Abstract

Polarization independent beam fanning using a multi-domain liquid crystal (LC) cell is demonstrated experimentally. In the neighboring domains, the LC directors are aligned in orthogonal directions. To prove concepts, two hybrid-aligned LC cells with four and six domains were fabricated. Applying a voltage across the LC layer will change the phase difference between the neighboring domains. When the phase difference is 2mπ (m is an integer), the LC cell will not disturb the incident beam. However, if the phase shift is (2m+1)π, the outgoing beam will fan out into several beams; the number of fanout beams is equal to the domain number.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. K. Yang, and S. T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, New York, 2006).
    [CrossRef]
  2. M. S. Brennesholtz and E. H. Stupp, Projection Displays 2nd Ed. (Wiley, New York, 2008).
  3. R. A. Soref, “Liquid crystal fiber-optic switch,” Opt. Lett. 4(5), 155–157 (1979).
    [CrossRef]
  4. K. Hirabayashi, M. Wada, and C. Amano, “Compact optical-fiber variable attenuator arrays with polymer-network liquid crystals,” Appl. Opt. 40(21), 3509–3517 (2001).
    [CrossRef]
  5. Y. Q. Lu, F. Du, Y. H. Lin, and S. T. Wu, “Variable optical attenuator based on polymer stabilized twisted nematic liquid crystal,” Opt. Express 12(7), 1221–1227 (2004).
    [CrossRef]
  6. X. Liang, Y.-Q. Lu, Y.-H. Wu, F. Du, H.-Y. Wang, and S.-T. Wu, “Dual-frequency addresses variable optical attenuator with submillisecond response time,” Jpn. J. Appl. Phys. 44(3), 1292–1295 (2005).
    [CrossRef]
  7. P. Chanclou, B. Vinouze, M. Roy, and C. Cornu, “Optical fibered variable attenuator using phase shifting polymer dispersed liquid crystal,” Opt. Commun. 248(1-3), 167–172 (2005).
    [CrossRef]
  8. D. P. Resler, D. S. Hobbs, R. C. Sharp, L. J. Friedman, and T. A. Dorschner, “High efficiency liquid-crystal optical phased-array beam steering,” Opt. Lett. 21(9), 689–691 (1996).
    [CrossRef]
  9. N. V. Tabiryan and S. R. Nersisyan, “Large-angle beam steering using all-optical liquid crystal spatial light modulators,” Appl. Phys. Lett. 84(25), 5145–5147 (2004).
    [CrossRef]
  10. Y. J. Lin, K. M. Chen, and S. T. Wu, “Broadband and polarization-independent beam steering using dielectrophoresis-tilted prism,” Opt. Express 17(10), 8651–8656 (2009).
    [CrossRef]
  11. J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electrically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
    [CrossRef]
  12. D. Gu, B. Winker, B. Wen, D. Taber, A. Brackley, A. Wirth, M. Albanese, and F. Landers, “Wavefront control with a spatial light modulator containing dual frequency liquid crystal,” Proc. SPIE 5553, 68–82 (2004).
    [CrossRef]
  13. J. S. Patel and K. Rastani, “Electrically controlled polarization-independent liquid crystal Fresnel lens arrays,” Opt. Lett. 16(7), 532–534 (1991).
    [CrossRef]
  14. H. Ren, D. W. Fox, B. Wu, and S. T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15(18), 11328–11335 (2007).
    [CrossRef]
  15. S. T. Wu, U. Efron, and L. D. Hess, “Infrared birefringence of liquid crystals,” Appl. Phys. Lett. 44(11), 1033–1035 (1984).
    [CrossRef]
  16. S. T. Wu, “Design of a liquid crystal based tunable electrooptic filter,” Appl. Opt. 28(1), 48–52 (1989).
    [CrossRef]
  17. M. Jiao, Z. Ge, Q. Song, and S. T. Wu, “Alignment layer effects on thin liquid crystal cells,” Appl. Phys. Lett. 92(6), 061102 (2008).
    [CrossRef]
  18. S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. J. Seed, and R. Dąbrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42(Part 1, No. 6A), 3463–3466 (2003).
    [CrossRef]

2009

2008

M. Jiao, Z. Ge, Q. Song, and S. T. Wu, “Alignment layer effects on thin liquid crystal cells,” Appl. Phys. Lett. 92(6), 061102 (2008).
[CrossRef]

2007

2005

X. Liang, Y.-Q. Lu, Y.-H. Wu, F. Du, H.-Y. Wang, and S.-T. Wu, “Dual-frequency addresses variable optical attenuator with submillisecond response time,” Jpn. J. Appl. Phys. 44(3), 1292–1295 (2005).
[CrossRef]

