNbO3,” Appl. Phys. Lett. 19, 320–323 (1971).
[Crossref]

Y. S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, and A. Galvanauskas, “Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,” Appl. Phys. Lett. 76, 2505 (2000).
[Crossref]

Y. Q. Qin, H. Su, and S. H. Tang, “Generation of coherent terahertz radiation with multifrequency modes in a Fibonacci optical superlattice,” Appl. Phys. Lett. 83, 1071–1073 (2003).
[Crossref]

B. C. Johnson, H. E. Puthoff, J. Soo Hoo, and S. S. Sussman, “Power and linewidth of tunable stimulated far-infrared emission in LiNbO3,” Appl. Phys. Lett. 18, 181–183 (1971).
[Crossref]

H. Liu, Y. Y. Zhu, S. N. Zhu, C. Zhang, and N. B. Ming, “Aperiodic optical superlattice engineered for optical frequency conversion,” Appl. Phys. Lett. 79, 728–730 (2001).
[Crossref]

IEEE J. Quant. Elect. (2)

D. H. Auston and M. C. Nuss, “Electrooptical generation and detection of femtosecond electrical transients,” IEEE J. Quant. Elect. 24, 184–197 (1988).
[Crossref]

S. Park, A. M. Weiner, M. R. Melloch, C. W. Siders, J. L. W. Siders, and A. J. Taylor, “High-power narrow-band terahertz generation using large-aperturephotoconductors,” IEEE J. Quant. Elect. 35, 1257–1268 (1999).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. & Quant. Elect. (1)

Y.-Y. Zhu and N.-B. Ming, “Dielectric superlattices for nonlinear optical effects,” Opt. & Quant. Elect. 31, 1093–1128 (1999).
[Crossref]

Opt. Lett. (1)

Phys. Rev. Lett. (9)

R. Lifshitz, A. Arie, and A. Bahabad, “Photonic Quasicrystals for Nonlinear Optical Frequency Conversion,” Phys. Rev. Lett. 95, 133901 (2005).
[Crossref] [PubMed]

G. M. H. Knippels, X. Yan, A. M. Macleod, W. A. Gillespie, M. Yasumoto, D. Oepts, and A. F. G. Van der Meer, “Generation and Complete Electric-Field Characterization of Intense Ultrashort Tunable Far-Infrared Laser Pulses,” Phys. Rev. Lett. 83, 1578–1581 (1999).
[Crossref]

W. Gellermann, M. Kohmoto, B. Sutherland, and P. C. Taylor, “Localization of light waves in Fibonacci dielectric multilayers,” Phys. Rev. Lett. 72, 633–636 (1994).
[Crossref] [PubMed]

A. Sugita, T. Saito, H. Kano, M. Yamashita, and T. Kobayashi, “Wave Packet Dynamics in a Quasi-One-Dimensional Metal-Halogen Complex Studied by Ultrafast Time-Resolved Spectroscopy,” Phys. Rev. Lett. 86, 2158–2161 (2001).
[Crossref] [PubMed]

C. B. Clausen, Y. S. Kivshar, O. Bang, and P. L. Christiansen, “Quasiperiodic Envelope Solitons,” Phys. Rev. Lett. 83, 4740–4743 (1999).
[Crossref]

Y. S. Chan, C. T. Chan, and Z. Y. Liu, “Photonic Band Gaps in Two Dimensional Photonic Quasicrystals,”Phys. Rev. Lett. 80, 956–959 (1998).
[Crossref]

A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, “Band Gap Formation and Multiple Scattering in Photonic Quasicrystals with a Penrose-Type Lattice,” Phys. Rev. Lett. 94, 183903 (2005).
[Crossref] [PubMed]

M. C. Rechtsman, H.-.C Jeong, P. M. Chaikin, S. Torquato, and P. J. Steinhardt, “Optimized Structures for Photonic Quasicrystals,” Phys. Rev. Lett. 101, 073902 (2008).
[Crossref] [PubMed]

S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Experimental Realization of Second Harmonic Generation in a Fibonacci Optical Superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752–2755 (1997).
[Crossref]

Science (1)

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-Phase-Matched Third-Harmonic Generation in a Quasi-Periodic Optical Superlattice,” Science 278, 843–846 (1997).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Diagrammatic layout of canonical pump–probe experiment and the configuration of quasi-phase-matching: kO1 and kO2 are the wave vectors of two spectral components of pump wave, respectively. kT is the wave vector of THz radiation.

Fig. 2.
Fig. 2.

The Fourier transform of experimental THz wave forms in the quasiperiodic Fibonacci domain structure. Inset: experimental time-domain THz wave forms. The structure parameters are designed as lA =70.4 µm and l B=43.2 µm (Λ1,1=60 µm), respectively. The width of positive domain in block A and B is 25 µm, The structure consists of 12 building blocks A and 8 building blocks B.

Fig. 3.
Fig. 3.

The Fourier transform of experimental THz wave forms in the periodic domain structure. Inset: experimental time-domain THz wave forms. The period of structure is set as Λ=60 µm, the sample length L=1.2mm. The structure consists of 20 periodic building blocks.

Fig. 4.
Fig. 4.

The window Fourier transform of experimental THz wave forms (A) in the quasiperiodic Fibonacci domain structure with parameters designed as lA =70.4 µm and l B=43.2 µm (Λ1,1=60 µm), respectively. The window Fourier transform of experimental THz wave forms (B) in the periodic domain structure with period Λ=60 µm, the sample length L=1.2mm.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

P2(Ω,z)=12ε0X(2)(z) + EP (Ω+ω,z)EP*(ω,z)dω
2ET(Ω,z)z2 + kΩ2ET(Ω,z)=H (Ω) exp [i(Ωvg+Gm)z]
EF(Ω,z)=i z H(Ω)kΩ+Ωvg+Gm exp [i(kΩ+Ωvg+Gm)z2] sin c [(kΩΩvgGm)z2]
EB (Ω,z)=i(Lz)H(Ω)kΩΩvgGmexp[i(kΩΩvgGm)z2]×
exp [i(kΩ+Ωvg+Gm)L2] sin c [(kΩ+Ωvg+Gm)(Lz)2]
vT=mcΛ(nT±cvg)
vT=cΛm,n(nT±cvg)andΛm,n=Dm+nτ

Metrics