P. Chanclou, B. Vinouze, M. Roy, and C. Cornu, “Optical fibered variable attenuator using phase shifting polymer dispersed liquid crystal,” Opt. Commun. 248(1-3), 167–172 (2005).
[CrossRef]

2004

D. Gu, B. Winker, B. Wen, D. Taber, A. Brackley, A. Wirth, M. Albanese, and F. Landers, “Wavefront control with a spatial light modulator containing dual frequency liquid crystal,” Proc. SPIE 5553, 68–82 (2004).
[CrossRef]

N. V. Tabiryan and S. R. Nersisyan, “Large-angle beam steering using all-optical liquid crystal spatial light modulators,” Appl. Phys. Lett. 84(25), 5145–5147 (2004).
[CrossRef]

Y. Q. Lu, F. Du, Y. H. Lin, and S. T. Wu, “Variable optical attenuator based on polymer stabilized twisted nematic liquid crystal,” Opt. Express 12(7), 1221–1227 (2004).
[CrossRef]

2003

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. J. Seed, and R. Dąbrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42(Part 1, No. 6A), 3463–3466 (2003).
[CrossRef]

2001

1996

1995

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electrically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[CrossRef]

1991

1989

1984

S. T. Wu, U. Efron, and L. D. Hess, “Infrared birefringence of liquid crystals,” Appl. Phys. Lett. 44(11), 1033–1035 (1984).
[CrossRef]

1979

Albanese, M.

D. Gu, B. Winker, B. Wen, D. Taber, A. Brackley, A. Wirth, M. Albanese, and F. Landers, “Wavefront control with a spatial light modulator containing dual frequency liquid crystal,” Proc. SPIE 5553, 68–82 (2004).
[CrossRef]

Amano, C.

Bos, P. J.

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electrically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[CrossRef]

Brackley, A.

D. Gu, B. Winker, B. Wen, D. Taber, A. Brackley, A. Wirth, M. Albanese, and F. Landers, “Wavefront control with a spatial light modulator containing dual frequency liquid crystal,” Proc. SPIE 5553, 68–82 (2004).
[CrossRef]

Chanclou, P.

P. Chanclou, B. Vinouze, M. Roy, and C. Cornu, “Optical fibered variable attenuator using phase shifting polymer dispersed liquid crystal,” Opt. Commun. 248(1-3), 167–172 (2005).
[CrossRef]

Chen, J.

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electrically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[CrossRef]

Chen, K. M.

Cornu, C.

P. Chanclou, B. Vinouze, M. Roy, and C. Cornu, “Optical fibered variable attenuator using phase shifting polymer dispersed liquid crystal,” Opt. Commun. 248(1-3), 167–172 (2005).
[CrossRef]

Dabrowski, R.

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. J. Seed, and R. Dąbrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42(Part 1, No. 6A), 3463–3466 (2003).
[CrossRef]

Dorschner, T. A.

Du, F.

X. Liang, Y.-Q. Lu, Y.-H. Wu, F. Du, H.-Y. Wang, and S.-T. Wu, “Dual-frequency addresses variable optical attenuator with submillisecond response time,” Jpn. J. Appl. Phys. 44(3), 1292–1295 (2005).
[CrossRef]

Y. Q. Lu, F. Du, Y. H. Lin, and S. T. Wu, “Variable optical attenuator based on polymer stabilized twisted nematic liquid crystal,” Opt. Express 12(7), 1221–1227 (2004).
[CrossRef]

Efron, U.

S. T. Wu, U. Efron, and L. D. Hess, “Infrared birefringence of liquid crystals,” Appl. Phys. Lett. 44(11), 1033–1035 (1984).
[CrossRef]

Fox, D. W.

Friedman, L. J.

Gauza, S.

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. J. Seed, and R. Dąbrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42(Part 1, No. 6A), 3463–3466 (2003).
[CrossRef]

Ge, Z.

M. Jiao, Z. Ge, Q. Song, and S. T. Wu, “Alignment layer effects on thin liquid crystal cells,” Appl. Phys. Lett. 92(6), 061102 (2008).
[CrossRef]

Gu, D.

D. Gu, B. Winker, B. Wen, D. Taber, A. Brackley, A. Wirth, M. Albanese, and F. Landers, “Wavefront control with a spatial light modulator containing dual frequency liquid crystal,” Proc. SPIE 5553, 68–82 (2004).
[CrossRef]

Hess, L. D.

S. T. Wu, U. Efron, and L. D. Hess, “Infrared birefringence of liquid crystals,” Appl. Phys. Lett. 44(11), 1033–1035 (1984).
[CrossRef]

Hirabayashi, K.

Hobbs, D. S.

Jiao, M.

M. Jiao, Z. Ge, Q. Song, and S. T. Wu, “Alignment layer effects on thin liquid crystal cells,” Appl. Phys. Lett. 92(6), 061102 (2008).
[CrossRef]

Johnson, D. L.

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electrically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[CrossRef]

Landers, F.

D. Gu, B. Winker, B. Wen, D. Taber, A. Brackley, A. Wirth, M. Albanese, and F. Landers, “Wavefront control with a spatial light modulator containing dual frequency liquid crystal,” Proc. SPIE 5553, 68–82 (2004).
[CrossRef]

Liang, X.

X. Liang, Y.-Q. Lu, Y.-H. Wu, F. Du, H.-Y. Wang, and S.-T. Wu, “Dual-frequency addresses variable optical attenuator with submillisecond response time,” Jpn. J. Appl. Phys. 44(3), 1292–1295 (2005).
[CrossRef]

Lin, Y. H.

Lin, Y. J.

Lu, Y. Q.

Lu, Y.-Q.

X. Liang, Y.-Q. Lu, Y.-H. Wu, F. Du, H.-Y. Wang, and S.-T. Wu, “Dual-frequency addresses variable optical attenuator with submillisecond response time,” Jpn. J. Appl. Phys. 44(3), 1292–1295 (2005).
[CrossRef]

Nersisyan, S. R.

N. V. Tabiryan and S. R. Nersisyan, “Large-angle beam steering using all-optical liquid crystal spatial light modulators,” Appl. Phys. Lett. 84(25), 5145–5147 (2004).
[CrossRef]

Patel, J. S.

Rastani, K.

Ren, H.

Resler, D. P.

Roy, M.

P. Chanclou, B. Vinouze, M. Roy, and C. Cornu, “Optical fibered variable attenuator using phase shifting polymer dispersed liquid crystal,” Opt. Commun. 248(1-3), 167–172 (2005).
[CrossRef]

Seed, A. J.

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. J. Seed, and R. Dąbrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42(Part 1, No. 6A), 3463–3466 (2003).
[CrossRef]

Sharp, R. C.

Song, Q.

M. Jiao, Z. Ge, Q. Song, and S. T. Wu, “Alignment layer effects on thin liquid crystal cells,” Appl. Phys. Lett. 92(6), 061102 (2008).
[CrossRef]

Soref, R. A.

Taber, D.

D. Gu, B. Winker, B. Wen, D. Taber, A. Brackley, A. Wirth, M. Albanese, and F. Landers, “Wavefront control with a spatial light modulator containing dual frequency liquid crystal,” Proc. SPIE 5553, 68–82 (2004).
[CrossRef]

Tabiryan, N. V.

N. V. Tabiryan and S. R. Nersisyan, “Large-angle beam steering using all-optical liquid crystal spatial light modulators,” Appl. Phys. Lett. 84(25), 5145–5147 (2004).
[CrossRef]

Vinouze, B.

P. Chanclou, B. Vinouze, M. Roy, and C. Cornu, “Optical fibered variable attenuator using phase shifting polymer dispersed liquid crystal,” Opt. Commun. 248(1-3), 167–172 (2005).
[CrossRef]

Vithana, H.

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electrically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[CrossRef]

Wada, M.

Wang, H.

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. J. Seed, and R. Dąbrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42(Part 1, No. 6A), 3463–3466 (2003).
[CrossRef]

Wang, H.-Y.

X. Liang, Y.-Q. Lu, Y.-H. Wu, F. Du, H.-Y. Wang, and S.-T. Wu, “Dual-frequency addresses variable optical attenuator with submillisecond response time,” Jpn. J. Appl. Phys. 44(3), 1292–1295 (2005).
[CrossRef]

Wen, B.

D. Gu, B. Winker, B. Wen, D. Taber, A. Brackley, A. Wirth, M. Albanese, and F. Landers, “Wavefront control with a spatial light modulator containing dual frequency liquid crystal,” Proc. SPIE 5553, 68–82 (2004).
[CrossRef]

Wen, C. H.

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. J. Seed, and R. Dąbrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42(Part 1, No. 6A), 3463–3466 (2003).
[CrossRef]

Winker, B.

D. Gu, B. Winker, B. Wen, D. Taber, A. Brackley, A. Wirth, M. Albanese, and F. Landers, “Wavefront control with a spatial light modulator containing dual frequency liquid crystal,” Proc. SPIE 5553, 68–82 (2004).
[CrossRef]

Wirth, A.

D. Gu, B. Winker, B. Wen, D. Taber, A. Brackley, A. Wirth, M. Albanese, and F. Landers, “Wavefront control with a spatial light modulator containing dual frequency liquid crystal,” Proc. SPIE 5553, 68–82 (2004).
[CrossRef]

Wu, B.

Wu, S. T.

Wu, S.-T.

X. Liang, Y.-Q. Lu, Y.-H. Wu, F. Du, H.-Y. Wang, and S.-T. Wu, “Dual-frequency addresses variable optical attenuator with submillisecond response time,” Jpn. J. Appl. Phys. 44(3), 1292–1295 (2005).
[CrossRef]

Wu, Y.-H.

X. Liang, Y.-Q. Lu, Y.-H. Wu, F. Du, H.-Y. Wang, and S.-T. Wu, “Dual-frequency addresses variable optical attenuator with submillisecond response time,” Jpn. J. Appl. Phys. 44(3), 1292–1295 (2005).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

N. V. Tabiryan and S. R. Nersisyan, “Large-angle beam steering using all-optical liquid crystal spatial light modulators,” Appl. Phys. Lett. 84(25), 5145–5147 (2004).
[CrossRef]

J. Chen, P. J. Bos, H. Vithana, and D. L. Johnson, “An electrically controlled liquid crystal diffraction grating,” Appl. Phys. Lett. 67(18), 2588–2590 (1995).
[CrossRef]

S. T. Wu, U. Efron, and L. D. Hess, “Infrared birefringence of liquid crystals,” Appl. Phys. Lett. 44(11), 1033–1035 (1984).
[CrossRef]

M. Jiao, Z. Ge, Q. Song, and S. T. Wu, “Alignment layer effects on thin liquid crystal cells,” Appl. Phys. Lett. 92(6), 061102 (2008).
[CrossRef]

Jpn. J. Appl. Phys.

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. J. Seed, and R. Dąbrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. 42(Part 1, No. 6A), 3463–3466 (2003).
[CrossRef]

X. Liang, Y.-Q. Lu, Y.-H. Wu, F. Du, H.-Y. Wang, and S.-T. Wu, “Dual-frequency addresses variable optical attenuator with submillisecond response time,” Jpn. J. Appl. Phys. 44(3), 1292–1295 (2005).
[CrossRef]

Opt. Commun.

P. Chanclou, B. Vinouze, M. Roy, and C. Cornu, “Optical fibered variable attenuator using phase shifting polymer dispersed liquid crystal,” Opt. Commun. 248(1-3), 167–172 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

D. Gu, B. Winker, B. Wen, D. Taber, A. Brackley, A. Wirth, M. Albanese, and F. Landers, “Wavefront control with a spatial light modulator containing dual frequency liquid crystal,” Proc. SPIE 5553, 68–82 (2004).
[CrossRef]

Other

D. K. Yang, and S. T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, New York, 2006).
[CrossRef]

M. S. Brennesholtz and E. H. Stupp, Projection Displays 2nd Ed. (Wiley, New York, 2008).

Supplementary Material (1)

» Media 1: MOV (1068 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Device structures with (a) four domains (2) six domains. The LCs in the neighboring domains are orthogonal.

Fig. 2.
Fig. 2.

Experimental set up for observing beam fanning: (a) The beam is undisturbed, and (b) the beam is fanned out into multiple beams.

Fig. 3.
Fig. 3.

Microscope photos of the 4-domain LC cell between crossed polarizers at (a) 0°, (b) 45°, and (c) 90°. The red arrows denote the rubbing direction on the surface of one substrate

Fig. 4.
Fig. 4.

Voltage dependent transmittance of one domain of the 4-domain LC cell. λ=633 nm.

Fig. 5.
Fig. 5.

Intensity profiles of a laser beam modulated by the four-pixel LC cell under different voltages. (a) V=0, (b) V=0.32 Vrms, (c) 0.45 Vrms. (d) 0.88 Vrms, (e) 1.25 Vrms, and (f) 1.50 Vrms.

Fig. 6.
Fig. 6.

3D intensity profiles of a laser beam passing thru the 4-domain LC cell at (a) V=0.45 Vrms and (b) V=0.88 Vrms.

Fig. 7.
Fig. 7.

2D intensity profiles of the beam modulated by the six-domain LC cell at (a) V=0.65 Vrms and (b) V=1.3 Vrms.

Fig. 8.
Fig. 8.

Beam switching dynamics of the 6-domain LC cell. (Media 1)

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ φ=2πλ d (neno)

Metrics